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ABSTRACT 

Ad hoc distributed simulation, a methodology for embedded online simulation, has been studied for the 
steady-state simulation of open queueing networks. However, for most online simulation applications, the 
capability of a simulation approach to respond to system dynamics is at least as important as the perfor-
mance in steady-state analysis. Hence, this paper focuses on the prediction accuracy of the ad hoc ap-
proach in open queueing networks with short-term system-state transients. We empirically demonstrate 
that, with slight modification to the prior ad hoc approach for steady-state studies, system dynamics can 
be modeled appropriately. Furthermore, a potential livelock issue that arises with the modification is ad-
dressed. 
 

1 INTRODUCTION 

This paper explores the ability of ad hoc distributed simulation to predict the transient behavior of physi-
cal systems. Ad hoc distributed simulation (Fujimoto et al. 2007) is an approach to embedding online 
simulations into a network of sensors that monitors the system under investigation (SUI). An online simu-
lation is a predictive computational model that utilizes the data pertaining to the current state of a SUI to 
project future system states. This usage of real-world, up-to-date data allows model adaptation, which in 
turn potentially improves prediction accuracy; this facilitates system monitoring and control. 
 Online simulation is also referred to as dynamic data-driven application systems (Darema 2004), 
symbiotic simulation (Fujimoto et al. 2002), and cyber-physical systems (Lee 2008) in the literature. The-
se approaches have been widely studied and applied to various science and engineering disciplines for a 
myriad of purposes (Davis 1998). One typical application concerns system monitoring, such as examining 
the structural and material health (Cortial et al. 2007, Farhat et al. 2006), and tracking wildfires (Douglas 
et al. 2006, Mandel et al. 2005) and hurricanes (Allen 2007). Another popular application is to optimize 
the operations of a physical system. For example, in an emergency situation, alternate evacuation scenari-
os may be modeled and evaluated in order to minimize evacuation time. The evacuation plan may need to 
adapt as the evacuation evolves when unforeseen events arise (Chaturvedi et al. 2006). Additional exam-
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ples include planning paths for unmanned aerial vehicles (Kamrani and Ayani 2007), tuning parameters 
for computer networks (Ye et al. 2008), managing semiconductor manufacturing systems (Low et al. 
2005), and optimizing surface transportation systems (Hunter et al. 2009a, 2009b). 
 Capturing system dynamics is crucial to online simulations, e.g., to trigger modifications to the con-
figuration of a physical system in response to events. For example, a sudden increase in traffic volume 
may indicate that the changes in traffic signal plans for the responsive transportation system are necessary 
to help reduce congestion. This work adopts the queueing model as the benchmarking application because 
the queueing model is well known for its generality and flexibility to model real-world operational sys-
tems. Examples include vehicular/air traffic, computer systems, communication networks, supply chains, 
and many others that involve distributing limited resources/services among users. Since most of these are 
time-varying systems, transient-state analysis is vital to the success of corresponding applications. 
 Transient-state analysis can be complex and computationally expensive, especially in fulfilling real-
time requirements. Transient-state analysis concerns the system state varying over the span of time; it 
takes into account not only the system state at every time point but also the correlations among the prior 
and posterior system states. Instead, to evaluate the ad hoc approach, this study simplifies the analysis: we 
consider a sufficient number of time points and compare the respective state predictions from the ad hoc 
approach against those from the corresponding sequential simulations. Specifically, the evaluation discre-
tizes simulation time into small time intervals, and the output measures of interest (e.g., queue-length es-
timates) are calculated by averaging the numbers within each interval. 
 The rest of this paper is organized as follows. First, in Section 2, we examine the effectiveness of the 
preliminary ad hoc queueing simulation method introduced by Huang et al. (2012) in a scenario with in-
creases in external arrival rates; the method reveals a delayed response in capturing the propagation of the 
expanded number of arrivals across modeled queueing networks. To resolve this delayed-response issue, 
Section 3 proposes a method and discusses the possible livelock issue following the new design. The new 
method, termed “iterative ad hoc queueing simulation method,” is evaluated empirically in Section 4 un-
der several network configurations, including one with a large increase in arrivals over a short period of 
time (which leads to rapid increases in queue occupancy). Finally, Section 5 concludes this study. 

