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ABSTRACT 

In this paper, we study Make-to-stock, Assemble-to-order, and Make-to-order decisions in semiconductor 
supply chains. We propose a genetic algorithm to support such decisions. Discrete-event simulation is 
used to estimate the profit-based objective function taking into account the stochastic behavior of the sup-
ply chain. We perform computational experiments with a simplified semiconductor supply chain model. It 
is shown that the proposed heuristic outperforms simple partitioning heuristics based on product charac-
teristics.  

1 INTRODUCTION 

Semiconductor manufacturing processes are highly complex. A semiconductor chip is an integrated cir-
cuit consisting of a huge number of transistors. The manufacturing stages can be divided into two major 
segments. The frontend comprises wafer fabrication and wafer test while the backend is split into chip as-
sembly and final test. One characteristic of the semiconductor industry is the reentrant material flow with-
in wafer fabrication. In addition, the capital-intensive machines, long production cycle times, volatile de-
mand, continuous cost and price pressure, high degree of product variants, fast changing up- and 
downturns as well as short product life cycles are typical for this industry (cf. Mönch et al. 2012).  

To deal with this dynamic environment, semiconductor companies have to react quickly on the 
changing needs of the customers regarding product type and quantity, but at the same time, they also seek 
to keep costs as low as possible. Low inventory levels might lead to a poor delivery performance, whereas 
keeping inventory levels high increases the risk of obsolescence and leads to higher capital commitments. 
The main drivers to assign suitable production strategies to products are the characteristics of the semi-
conductor industry already described together with the aim to improve the performance in terms of costs 
and customer service. In this paper, we consider make-to-order (MTO), assemble-to-order (ATO), and 
make-to-stock (MTS) as production strategies. Products are produced forecast-driven until they are com-
pletely finished in the case of MTS. In the case of ATO, products are produced forecast-driven until the 
point right before it comes to the assembly. Starting from there, the production continues based on a cus-
tomer order. The MTO strategy is characterized by an order-driven production (cf. Wemmerlöv 1984, 
Federgruen and Katalan 1999 amongst others). 

While production strategy decisions are discussed to a certain extent in the literature for other indus-
tries like, for instance, the food processing industry, this is not the case for the semiconductor industry 
with the rare exception of the paper by Sun et al. (2010) where simulation is used to assess the perfor-
mance of production strategies in a semiconductor supply chain. In this paper, we propose a genetic algo-
rithm-based heuristic to assign a production strategy to each product, i.e., we do some partitioning for the 
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set of all products over a certain planning horizon. Discrete-event simulation is used to take into account 
the effect of partitioning decisions on the cycle time of the products.  

The paper is organized as follows. We describe the researched problem in Section 2. In addition, re-
lated literature is discussed. Two partitioning heuristics are presented in Section 3. The results of exten-
sive computational experiments are described and discussed in Section 4. 

2 MAKE-TO-STOCK, ASSEMBLE-TO-ORDER, AND MAKE-TO-ORDER DECISIONS 

2.1 Problem Setting 

We consider a simplified semiconductor supply chain with P  different products. It consists of a raw wa-
fer storage, one frontend facility, one die bank (DB) to store semi-finished products, one backend facility, 
and finally one distribution center (DC) for finished products. The frontend and the backend facility have 
machines and operators as resources. Our supply chain model consists of two sections. The first section 
consists of a production in a frontend facility and a transport from the frontend to the DB, while the sec-
ond section includes the transport from the DB to the backend facility, the backend production, and the 
transport from the backend to the distribution center. The overall situation is shown in Figure 1. In addi-
tion, the possible production strategies are also depicted in Figure 1. 

 

 

Figure 1: Base system of the simplified supply chain 

Each product Pp 1  has a production route, a transportation time, and a planned replenishment time 

for each of the two sections. The final demand  f
ptd  of product p  is defined as the requested order quan-

tity in the delivery week t . An individual order lead time pl  is assigned to each product p . The order 

lead time is the time span between the delivery week and the week in which the order was placed. We 
have a forecast  r

ptd  for each product p  and for each delivery week t . The production cycle time (CT) is 

the period of time from releasing a lot until the delivery time into the DC. Based on the CT values, we al-
so consider a planned lead time. We assume that safety stocks do not exist.  

