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ABSTRACT

Construction engineers compare as-built data against as-designed models for monitoring construction de-
fects or changes. As laser scanners can collect 3D point clouds as as-built data in a few minutes, engineers
start to compare point clouds against the as-designed model. Such comparison requires a reliable data-
model registration that precisely distinguishes data-model differences (e.g., displacements) from the well-
matched parts. Previously developed registration methods have limitations on aligning two geometries with
geometric differences. Target-based registration methods pose challenges of installing targets and ensuring
their visibilities on job sites. Feature-based registration algorithms need engineers to manually set proper
parameters to precisely reject data-model differences. Through the simulation of a progressive data-model
registration process, this study characterizes a progressive 3D registration approach that can precisely reject
data-model differences. Sensitivity analysis results of this approach in a case study show that this approach
outperforms previous methods in terms of precision without losing substantial computational efficiency.

1 INTRODUCTION

Construction engineers and project managers need to compare as-built data against as-designed models for
construction project control. Project engineers need to compare the number of constructed components
against the expected number of erected components according to the schedule for progress monitoring
(Turkan et al. 2012). It is necessary to evaluate the deviations of as-built conditions from the as-designed
model for construction defect detection, quality control, and workspace arrangements (Akinci et al. 2006;
Cho et al. 2011). Differences between as-built data and as-designed models also help engineers to analyze
which construction operations designed based on as-designed models need to be updated for ensuring safe
and productive construction operations (Gong and Caldas 2010; Gong and Caldas 2008).

Comparison of the as-built data and as-designed model needs to firstly align the data against the model,
and then identify the deviations of data points from the model (P. Tang et al. 2011). Such data-model align-
ment is known as data-model registration, which transforms the data and model to a common coordinate
system (Bosche et al. 2009). Analyzing the data-model deviations reveals various differences between as-
built and as-designed conditions, such as dislocations of components. This step is defined as deviation
analysis in this paper. Without knowing apriori the data-model differences, engineers need a data-model
registration algorithm that can precisely distinguish highly-matched parts of the data and model from parts
that have substantial differences.

Previous studies reveal the challenges of registering two geometries having significant differences.
Some studies use surveying equipment to geo-reference 3D data sets and as-designed models, but require
installing targets to be surveyed for such geo-referencing. Target-based registration methods, therefore,
pose challenges of installing targets and ensuring their visibilities on job sites (P. Tang et al. 2011). Some
studies focus on developing feature-based methods, which extract standard surveying targets or salient
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building features in the data and model to establish data-model correspondences and derive a least-square
best-fit based on corresponding feature pairs.

Feature extraction and matching can be manual (F. Bosché 2011) or automatic (Huber and Hebert 2003).
These the registration accuracy of feature-based approaches are sensitive to the layouts and localization
accuracies of the used features (Becerik-Gerber et al. 2011). Possible data-model differences can also result
in unreliable feature pairs that are “correspondence outliers” capable of significantly biasing the registration
results. For example, the dislocation of a column on the job site may cause the registration algorithm using
the corners of it as data-model correspondences produce imprecise registration. In other words, features on
changed components are misleading correspondence information.

Some registration algorithms use all points in point clouds rather than small number of features for
computing the best-fit between the data and model. These algorithms are mostly based on the ICP ({terative
Closest Point) algorithm, which was developed for registering multiple 3D point clouds (Chetverikov et al.
2002; Besl and McKay 1992; Pomerleau et al. 2010; Zhang and Choi 2011; Rusinkiewicz and Levoy 2001).
ICP-based algorithms iteratively update the transformation (rotation, translation) needed to minimize the
deviations between two point clouds. The algorithm firstly associates points from one point cloud with their
nearest neighbors in the other (data association), and then derives the transformation that minimizes the
distances between all pairs of associated points. The ICP algorithm iterates these two steps until the sum of
the squares of distances between associated points decreases below a user-defined threshold. When adopted
for data-model registration, ICP-based algorithms associate data points with the nearest surface in the as-
designed model (data-model association), and then iteratively minimizes the sum of the squares of point-
surface distances. This data-model association step needs users to specify a “maximum distance” to avoid
associating points with surfaces far from them, and thus reject possible correspondence outliers. Compared
with feature-based approaches, ICP-based approaches adaptively update the data-model correspondences
in the data-model association step, and automatically remove correspondence outliers based on the “maxi-
mum distance” threshold for improving the registration accuracy.