2 DELAYED RESPONSE IN THE ORIGINAL AD HOC QUEUEING SIMULATION 
METHOD 

 
Figure 1: Information Sharing Mechanism Leading to Delayed Response 

The existing ad hoc queueing simulation method introduced by Huang et al. (2012) is prone to delayed 
response to system dynamics because logical processes (LPs) share locally-observed current state infor-
mation as predictions of the future. Specifically, consider the case where an LP models an object and 
shares the state information with other LPs that use the information as simulation input. As shown in Fig-
ure 1, at simulation time t, the LP computes a value based on the behavior of the object over the time pe-
riod [t − Δ, t). The value becomes public as a predicted value of the object with respect to [t, t + δ), rather 
than [t − Δ, t). As a consequence, observations are not immediately reflected to the simulation model re-
quiring the information, which results in delayed response. 
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 The extent of this delayed-response issue depends on δ and Δ. The value δ is determined by the fre-
quency in which LPs publish state information; smaller δ values allow changes to be revealed more fre-
quently but introduce greater communication overhead in sharing information. On the other hand, the val-
ue Δ indicates the time interval needed to collect state information. While a large Δ may be used to reduce 
the variability of computed values, this may hide important system dynamics as the significance of sys-
tem changes is mitigated by the last Δ-long history. 
 The following experiments illustrate the effects of δ and Δ. Three configurations are evaluated, all 
with δ = Δ = 60, 300, and 600 seconds. The rest of the simulation model is the same as that in the previ-
ous work, and the fundamental mechanisms are as follows. Each LP models an arbitrary queueing sub-
network using a sequential, discrete-event simulation. Every Δ seconds, LPs update the mean interdepar-
ture times on the links they simulate, and request (or estimate if the data is unavailable upon request) the 
same information on the input links entering their individual modeled subnetworks. The arrivals on those 
input links are modeled as Poisson processes, and the rates at the beginning of simulations are all set to λ 
(same as the external arrival rate to every queueing station); thereafter, the rates are dynamically estimat-
ed using the data from rollbacks. The rollback criteria are based on acceptable ranges, constructed by a 
quality control paradigm. Since there may be several predictions from the LPs modeling the same link, 
the data retuned to the requesting LPs are generated using a kernel density estimation (KDE) approach. 
 The experiments involve two open queueing networks in Figure 2 with the intention to show the vari-
ous degrees of impact due to the delayed-response issue. The network in Figure 2(a) is an 8-node, partial-
ly-bidirectional tandem network. Each node represents a single-server queueing station with an unlimited 
buffer, FIFO/FCFS service discipline, and independent and identically distributed (IID) exponential ser-
vice times with the mean equal to 1 second. Each node has external Poisson arrivals with the rate λ. The 
probability of a processed unit moving to another node is p. Hence a processed unit leaves the network 
with probability 1 − p (at nodes 0, 4, or 7) or 1 − 2p (otherwise). The network in Figure 2(b) (referred to 
as a “completely-bidirectional tandem network”) is almost the same to the former one with an exception 
that the processed units at node 4 may leave for node 3 with probability p. 
 The experiments on both the networks deploy 20 LPs in each replicate run: ten LPs modeling the 
leftmost 4 nodes and the remaining ten for the rightmost 4 nodes. In simulating the partially-bidirectional 
tandem network, shared information always goes from the left subnetwork to the right one. The right sub-
network “learns” the system dynamics in the left one through the changes in the flow rate (or, equivalent-
ly, the mean interdeparture time) of link 10. It is anticipated that the larger the Δ, the later the dynamics 
are detected. This phenomenon is expected to be worse for the completely-bidirectional tandem network 
since both the left and right subnetworks require information from each other. 
 The evaluation of δ and Δ considers two metrics over 10 IID ad hoc runs: the arrival rate across link 
10 and the mean queue length at node 4. In one run, since the 10 LPs modeling node 4 (where link 10 en-
ters) may use different arrival rates with respect to the same simulation time, these rates are averaged into 
one value. Then, the mean of the 10 values (each from one run) represents the point estimate. A similar 
calculation is performed to estimate the mean queue length at node 4 every 60 seconds. 
 The results from the corresponding sequential simulations serve as the ground truth. These results are 
based on 100 replicate sequential runs because 10 IID ad hoc runs deploy a total of 100 LPs to model one 
node. Note that these sequential simulations do not model the arrivals on link 10 as Poisson arrivals (as is 
done by ad hoc simulations). Instead, the arrivals are the departures from node 3 filtered by the probabil-
ity p. For the output, the rate is estimated by the corresponding mean interarrival time, which is computed 
every 60 seconds based on the arrivals appearing since the last computation. 