We consider a planning horizon of length T  where the periods t are equal to one week. The number 
of lots that need to be started is calculated separately for each section. On the one hand, raw wafers are 
taken out from the raw wafer storage to start lots in the frontend facility. Here, we assume for the sake of 
simplicity to have an infinite supply available with zero costs. On the other hand, lots that need to be re-
leased from the DB depend on the replenishment of the first section. Since the replenishment times for 
each section are greater than one period, replenishment has to be triggered ahead of the due week accord-
ing to the replenishment time. Each product has in each section a frozen interval. Operations and produc-
tion quantities cannot be changed within this frozen interval. We assume the length of this interval to be 
equal to the replenishment time of the particular product. 
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The number of lots to be released into the corresponding sections is calculated at the beginning of 

each period. Information on demand, inventory, work-in-process (WIP), and backlog is taken into ac-
count. MTO products are only produced based on orders from raw wafer storage until the distribution 
center. ATO products are produced forecast-driven until the DB. But if orders exceed the forecast we al-
low to produce these orders as well. From DB, arriving customer orders enable to continue production un-
til the end. MTS products are produced forecast-driven along the entire supply chain (see Figure 1). Here, 
we also allow the production of orders if they exceed the forecast. In this paper, we are interested in de-
termining a partitioning  

           PS,,S:s 1            (1) 

of the products such that  210 ,,S p  , P,,p 1  and the profit  
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is maximized. Here, the setting 2pS  refers to a MTS strategy for product p , while 1pS  and 

0pS  are used to model an ATO or MTO strategy, respectively. The following notation is used in ex-

pression (2): 
   

ptrev  : expected revenue per chip of product p  in period t   

 sU pt  : number of sold chips of product p  in period t  

ptb  : cost for one chip due to unmet demand of product p  postponed from period t  to 1t  

 sB pt  : backlog of demand for product p  at the end of period t  (in chips) 

kpth  : inventory costs for holding one chip of product p  within period t  in storage location k , 
K,,k 1  

kptI  : inventory level of product p  at the end of period t  in storage location k , K,,k 1 in 
chips 

ptc  : manufacturing cost per chip of product p  in period t  

 sM pt  : number of chips of product p  that are in WIP in period t  

ptc~  : overall processing costs that are charged if one chip of product p  is sold in period t . 

 
Note that we have to take the stochastic behavior of the base system into account when we evaluate the 
 sZ  value for a given s . We abbreviate the described partitioning problem by PP in the remainder of 

this paper. 

2.2 Related Literature 

There are several papers that address production strategy-related partitioning problems. Hoekstra et al. 
(1992) propose the customer order decoupling point (CODP) concept that focuses on market, product, and 
process-related factors to make decisions on the production strategy. The categorization of the factors and 
parts of the proposed concept have been used and extended by other researchers. Olhager (2003) points 
out the strategic importance of the decision whether products should be produced MTO, ATO, or MTS 
using the notion of the order penetration point (OPP). Hemmati and Rabbani (2009) use the analytic net-
work process to make production strategy decisions. Similar factors as in Hoekstra et al. (1992) are taken 
into account. Interdependencies among these factors are considered. 

Soman et al. (2004) discuss MTS and MTO partitioning decisions in the food processing industry. A 
decision support system for managers taking rough capacity constraints into account is described by van 
Donk et al. (2005). But congestion effects are neglected in this paper. 
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In contrast to this, congestion effects are considered explicitly in a series of papers that are heavily re-

lying on queueing theory. For instance, Rajagopalan (2004) makes decisions whether products should be 
produced following a MTO or a MTS strategy. The production facility is modeled as a M/G/1 queue. A 
nonlinear integer programming formulation of the problem is provided. Because of the computational 
burden of this approach, an additional heuristic is proposed. Gupta and Benjaafar (2004) develop models 
to research the benefits and costs of delaying differentiation in series production systems where order lead 
times are load-dependent using results from queueing theory. 

It is well-known that queueing theory has some limitations when it is applied in highly complex, reen-
trant manufacturing systems (cf. Shanthikumar et al. 2007). Therefore, it might be reasonable to apply 
discrete-event simulation to incorporate capacity constraints and hence to model congestion effects. Sun 
et al. (2010) investigate the problem of selecting appropriate production strategies in the semiconductor 
industry from a more strategic point of view using simulation. Based on their results, customer-requested 
lead time and the importance of on-time delivery are the main drivers for this type of decisions. Demand 
pattern and process variability are less important. A hierarchical decision support framework is proposed 
to offer recommendations on a more conceptual level. Consequently, concrete partitioning decisions are 
not derived for a given demand scenario. 

In the present paper, we propose to make such decisions using a genetic algorithm (GA). A detailed 
discrete-event simulation model of a simplified supply chain is used to determine the corresponding ob-
jective function value in the presence of machine breakdowns. To the best of our knowledge, such an ap-
proach is not described in the literature so far.  