On the other hand, different data-model deviation cases need different “maximum distance” setting of
ICP-based approaches for precisely eliminating correspondence outliers. As will be detailed in section 2, a
rough data-model alignment has relatively large data-model deviations for most parts of the point cloud,
and has more ambiguities about which parts contain outliers. Such cases need a larger “maximum distance”
for exploring more possibilities of data-model matches. In contrast, a refined data-model alignment has
substantial parts of point clouds aligning well with the model, and the rest has large deviations. Such case
needs a smaller “maximum distance” value for further refining the registration rather than a broad search.
ICP-based algorithms using a fixed “maximum distance” throughout the registration process ignore the
needs of adjusting the “maximum distance” based on the present alignment conditions, and thus lose regis-
tration accuracy due to imprecise outlier rejections.

Some researchers developed robust ICP algorithms that adaptively adjust the “maximum distance”
thresholds during the ICP iterations based on the data-model deviation values of interim registration results.
Robust ICP algorithms can achieve more reliable outlier rejections, but still require engineers to configure
the initial value of “maximum distance” and the sub-sampling rate of the point clouds. Generating data-
model deviations for each loop in the ICP process also consumes large amounts of computing time and
resources. On the other hand, quantitative knowledge about how various parameters of robust ICP algo-
rithms influence the registration precision and computational efficiency are still limited. As a result, engi-
neers tend to configure ICP algorithms in an ad-hoc manner without quantitative awareness on the time and
registration accuracy implications of settings of the algorithm. Section 2 details that proper parameter set-
ting of robust ICP is critical for ensuring the precision and efficiency of the data-model registration.

This paper presents a framework for quantitatively evaluating the performances of data-model regis-
tration algorithms and characterizing how the performance of a robust ICP algorithm designed by the au-
thors varies with the values of its critical parameters. This framework uses three metrics for measuring the
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performance of data-model registration algorithms: 1) computational efficiency, which indicates the execu-
tion time of the algorithm; 2) accuracy, which indicates the capability of an algorithm of finding the best fit
while correctly rejecting outliers; 3) repeatability, which measures the variations of the registration results
in multiple runs. The robust ICP algorithm designed by the authors repeatedly executes the classical ICP
algorithm, and each execution uses a “maximum distance” value halving the “maximum distance” used in
the last execution. This algorithm is called “Progressive Registration” hereafter due to this progressive
approach of reducing the “maximum distance” threshold. The first ICP execution of this algorithm uses a
user-defined maximum distance (1 m in this paper). This algorithm then uses a predefined sequence of
“maximum distance” values for a series of ICP executions, while does not vary the “maximum distance” in
the internal loops of each ICP execution. It eliminates the data-model deviation computations, while sacri-
ficing some computational efficiency by repetitive ICP executions. Another critical parameter of this algo-
rithm is the sub-sampling rate of the registered point cloud: more sub-sampling will reduce the computing
time while compromising the registration accuracy. The evaluation of the performance of this algorithm,
therefore, focuses on understanding the impacts of the series of the predefined series of “maximum dis-
tance” values, and sub-sampling rate on the three metrics mentioned above.

The following sections will firstly introduce a motivating case showing the necessity of exploring and
characterizing robust ICP methods (section 2). After that, section 3 presents the design of the progressive
registration algorithm and the experiment design for evaluating it. Section 4 discusses the characterization
results of the progressive registration algorithm on the data of two campus buildings of significantly differ-
ent sizes. Section 5 finally concludes with some observations and possible future research directions.