 
(a) Partially-Bidirectional Tandem Network 

 
(b) Completely-Bidirectional Tandem Network 

Figure 2: 8-Node Tandem Queueing Networks 
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2.1 Case 1: Partially-Bidirectional Tandem Network 

First, we study the partially-bidirectional tandem network with p = 0.45 and, for the first 4 hours in simu-
lation time, λ = 1 ⁄ 8 per second; the steady-state traffic intensities of nodes range from 0.36 (nodes 1 and 
4) to 0.66 (node 6). Afterwards, the external arrival rate λ increases to 1 ⁄ 6 per second, causing the growth 
of the steady-state traffic intensities to the range between 0.48 (nodes 1 and 4) and 0.87 (node 6). 
 Figure 3 plots the experimental results from four different simulations: sequential simulations and ad 
hoc queueing simulations with δ = Δ = 60, 300, and 600 seconds. In order to focus on the transient period, 
the prior and later parts are removed for now. On the left is the estimated arrival rate across link 10. The 
results match the expectation that a larger Δ value gives rise to longer delay in incorporating state chang-
es. The delay is approximately Δ in length except in the case of Δ = 60 where the delay is slightly larger. 
This is because the predictions have a higher variation as they are based on a smaller amount of data. On 
the other hand, the right figure shows the estimated mean queue length at node 4 in the same simulation 
setting. Although the queue length is partly influenced by the arrivals on link 10, the discrepancy between 
the ad hoc runs and sequential runs is noticeable, albeit less severe. 

2.2 Case 2: Completely-Bidirectional Tandem Network 

This case concerns the completely-bidirectional tandem network with p = 0.4. Same as the above case, the 
external arrival rate λ increases from 1 ⁄ 8 to 1 ⁄ 6 per second after 4 hours in simulation time. Before the 
transition, the steady-state traffic intensities range from 0.31 (nodes 1 and 7) to 0.57 (nodes 4 and 5); fol-
lowing the rate change, they are between 0.41 (nodes 1 and 7) and 0.76 (nodes 4 and 5). 
 The experimental results are in Figure 4. Compared to those in Case 1, the ad hoc runs in this case 
take longer to pick up the state change. For example, the ad hoc runs with Δ = 600 do not fully reach the 
expected state until approximately one hour after the change has occurred. This prolonged delay results 
from the “mutual dependence” of the left and right subnetworks. In other words, the projected arrival rate 
across link 3 relies on that along link 10, and vice versa. 

  
Figure 3: Estimated Arrival Rate across Link 10 and Mean Queue Length at Node 4 under Case 1 

  
Figure 4: Estimated Arrival Rate across Link 10 and Mean Queue Length at Node 4 under Case 2 
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3 ITERATIVE AD HOC QUEUEING SIMULATION METHOD 

This section proposes a solution to the delayed-response problem by reassigning a new meaning to the 
values computed during simulation executions. These values are considered as representations of the cor-
responding current system states, rather than future-state predictions as in the original ad hoc method. The 
details are described in the following subsections, followed by a discussion of the potential livelock issue. 
 The proposed iterative ad hoc queueing simulation method inherits most components from the origi-
nal one, including the partitioning, the local simulation models, the information aggregation, and the roll-
back-based optimistic synchronization mechanism. These common parts are briefly summarized to pro-
vide a comprehensive view of the method without the focus deviating from the new design. 