3 PARTITIONING HEURISTIC 

3.1 Reference Approach 

We have to compare the results provided by the GA with results obtained by other methods. Because 
there is no specific approach for semiconductor manufacturing available in the literature (see the discus-
sion in Subsection 2.2), we compare our results against the general-purpose approach proposed by Ol-
hager (2003). Two major factors are considered to make the MTO, ATO, and MTS decision. The first one 
is the production lead time to order lead time (P/D) ratio, while the second one is the relative demand 
volatility, also called coefficient of variation (CoV). Each of these two factors is divided into two sub-
categories. Figure 2 depicts the possible categories with the recommended strategy. 

 

Figure 2: Matrix for partitioning decisions according to Olhager (2003) 

A CoV of 0.1 and of 0.25 are considered as a low value, whereas a CoV of 0.5 refers to a high relative 
demand volatility. We can see from Figure 2, for instance, that when the production lead time is smaller 
than the order lead time and the demand volatility of this product is high then the MTO production strat-
egy is chosen for the corresponding product. This method has the drawback that we need information on 
the product lead times that are load-dependent, hence it is hard to estimate them. On the other hand, the 
dependencies between the different products are not taken into account. 
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3.2 GA-based Method 

A GA is a population-based metaheuristic (cf. Michalewicz 1996). GAs are successfully applied to solve 
large-scale, hard optimization problems in manufacturing. A GA maintains within each generation, i.e. 
iteration, a population of chromosomes where each chromosome represents a solution to the PP. We use 
the vector of size P  from the right-hand side of equation (1) to represent a solution. Hence, each gene of 
the chromosome represents the production strategy of a specific product. The values of a gene, i.e. the al-
leles, are from  210 ,,  and indicate the different production strategies. An initial population is created to 
start the GA by randomly selecting chromosomes. A fitness value derived from the objective function (2) 
is assigned to each chromosome of the population. We use discrete-event simulation to compute the ob-
jective function value for a specific partitioning. The simulation model is described in detail in Subsection 
4.1. We assign a production strategy according to the chromosome to each of the products in the simula-
tion model.  

Variation and selection operators are used to modify the individuals of a population from iteration to 
iteration. All the chromosomes of the current population are available for mating. We start by describing 
how the crossover operator works. Two parent chromosomes are selected from the population according 
to a selection scheme. A coin is flipped with the crossover probability pc  to determine whether a cross-
over is performed or not. In the first case, the parent chromosomes are copied directly as offspring. In the 
latter case, we use the one-point crossover operator to create the new offspring. We select  P,DU~z 1 , 

where  b,aDU  denotes a discrete uniform distribution over  b,,a   for INb,a  . The two parent 
chromosomes are then crossed at position z  to create two new offspring. Mutation is applied to the off-
spring by an operator called flip mutator. A coin is flipped for each gene with the mutation probability 
pm . If mutation needs to be applied to a gene, the allele is switched to any value from  210 ,, . Mutation 

is used to avoid a premature convergence of the GA towards a local optimum.  
We use the roulette wheel method (cf. Michalewicz 1996) for selecting chromosomes that are used 

for mating. In this approach, a probability is assigned to each chromosome that is directly proportional to 
the fitness value of the chromosome. The higher the fitness value, the higher is the probability to be se-
lected.  

A steady state GA with overlapping population is applied. The amount of overlap is specified by the 
replacement probability pr . A temporary copy of the current population is derived, and newly generated 
offspring is added. The worst chromosomes with respect to their fitness values, either from the offspring 
or from the current population, are discarded and the population size shrinks back to its initial size. The 
GA is finished if a termination criterion is fulfilled. In this research, we simply use a prescribed number 
of generations as termination criterion. 

4 COMPUTATIONAL EXPERIMENTS 

4.1 Simulation Model and Design of Experiments 

We use the MIMAC-I data set (cf. MASM 1997) for the frontend and a slightly modified version of the 
backend model briefly described by Ehm et al. (2011) as the base simulation model of our simple supply 
chain. The model contains around 280 machines that form 83 work centers. Each product has around 250 
processing steps. One DB and one DC are added. We increase the amount of products from two to ten, 
while we keep the two original production routes. An individual production strategy can be assigned to 
each product. Among the ten products five have a planned CT of eight weeks, while the remaining prod-
ucts have a planned CT of seven weeks.  