2 MOTIVATING CASE

The Facilities Management (FM) at Western Michigan University (WMU) worked jointly with the authors
on evaluating the qualities of a number of as-is Building Information Models (as-is BIM) created based on
as-built drawings of a number of WMU campus buildings. This effort is part of the WMU Bronco BIM
initiative on active uses of BIM for campus facility management. WMU FM plans to use these as-is BIMs
for planning renovations, analyzing energy performances of facilities, and other applications related to the
life-cycle management of campus facilities. These applications have a variety of requirements about the
geometric accuracies of as-is BIMs for supporting the spatial analysis and decision making. WMU would
like to identify significant modeling errors in these as-is BIMs. For example, planning the exterior renova-
tion of a campus building (Figure 1a) may require the deviations of its as-is BIMs from the actual conditions
to be less than 5 cm according to the U.S. GSA (General Services Administration) BIM guide (General
Services Administration 2009). WMU FM, therefore, needs to know whether all parts of the as-is BIM of
this building is within 5 cm from the actual physical conditions.

(b)

Figure 1 As-is BIM (a) and dense 3D point clouds (b) collected for identifying the as-is BIM modeling
errors
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Figure 2 (a) The alignment result of ICP algorithm using a maximum distance of 1m, in which the color
scale is from -5 cm (magenta) to +5cm (red), and the points beyond these limits are of the default color,
grey; (b) The alignment result of ICP algorithm using a maximum distance of 5 cm.

To assist WMU FM in this case, the authors compared the dense point clouds collected by a Time-of-
Flight terrestrial laser scanner (TOF scanner). This TOF scanner collected point clouds capturing the ge-
ometries of this building with 5 mm accuracy for each point. These point clouds are also dense enough to
have all building features larger than 1 cm documented. We then registered these point clouds collected at
several locations around this building into one point cloud capturing the comprehensive exterior geometries
of this building. After that, we registered the integrated point cloud and the as-is BIM into the same coor-
dinate system for identifying differences between the as-is BIM and the physical conditions. More details
of the data collection and processing of this case study are in (Pingbo Tang and Alaswad 2012) and
(Alaswad 2011). First, we roughly aligned the point cloud and the BIM based on the corner points along
the top sides of the walls (twelve top corner points of walls for this “crux” shape building). After this rough
alignment, the authors refined the alignment using the ICP algorithm with 1 m as the “maximum distance,”
and found that the best-fit found by this ICP is sub-optimal due to the significant modeling errors in the as-
is BIM. Figure 2(a) shows this 1m ICP result. In this figure, we can see that only parts of the roof are within
5 cm from the nearest 3D points in the point cloud (color points are points within 5 cm from the BIM
surfaces), while most parts of the walls show no color as they are not align well with the point cloud such
that no points are within 5 cm from them. Close inspection of this alignment results showed that such
misalignment was caused by the significant modeling errors in the roof slope: the actual roof slopes are
much smaller than the ones in the BIM. Significant differences in roof slopes cause the ICP algorithm to
shift the model away from a good alignment for walls, while trying to minimize the distances between
points on roofs and the incorrectly modeled roof. On the other hand, we found that using 5 cm as the
“maximum distance,” the alignment results seem to be much better than the 1m ICP result as most of the
walls start to have colors (Figure 2b). This is because that the roughly aligned point clouds are based on the
top corners of walls, and the maximum distance of 5 cm ignores significant parts of the roof because many
parts of it have deviations between points and BIM larger than 5 cm.

In this case study, we also found that repeating the ICP algorithm with progressively reducing maxi-
mum distances can gradually reject outliers and improve the registration results. Unfortunately, we also
found that the registration quality and computing time was sensitive to the values of the “maximum dis-
tance” and the sub-sampling rates used in by each ICP execution in the progressive registration process.
For evaluating the quality of a given data-model registration, we computed the shortest distance from each
point in the point cloud to the as-is BIM, and identified the percentage of the point cloud lying within 5 cm
from the as-is BIM. That “5 cm” is the tolerance of positioning accuracy for exterior walls according to
GSA BIM guideline (U.S. GSA 2009). We call that percentage as “5 cm fit percentage” hereafter. A higher
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5 cm fit percentage generally indicates a higher level of geometric agreement between the data and as-is
BIM, and thus more precise registration ignoring significant differences between data and the as-is BIM.
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Figure 3 The change of the “5 cm fit percentage” along a progressive registration process, and the corre-
sponding results for using ICP algorithm adopting a single “maximum distance” value (the curve of “best
fit,” the unit of “maximum distance” is meter)