3.1 Partitioning and Local Simulation Model 

As in the original ad hoc method, a queueing network of interest is partitioned into subnetworks of vari-
ous sizes and shapes with the possibility that these subnetworks may overlap with each other. Every LP 
models one subnetwork and uses the discrete-event simulation technique to construct its local simulation 
model. The simulation input is the state information of incoming links to the corresponding modeled sub-
network, and the output is that of all modeled links. The specifics regarding the link state information will 
soon be revisited in the next subsection. 

3.2 Information Sharing 

Similar to the original ad hoc method, the shared link states are represented in a high-level abstraction in-
stead of using the exact time points of job arrivals/departures. Specifically, LPs exchange estimated flow 
rates every Δ seconds where an estimated flow rate of a link is computed by reversing the mean interarri-
val time over the last Δ seconds on that particular link. For example, let ti ≤ ti+1 ≤ … ≤ tj−1 denote the arri-
val times within a time interval of interest. Then, the estimated flow rate r is the reciprocal of the mean 
interarrival time, i.e., r = (j – i) / (tj−1 − ti−1). However, generating individual arrival times out of r is not 
straightforward because the information of the respective interarrival-time distribution is not maintained, 
nor is the correlation relationship among those arrivals. Here, it is assumed that the arrivals on one link 
form a Poisson process with the rate equal to the corresponding estimated flow rate. 
 Unlike the original ad hoc approach, this iterative ad hoc method requires LPs to share link infor-
mation in a way that state changes are reflected to others as soon as possible. This is accomplished by im-
posing that an estimated flow rate over a given time period must be used to reconstruct the link during 
that particular time interval. Specifically, consider a value v as the flow rate over [t, t + Δ) on some link l. 
The LPs modeling link l as an incoming link have to use v (along with the assumption about the corre-
sponding arrival process) to generate arrivals during [t, t + Δ). 
 This design guarantees that simulations do not progress backwards since the value over [t, t + Δ) from 
one LP affects, at earliest, the simulations of [t, t + Δ) carried out by other LPs. Or, in the terminology of 
distributed simulations, the “lookahead” value is zero. Zero lookahead commonly raises the concern of 
deadlocks, which can be eliminated by optimistic synchronization. However, livelocks are possible be-
cause LPs may fall into a loop within which they keep rolling back each other. Avoiding such livelocks 
requires careful design of local simulation models; this will be revisited in Section 3.6. 

3.3 Information Aggregation 

This iterative ad hoc method retains the original information aggregation mechanism—each state variable 
(i.e., the estimated flow rate of one link over a certain time interval) is affiliated with a data model so that 
aggregating various estimates is equivalent to randomly generating a sample out of the model. Data mod-
els are constructed using the KDE method with Gaussian kernels. 
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3.4 Optimistic Synchronization and Rollbacks 

The optimistic synchronization in this iterative ad hoc method builds upon three principles: 1) intuitive 
practices, 2) simple implementation/maintenance, and 3) statistical validity. While the last one is the fun-
damental idea to determine the necessity of a rollback (referred to as the “rollback criterion”), the former 
two are pervasive throughout the design. For example, when a desired flow rate is unavailable, the re-
questing LP uses the most current rate of the same link rather than an arbitrary value, by assuming that the 
link state has not changed. Another example concerns the system state restoration for nonstationary Pois-
son processes; this will be revisited soon. 
 The rollback criterion involves a statistical test, which evaluates a used value against all the shared, 
estimated rates. Specifically, the confidence interval for the mean rate estimate serves as an acceptable 
range: nStr rαn ×± −− 21,1  where r , 2

rS , and n are the sample mean, sample variance, and sample size, 
respectively. The significance level α is set to 0.005. The critical value tn−1,1−α/2 is based on the Student’s t 
distribution with n − 1 degrees of freedom. If the used value falls outside the range, it is rejected and a 
rollback is triggered. Compared to the original design, this method introduces an additional parameter 
(i.e., the degrees of freedom) in order to adapt for various variations due to different sample sizes. 
 In response to rollbacks, LPs perform system state restoration. Since modeling input links involves 
nonstationary arrival processes, additional state information (other than flow rates) is needed. In typical 
discrete-event queueing simulations, processing a current arrival event includes scheduling a new arrival 
event, the timestamp of which relies on some “future information,” i.e., in this design, future flow rates. If 
any pertaining future rate is later proved incorrect, a rollback is triggered; Figure 5 depicts such a situa-
tion where an LP is rolled back for using an underestimated flow rate during [t, t + Δ). Since resetting sys-
tem state removes all the arrivals beyond t, an initial arrival has to be generated on every input link. The 
generating process has to consider the elapsed time from t2 (when the last arrival occurred) to t as part of 
the interarrival time. Note that the new arrival must come after t because a rollback targeting at [t, t + Δ) 
cannot affect the system state before t. 