A simple planning logic is implemented to incorporate MTO, ATO, and MTS production strategies. 
Determining the gross demand works differently for the three production strategies. The gross demand is 
the quantity that is requested to fulfill either the forecast and/or the order of a customer, where the net 

3700



Forstner and Mönch 
 

demand is the quantity that needs to be replenished after WIP and already available inventory is sub-
tracted from the gross demand. If the production strategy of a product is MTO, the gross demand is calcu-
lated based only on orders for the frontend and backend section. The gross demand for the backend sec-
tion is based on orders in case of ATO, while the gross demand for the frontend section is based on 
forecasts in the ATO setting. For MTS, the gross demand is calculated based on forecasts. The release 
schedules for the frontend facility is determined based on a backward calculation scheme taking into ac-
count the planned lead time. 

The planned bottleneck in the frontend consists of several stepper machines. We assume that the 
mean-time-to-failure (MTTF) and the mean-time-to-repair (MTTR) are exponentially distributed. Each 
lot in the frontend facility contains 45 wafers, while the lot size in the backend facility is again 45 wafers, 
however, lot splits and merges are possible in the backend facility. 

We expect that the performance of our GA-based heuristic depends on the utilization of the frontend 
and the demand pattern used. The latter factor is characterized by the CoV of the final demand. The de-
sign of experiments used is summarized in Table 1. Here, we denote by  b,aU~x  a random variable that 

is uniformly distributed over  b,a . Totally, we consider 24 different simulation scenarios. 

Table 1: Design of Experiments 

Factor Level Count
average utilization of the bottleneck work center in 

the frontend facility (in [%]) 
65, 78, 91,96 

 
4 

expected revenue ptrev  ~  128,U , ~  2015,U  
each range is for 50% of the products 

1 

inventory holding cost kpth  0.2/52 ptrev  1 

manufacturing cost ptc   0.1/52 ptrev  1 

backlog cost btb  2 kpth , 5 kpth  2 

overall processing cost pc~  0.8 ptrev   1 

CoV of final demand 0.1, 0.25, 0.5 
 

3 

order lead time pl  in periods (weeks)  80,DU~  for products with a planned 
CT of 8 weeks, 

 70,DU~  for products with a planned 
CT of 7 weeks 

1 

forecast  r
ptd        f

pt
f

pt dE.,dE.U~ 5150  

 

1 

total factor combinations  24 
 

The final demand  f
ptd  is normally distributed, i.e., we have    2

pp
f

pt ,N~d  , where p  is the expected 

value and p  is the standard deviation of the final demand of product p . Note that both p  and p  are 

determined by the bottleneck utilization and the CoV value, respectively. We assume an equal product 
mix for the sake of simplicity. 

The values for the product characteristics are randomly generated for the simulation experiments as 
shown in Table 1. Each single product has its individual order lead time, planned CT, forecast quantity, 
and expected revenue. The realizations of the corresponding random variables are summarized in Table 2 
because we will show that these product characteristics influence the selected production strategy to a 
certain extent.  
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Table 2: Product characteristics 

Product P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

pl  6 5 1 6 3 2 7 3 6 6 
CT 8 7 8 7 8 7 8 7 8 7 

    f
pt

r
pt dEd

 1.48  0.56  1.16  0.95  0.99  1.39  1.40  1.44  0.66  0.93 

ptrev
 10.40 11.30 9.20 9.40 8.70 17.40 19.00 16.20 19.20 18.80

4.2 Implementation Issues and Parameter Settings 

The commercial simulation package AutoSched AP 9.0.1 is used as the simulation engine. It is a class li-
brary written in the C++ programming language. The GA is implemented using the GALib framework 
(cf. Wall 2013). It is a C++ class library. The GA is the steering program that calls AutoSched AP.  

We use the following parameter settings for the GA. The number of generations is 50. The population 
size used is 60. The crossover probability is 80.pc  , while the mutation probability is 20.pm  . Fi-

nally, the replacement probability is 60.pr  . These values are determined by some preliminary testing 
based on a trial and error strategy.  

We use 30T  weeks in all experiments. The simulation model is already initialized with appropriate 
WIP settings to avoid warm-up effects. Three independent replications per simulation run are performed 
to evaluate the fitness values of a single chromosome. The planning approach to determine lot release 
schedules is the begin of each planning period taking feedback from the base system into account. All the 
simulation experiments are performed on a PC with a 3.0 GHz and a 2.99 GHz processor and with 16 GB 
RAM. The average computing time for a single run of the GA is between 18 and 45 hours depending on 
the demand pattern used where a larger bottleneck utilization leads to longer computing times. 