Figure 3 shows that how the percentage of points in the integrated point cloud that are within 5 cm of the
as-is BIM varies with a progressive registration process. Overall, the larger this percentage, the more points
in the registered point cloud align well with the as-is BIM (within 5 cm), and thus the registration is more
likely to be a good-fit agreed on by more building parts. The horizontal axis shows the sequence of maxi-
mum distance values used for executing the ICP process. The progressive registration algorithm executes
the ICP process using the first value, and then repeats ICP using the second value, and so on. This figure
shows how the percentage of agreeing points vary along the progressive registration process for two se-
quence of “maximum” distance values: the first one gradually reduce the maximum distance value by halv-
ing the maximum distance value for each execution with the initial maximum distance set as 1 m (I1m, 0.5
m, ....), while the second one use 1 m maximum distance to execute the ICP process, and then use 3.125
cm to execute the second ICP process. This figure show that the former can gradually improve the percent-
age of points agree with the as-is BIM, while latter seem not be able to achieve that. Such results show the
sensitivity of the registration result to the selection of a sequence of “maximum distances” for gradually
rejecting outliers and achieving a reliable registration rejecting outliers.

In this case study, we also found that the computing time can significantly vary with the subsampling
rates of point clouds. All above results are generated based on 1/1 sampling rate (no-sub-sampling). Sub-
sampling the point cloud can reduce the registration time but cause the registration results less reliable, as
different registration process uses different set of randomly sampled points for ICP, and executing the al-
gorithm multiple times can produce slightly different registration results. For example, we found that using
a sampling rate of 1/64 only takes 5 seconds to complete the registration based on progressive series 1,
while need 140 seconds if the sampling rate is 1/1. As detailed later in section “Results,” if the user repeat
the progressive registration process multiple times, the registration results will have some variations due to
the randomness of the subsampling process. 1/64 subsampling rate will generate registration results of
larger variations across multiple executions of the progressive registration process compared with denser
subsampling rates (e.g., 1/4, 1/16).

All above discussions show the limitations of the ICP algorithm and the sensitivity of the progressive
registration algorithm to the parameter settings. The ICP algorithm uses all data points, while substantial
differences between the as-built and modeling conditions can bias the registration results so that the align-
ment result may not correctly align the data and model for disregarding errors. The progressive registration
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algorithm can address the limitation of ICP only when the parameters are appropriately configured. In ad-
dition, the sub-sampling rate of registered point cloud can significantly influence the progressive registra-
tion time as well as the reliability of the registration results. These observations motivate the development
of a framework for systematically characterizing data-model registration algorithms and quantify the rela-
tionships among parameter settings, data set characteristics, the execution time, and the accuracy and reli-
ability of the registration results. With such efforts, engineers will be able to correctly use automated data-
model registration approaches with the awareness of the impacts of data collection options (sub-sampling
rate, variation of the maximum distance of data-model association).

3 METHODOLOGY

The subsections below first describe the progressive registration algorithm, and then present a framework
for evaluating the performance of data-model registration algorithms. That evaluation framework is com-
posed of a number of algorithm performance metrics, testing data sets and parameter settings assessed in
this performance evaluation.

3.1 Progressive Registration Algorithm

The progressive registration algorithm (PRA) explored in this study execute ICP algorithm multiple times
until a data-model fitness measure is maximized.

/ 3D Point Cloud /
and BIM
v
Manually align the point cloud against

the BIM using correspondences
selected by the user

¥

Set the maximum distance for the first ICP execution
(1m used in this research)
) Optional step:
Execute the ICP algorithm Subsample the point
1 cloud (1/1, 1/4, ...1/64)
I
Calculate the “fit percentage” : the percentage of
points within a certain distance from the BIM (5 cm
used in this research)

Halve the maximum
distance for the next ICP
execution

The “fit percentage”
converge?