 
(a) Before System State Restoration 

 
(b) After System State Restoration 

Figure 5: Arrival Scheduling during Rollbacks 

 The above issue is simplified in ad hoc queueing network simulations because the arrivals on input 
links are modeled as nonstationary Poisson processes. Two well-known methods for generating nonsta-
tionary Poisson arrivals are the thinning method (Lewis and Shedler 1979) and the inversion method 
(Çınlar 1975). The thinning method, an acceptance-rejection algorithm, requires the upper bound on the 
flow rate function, which is generally unavailable. Also, this method may be inefficient when the ac-
ceptance rate is low. On the other hand, the inversion method generates the arrivals times {ti} using a se-
quence of Poisson arrival times at rate 1 {ti′} and the expectation function of the rate function 

( ) ( )∫=
t dyyλt
0

Λ , as follows: 
1) u ~ U(0, 1), 2) ti′ = ti−1′ − ln(u), and 3) ti = Λ−1(ti′). 

We adopt this method because it is practical and easy to implement with one additional variable for ti−1′ 
and an array data structure for Λ−1 (as the rate functions in ad hoc queueing network simulations are step 
functions). 
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3.5 Naming—“Iterative” Ad Hoc Queueing Simulation Method 

The term “iterative” comes from the iterative methods in computational mathematics. These iterative 
methods solve the problems that are formulated into the fixed-value problem f(x) = x, where f is a func-
tion. To find a solution of such a problem, the typical procedure of an iterative method starts with an arbi-
trary x0, which is used in f to obtain f(x0); then, the value f(x0) is set to x1. This procedure of xn+1 = f(xn) is 
repeated until the sequence {xi} converges. The definition of convergence varies; it can be that the differ-
ence between the last two numbers in the sequence are either zero or within a designated scale of error. 
 A similar phenomenon of iteration can be observed in this iterative ad hoc approach. Figure 6 depicts 
an example queueing network partitioned into two parts, each containing one node. The LPs modeling 
node 0 generate the state information for link B and request that of link A; by contrast, those modeling 
node 1 use the information for link B to produce that for link A. The relationship between the desired and 
the shared information can be captured by functions: F0 for the LPs simulating node 0 and F1 for node 1. 
Consider A[t, t + Δ) as the state of link A with respect to the time period [t, t + Δ), and similarly B[t, t + Δ) for 
link B; the relations can be written down as B[t, t + Δ) = F0(A[t, t + Δ)) and A[t, t + Δ) = F1(B[t, t + Δ)). Combining 
these two yields A[t, t + Δ) = F1(F0(A[t, t + Δ))), which has the form f(x) = x where f is F1 ○ F0. 

3.6 Avoidance of Potential Livelocks 

To prevent livelocks in this iterative ad hoc method, it is essential to comprehensively understand a phys-
ical system before building local simulation models and designing the ad hoc components, especially the 
rollback criteria. A livelock situation arises when two or more LPs are involved in a loop in which their 
shared values keep invalidating each other’s simulation inputs. That is, these LPs roll back each other 
successively so that, from a global view, the entire simulation execution does not show forward progress. 
Although the zero-lookahead feature allows LPs to “bring back” others to the same simulation time, this 
feature cannot be blamed for livelocks. Instead, the causes are incorrect simulation models and unrealistic 
rollback criteria. The former one is analogous to the classical livelock problem where the applica-
tion/model itself is not appropriately defined; we will not delve into this well-known issue. Instead, here 
we focus on the latter, which is specific to the ad hoc approach. 
 A feasible, legitimate rollback criterion must take into consideration the characteristics of state varia-
bles, such as randomness. For example, for a state variable with possible values ranging across some con-
tinuous space (i.e., a continuous stochastic variable), its affiliated rollback criterion needs to be flexible 
with regard to evaluating the “correctness” of a value. A value should be considered correct if it is within 
a certain range. This idea applies to discrete stochastic variables as well. However, the consequence 
would be more severe for continuous random variables because the probability of a continuous random 
variable equal to any arbitrary value is zero. This implies that, given an LP that has used a value v for 
some input link, another LP modeling the link is highly improbable to generate v as a state measure for 
the link. Hence, the LP using v is rolled back. The following example illustrates such a situation based on 
the queueing network in Figure 6. 