@btain Data-Model Alignment Result and ED

Figure 4 Flowchart of the progressive registration algorithm

Figure 4 shows a flowchart of this algorithm. Overall, given a user-defined “maximum-distance” value
(1m used in this research) and manually aligned point cloud and BIM, this algorithm completes the first
execution of ICP, and then each subsequent execution of the ICP algorithm uses a maximum-distance value
that is half of the maximum-distance value used in the last ICP execution. As a result, a series of ICP
registrations using a series of progressively halved “maximum distance” values form the progressive reg-
istration process. After each execution of ICP, the algorithm evaluates the data-model fitness using a pre-
defined measure. The data-model fitness measure used in this study is “5 cm fit percentage” described in
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section 2: the percentage of the point cloud falling within 5 cm from the as-designed model. This 5 cm
threshold is based on the tolerance of BIM accuracy in this case study, and can be adjusted based on specific
domain requirements if other projects had different tolerances. Large differences between the data and the
BIM can reduce this percentage, and maximizing it can likely find the maximum agreement between the
data and model having possible inconsistencies. As each subsequent registration is a refinement of the
results obtained by its preceding execution, this “5 cm fit percentage” will gradually increase during the
progressive registration process, but will not increase anymore after such refinements continue to a certain
point, as shown in section 2. The repetitive executions of ICP will stop when the “5 cm fit percentage” does
not vary significantly. In this research, if the “5 cm fit percentage” of the current ICP execution is within
+0.5% from the “Scm fit percentage” from the last ICP execution, then the algorithm will regard the “fit
percentage” converges and stop the progressive ICP iterations. As the first ICP execution uses 1 m as the
maximum distance, the tested sequence of maximum distance values in this research use the sequence of
(1 m, 0.5 m, 0.25 m, ...), and in most test cases, the progressive registration stops when the maximum
distance value being halved achieves 0.015625 m (1 m / 64, which is 2°) in the 6™ execution of the ICP
process. Figure 3 shows that for the motivating case, the slope of the curve of “progressive registration”
results is nearly zero (very close to a horizontal line) while progressively reaching 0.15625m.

An optional step in the progressive registration process is the subsampling of the point cloud. For each
execution of ICP, the algorithm can randomly subsample the point cloud for reducing the computing time.
On the other hand, random subsampling of point clouds introduce uncertainties, as using different subsam-
pled data point sets would lead to different best-fit ICP result in every iteration. Sparer/higher sub-sampling
rate will bring higher level of uncertainties and thus larger variations of the registration results. In this
research, we tested the following subsampling rates: 1 out of 1 (no subsampling), 1 out of 4, 1 out of 16,
and 1 out of 64 (subsample 1 point out of each 8 pixel by 8 pixel region of a 3D image).

3.2 A Framework for Evaluating the Progressive Registration Algorithm

The framework for evaluating the progressive registration algorithm is composed of two aspects: 1) metrics
for evaluating the performance of the progressive registration algorithm (PRA); 2) the experiment design
for this performance evaluation. The metrics indicate the domain requirements and guide the experiment
design. The experiment design includes the preparation of the testing data sets, and the parameter settings
to be evaluated in this research.

3.2.1 Metrics for evaluating the performance of PRA

Based on extensive literature review and experiments with PRA, the authors found that the performance of
PRA can be quantified along the following dimensions: 1) efficiency, which indicates the computational
complexities of algorithms for estimating computing time of them on certain computing platforms; 2) reli-
ability, which indicates whether the registration results vary significantly if we execute the registration
algorithms on the same data-model pairs for multiple times using slightly different initial manual data-BIM
alignments (repeatability).

Above discussions in section 3.1 indicate that three parameters of PRA significantly influence its effi-
ciency: 1) the “maximum distance” value determined by the user and used by the first execution of the ICP
algorithm; 2) the definition of a measure for indicating the data-BIM fitness; 3) the “sub-sampling rate.”
This research focuses on understanding the impacts of “the subsampling rate” on the computational effi-
ciency of the progressive registration algorithm. For measuring the efficiency of PRA, the authors measured
the durations of PRA executions using different subsampling rates, having the “maximum distance” set as
1 m, and the “5 cm fit percentage” as the data-BIM fitness measure.

This research defines the “reliability” as the variation of data-BIM alignment results regardless of the
initial manual data-BIM alignment and the sub-sampling value used. The parameters of a 3D registration
result include three translational (translations along X, Y, and Z axes) and rotational parameters (o, 3, and
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vy indicating the rotational angles around X, Y, and Z axes). Random subsampling of the point cloud in the
PRA process will cause uncertainties and result in slightly different 3D registration parameters when the
user execute PRA multiple times on a given point cloud. Another uncertainty comes from the initial data-
BIM alignment used by PRA. The subjective manual correspondence selections influence the manual data-
BIM alignment result, which is needed as the input of PRA. According to the authors’ extensive experi-
ments, PRA sessions using different manual data-BIM registration generate different registration results
and execution time. It is therefore necessary to test whether slightly different manual data-BIM registration
significantly influence the reliability and efficiency of PRA.

In this research, the authors manually aligned the point cloud against the BIM for five times, and exe-
cuted PRA for 30 times for each manual alignment. Each manual alignment used twenty pairs of manually
selected correspondences between the point cloud and BIM for ensuring a certain level reliability of the
alignment. Because 30 is the minimum number for valid statistical assessments (Diez 2009), the authors
chose 30 as the number of repeating PRA for acquiring statistically significant performance assessment
results. For all six 3D registration parameters, the authors generate boxplots of them to assess the variations
of them across different PRA execution sessions using different subsampling rates. For 30 results of a given
3D registration parameter, the box of a box plot will show three lines at the lower quartile, median, and
upper quartile values (Diez 2009). A box plot will also include Whiskers extend from each end of the box
to the largest/smallest value lying within 1.5 times the box height (distance between the lower quartile and
the upper quartile values).

3.2.2 Experiment Design

The experiment design includes two main aspects: 1) the data sets used for performance evaluation of the
progressive data-model registration algorithm; 2) parameter settings to be tested for performance charac-
terization. This research used the point cloud collected from a campus building shown in Figure 1. As
discussed above, the authors focus on understanding the impacts of the subsampling rate on the performance
PRA, because this parameter showed more significant impacts on the registration time and accuracy com-
pared with the other two parameters, which are the initial “maximum distance” value and the threshold
value for computing the “fit percentage.” The authors fixed 1 m as the initial maximum distance and 5 cm
as the threshold value for computing a “5 cm fit percentage” in this paper. Currently, the authors are col-
lecting data on larger campus buildings and using them to conduct more assessments of PRA, but due to
the space limit of this paper, these larger test cases are not introduced in this paper.

4 RESULTS AND DISCUSSIONS

4.1 Efficiency Analysis of Progressive Registration Algorithm

Table 1 below shows the efficiency analysis results of PRA. The authors executed PRA for 30 times on
each manual data-BIM alignment. The table shows the average “Scm fit percentage” and execution time of
the 30 executions for each manual alignment using a specific subsampling rate. These results show that the
subsampling rate can significantly influence the computing time without seriously influence the “Scm fit
percentage,” which to some extent is a measure of the overall agreement between the point cloud and BIM.
This observation is important because it means that the users can save significant amounts of time while
still keeping certain level of registration accuracy. For example, for manual alignment 1, using 1/64 as the
subsampling rate will only use 14.78% of the computing time needed for the test case of 1/1 (no subsam-
pling), while the fit percentage almost does not change (from 22.88% to 22.89%).

The authors noticed that the initial manual alignment do have some impacts on the computing time and
the Scm fit percentage. Such impacts are insignificant for dense sampling rates 1/1 and 1/4, because the
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results have very slight variations across different manual alignments while using 1/1 and 1/4 as the sub-
sampling rate. On the other hand, cases using sparse subsampling rates show some significant variations in
the results across multiple manual alignment results.