 

 
Figure 6: 2-Node Open 

Queueing Network 
Figure 7: An Example of a Livelock Situation in Modeling the 2-Node Open 

Queueing Network in Figure 6 
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 The example concerns a simulation of the queueing network in Figure 6 with LP0 modeling the left 
part (i.e., node 0 and link B) and LP1 covering the right one. LP0 requires the state information of link A 
as input to its local simulation model, and this information is shared by LP1. Similarly, LP1 relies on LP0 
for link B. The link states are measured by the flow rates estimated over Δ seconds, and the LPs must use 
the exact value their corresponding LP generates. Considering a time interval [t, t + Δ), the process used 
by the two LPs to reach an agreement on the rates is depicted in Figure 7; clearly, they fail and fall into a 
livelock. The detailed process is as follows: 

1. At wall-clock time T0, both LP0 and LP1 have not generated the flow rates for their corresponding 
links with respect to [t, t + Δ). As a consequence, they adopt arbitrary values: LP0 applies vA0 for 
link A and LP1 uses vB0 for link B. 

2. At time T1, LP0 produces the estimated flow rate of link B, vB1, which rolls back LP1. 
3. Then at T2, LP1 observes the flow rate of link A being vA1 after using vB1 for link B. As a conse-

quence, LP0 is rolled back and its shared state information about link B, vB1, is revoked. 
4. At time T3, a similar situation occurs: LP0 derives a new value for link B, vB2, due to the usage of 

vA1. Rolling back LP1 results in the simulation ending up in a situation resembling that at T1. 
This loop of rollbacks is anticipated to continue because the flow-rate estimates are continuous stochastic 
variables; it is highly unlikely that vAi = vAi+1 (nor vBi = vBi+1) for any integer i ≥ 0. 

4 EXPERIMENTS AND RESULTS 

This section evaluates the iterative ad hoc queueing simulation method with three experiments. The first 
two (Sections 4.2 and 4.3) revisit those in Sections 2.1 and 2.2 but use the new iterative ad hoc method. 
The third one in Section 4.4 loads the previous tandem network with heavy traffic. All three are to show 
that the method is effective in terms of identifying system transients. The metrics for evaluation include 
the flow rates of input links and the mean queue lengths at nodes. The results are compared with the se-
quential counterparts. 

4.1 Welch’s t Test 

The following experiments use Welch’s t test to statistically assess the (null) hypothesis that the mean 
values of two samples are equal. This test modifies the well-known Student’s t-test to consider that two 
samples may have unequal variances. Its statistic t and the degrees of freedom ν are defined by Equation 
(1) where iX , 2

iS , and Ni are the i-th sample mean, sample variance, and sample size, respectively. Given 
a significance level α (e.g., 0.01), the hypothesis is rejected if the derived p-value is below α; the p-value 
for a two-tailed test based on Student’s t-distribution is 1 − (Fν(|t|) − Fν(−|t|)) where Fν denotes the respec-
tive distribution function. 
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 The two samples in the subsequent hypothesis tests are 1) the data from the ad hoc runs and 2) those 
from the sequential counterparts. Regardless of the metric, the size of the ad hoc sample (i.e., N1) is al-
ways 10, same as the number of replicate ad hoc runs, and that of the sequential sample (i.e., N2) is 100. 
This part of the configuration is the same as that described in Section 2. 