Table 1 The impacts of subsampling rates on the computing time of progressive registration: each “fit per-
cent(age)” and computing time shown in this table is the average of 30 executions, because the authors
repeated the PRA for 30 times on each manual data-BIM alignment

Sub-sam- | Manual Align- | Manual Align- | Manual Align- | Manual Align- | Manual Align-
pling ment 1 ment 2 ment 3 ment 4 ment 5

Rate Fit Per- | Time | Fit Per- | Time | Fit Per- | Time | Fit Per- | Time | Fit Per- | Time

cent (sec) cent (sec) cent (sec) cent (sec) cent (sec)

1 byl 22.88% | 203 | 22.88% | 211 |22.88% | 222 |22.80% | 209 |22.88% | 201

Iby4 |2296% 69 22.95% | 60 | 22.95% 54 2297% | 66 |2296% | 64

1 by 16 | 22.93% 32 2293% | 47 |2294% | 28 2293% | 73 |2294% | 23

1 by 64 | 22.89% 30 22.99% | 13 | 22.94% 11 23.01% | 12 |23.01% | 12

4.2  Reliability Analysis of Progressive Registration Algorithm

Figure 5 below shows the box plots visualizing the variations of the PRA executions using different sub-
sampling rates. Using each tested subsampling rate, the authors executed the PRA for 30 times on each
manual data-BIM alignment. This research tested five manual data-BIM alignments, so that each box plot
shown in the figures below indicate the distribution of 150 PRA results (details explained in the caption of
Figure 5). These figures shows how subsampling rates influence the variations of six 3D registration pa-
rameters: three translational parameters along X, Y, and Z axes, and three rotational angles around X, Y,
and Z axes.

These figures show that relatively larger variations exist in the cases using sparser subsampling rates
(1/16 and 1/64). Such observation is obvious in the figures of the translational parameter along Z direction,
and the rotational angle around the Y axis (), as these two parameters shows larger variations compared
with other parameters. The authors are still investigating why the Z translation and  show larger variations
compared with other parameters. Considering the Z translation, one possible explanation is that vertical
walls provide less clues for identifying the precise Z translation for aligning the point cloud against the
BIM. Considering the B value, the authors found that the Y axis is along two flat walls with very limited
features, while the X axis is along the facades having two dislocated walls, which may provide more salient
features for the registration algorithm to pinpoint the precise rotation angle around X axis. Further investi-
gations are needed to understand the complexities of geometric features and the registration accuracy. Ob-
serving the results here and the efficiency results above, the authors found that the subsampling rate of 1/4
can save data processing time without observable losses of reliability.

Another interesting observation is that results from all cases using 1/1 subsampling rate (no subsam-
pling) have several outliers. This is abnormal: the randomness of selecting points should not exist if the
algorithm did not subsample the point cloud, and all registration results should converge to the same trans-
lational and rotational parameter values. These outliers indicate that some random factors other than the
randomness of subsampling the point cloud and the manual data-BIM alignments exist. Future research
needs to further examine these outliers and identify those unknown random factors in PRA.
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5 CONCLUSIONS AND FUTURE RESEARCH

This research proposes a progressive 3D registration algorithm to overcome the challenges of aligning 3D
laser scanning point clouds against as-designed models having significant geometric differences from the
physical conditions. The major contribution is the development of a framework for characterizing the per-
formance of this progressive registration algorithm (PRA), which is composed of two performance metrics
for measuring the computational efficiency and reliability of the PRA, and an experiment design for carry-
ing out the tests using this framework. The results shows that subsampling the point cloud (sample 1 point
out of 64 points) will substantially reduce the data processing time without significantly compromising a
measure indicating the percentage of agreement between the point cloud and the as-designed model (the
percentage of points within 5 cm from the as-designed model). This finding will help engineers to save data
processing time without worrying about significant losses of registration accuracy. The reliability testing
results show that sparser subsampling rates do cause larger variations in the registration results when the
users execute the PRA multiple times. Using 1/4 as the subsampling rate can save data processing time
without noticeable losses in the efficiency and reliability.

Future research will conduct more tests on larger buildings and further analyze how geometric com-
plexities of buildings influence the performance of PRA, and why a few registration results of the cases
using 1/1 subsampling rate deviate significantly from most registration results (more details in section 4.2).
In addition, the authors will explore how to integrate PRA with target-based approach for combining their
merits: improving the accuracy of registration while reducing the number of targets needed on job sites.
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