4.2 Experiment 1: Partially-Bidirectional Tandem Network 

This experiment concerns the network in Figure 2(a) with all the configurations from Section 2.1. The 
simulation results based on the iterative ad hoc method are shown in Figure 8. Regardless of the Δ value, 
the ad hoc simulations perform well on capturing the estimated flow rates and mean queue lengths. The 
revealed choppiness in estimates is anticipated due to the randomness in the simulation models. Further-

2954



Huang, Alexopoulos, Hunter, and Fujimoto 
 

more, it is expected that a large Δ may weaken the real-time response as the changes are averaged out 
across the entire update periods. However, such issue is insignificant in this experiment. 
 Figure 9 plots the p-values from Welch’s t tests on the same two measurements of interest. These re-
sults reaffirm the good performance of the iterative ad hoc method because the vast majority of the p-
values are above the critical level α = 0.01. Some exceptions include those at simulation times 3:54, 4:16, 
4:28, and 4:32; they are rather insignificant because 1) the one at time 3:54 occurs just prior to the arrival 
rate increase at time 4:00 and 2) they are sparse across the entire simulation. 

  
Figure 8: Estimated Arrival Rate across Link 10 and Mean Queue Length at Node 4 in Experiment 1 

 
(a) Estimated Arrival Rate across Link 10 

 
(b) Estimated Mean Queue Length at Node 4 

Figure 9: P-Values from Welch’s t Tests in Experiment 1 

4.3 Experiment 2: Completely-Bidirectional Tandem Network with Moderate Traffic 

This experiment extends that in Section 2.2 by replacing the original ad hoc method with the new one. 
The network of interest is in Figure 2(b) and the results are in Figure 10. Here (and afterwards), the flow-
rate metric is skipped as it leads to the same conclusion as the queue-length metric—that is, the iterative 
ad hoc method performs well. Nevertheless, again, sporadic hypothesis rejections occur but they are not 
major, as those in the previous experiment. 

4.4 Experiment 3: Completely-Bidirectional Tandem Network with Heavy Traffic 

This experiment intends to show that the iterative ad hoc method is capable of promptly responding to 
sudden, massive state changes. The network of interest is depicted in Figure 2(b) and the system transi-
ents are introduced by increasing the external arrivals to each node as depicted in Figure 11. This makes 
node 3 saturated—an extremely busy server with its queue building up. Node 4 is also saturated with its 
steady-state traffic intensity reaching approximately 0.97. Since the queues grow rapidly, the system tran-
sient period is configured to last for only 30 minutes. This allows the ad hoc method to demonstrate that it 
can also capture state changes in the opposite direction (i.e., decrease in flow rates). 
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Figure 10: Point Estimates and p-Values on Estimated Mean Queue Length at Node 4 in Experiment 2 

 

 
Figure 11: An 8-Node Completely-Bidirectional 

Tandem Network with Heavy Traffic 
Figure 12: Estimated Mean Queue Length at Node 4 

in Experiment 3 

 The simulation results affirm that the iterative ad hoc method is competent in this heavy-traffic sce-
nario; see Figure 12 for the estimated mean queue length at node 4. For clarity, Δ is set to a moderate val-
ue (Δ = 300), leaving off the jagged results from small Δ. Further, the respective t tests indicate insignifi-
cant differences between the ad hoc and sequential simulations (the figure is not shown due to space 
constraints). 

5 CONCLUSIONS 

By extending the work by Huang et al. (2012), which studies the prediction accuracy of steady-state met-
rics, this paper demonstrated the competitiveness of ad hoc distributed simulation on modeling short-term 
system dynamics in opening queueing networks. First, we conducted two experiments with increases in 
flow rates during simulation executions to argue that the original ad hoc method in the previous work fails 
to immediately reflect system transients. The extent of the delayed response relates to the length of the 
update period Δ. The failures are due to the fact that the state updates shared by individual LPs are re-
garded as predictions of future system states, rather than reflections of the current state. 
 To address the delayed-response issue, we proposed an iterative ad hoc method along with detailed 
discussions on the design of the relevant components as well as the potential livelock issue arising in cer-
tain simulation models. The new method was empirically evaluated by three experiments that demonstrat-
ed the potential of the proposed iterative ad hoc approach to capture system dynamics. The evaluation 
was based on point estimation, which includes not only the direct comparison of the averaged statistics 
but also Welch’s t test to provide more compelling and comprehensive statistical evidence. 
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