4.3 Results and Discussion 

The P/D ratio as well as the CoV value are used to determine the production strategy according to the ref-
erence approach of Olhager (2003) discussed in Section 3.1. Table 3 shows the performance improvement 
that is reached with the GA taking into account the stochastic behavior of the supply chain as well as the 
different product characteristics. We provide the values for 100%       refrefGA sZsZsZ  , where refs  

and GAs  denotes the partitioning determined by the reference approach and the GA, respectively. The av-
erage improvement that the GA reaches is 9.7%. The range of improvement for individual scenarios is be-
tween 3.4% and 17.2%. Instead of comparing all the scenarios individually, the scenarios were grouped 
according to factor levels such as utilization or level of backlog costs in Table 3.  

Table 3: Performance improvement reached with the GA for different scenarios 

Factor Level Average Improvement
65% 9.0% 
78% 8.8% 
91% 10.0% 

utilization 

96% 11.1% 
0.10 11.1% 
0.25 12.1% CoV 

0.50 5.9% 
2 11.1% 

backlog 
5 8.4% 
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The GA works especially well in the case of a high utilization, a low demand variability, and a low back-
log penalty. 

The different bottleneck utilization values are shown together with the relative frequency of the strat-
egies that are selected by the GA during all scenarios in Figure 3.  

 

 

Figure 3: Influence of different bottleneck utilizations 

In case of low utilizations, MTS production seems to be more appropriate. One might think that with 
a low utilization level, the real production CT values decrease and hence demands with a short order lead 
time can be met. But especially very short order lead times cannot be met even if the real production CT 
values are decreased. There are lots waiting to be batched in front of machines in this situation. High uti-
lizations whereas, drive the decision more towards the MTO direction in order to reduce the overall load 
situation. 

The influence of the degree of penalty for not meeting a customer demand, i.e. for backlog, is as ex-
pected as shown in Figure 4. The higher the penalty is, the less the products are categorized as ATO. The 
decision moves then towards the MTS strategy. 

 

 

Figure 4: Influence of different levels of backlog penalties 

Figure 5 shows the impact of different CoV values on the selection of the production strategy. For a 
low CoV the preferred strategies are MTS and ATO. The amount of products that are produced by a MTO 
strategy increases slightly for larger CoV values. 
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Figure 5: Influence of different CoV values 

The different product characteristics affect the selection of the production strategy as well. The rela-
tive frequency of the strategies that are selected by the GA for each product during all scenarios is de-
picted in Figure 6. Each product has different characteristics such as expected revenue, order lead time, 
and the over and under estimation of the final demand by the forecast. For simplicity reasons, each char-
acteristic is divided into two subcategories. The expected revenue x  is categorized as low if  128,x  

and as high if  2015,x . The category short is assigned to order lead times with 4pl , the remaining 

order lead times belong to the category long. If the forecast exceeds the final demand, it is categorized as 
overestimated, otherwise it is underestimated. Product P1, for instance, has a low expected revenue, a 
forecast that overestimates the final demand, and a long order lead time (cf. Table 2). 

 

 

Figure 6: Influence of different product characteristics 

Products with a short order lead time tend to be produced using the MTS or the ATO strategy, while 
products with a low expected revenue are more likely produced using MTS compared to products with a 
high expected revenue.  
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Obviously, for products P8 and P3 there is only one strategy selected independently of the different 

scenarios. The short order lead time 38 l  and the highly overestimating forecasts lead in all scenarios to 
an ATO decision for product P8. All scenarios result in the MTS strategy for P3 due to the very short or-
der lead time 13 l . For the remaining products the decision varies in the different scenarios. All strate-
gies can be found for products with long order lead times that are close to the production lead time. These 
products have a high improvement potential considering different load scenarios.  

In summary, the solutions that the GA finds are comprehensive to a certain extent and confirm the ef-
fects described in the literature. The GA is also able to adapt its solutions to the different factors as shown 
in the design of experiment.  

The simple reference heuristic is based on exogenous lead time estimates. However, the CT values 
are load-dependent. The load is to a certain extent a consequence of the partitioning decisions. As a result, 
it is non-trivial to predict them. In contrast to the reference heuristic, the GA is able to consider load-
dependent CT values taken from the simulation.  

5 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we studied the problem to determine an appropriate production strategy for a given set of 
products with demand and forecast information for a certain horizon. We proposed a GA to tackle this 
problem. Since the GA requires several runs with a detailed simulation model of the supply chain to as-
sess the fitness of a single chromosome, this is a time-consuming procedure. However, it turned out that 
the GA is able to outperform straightforward general-purpose partitioning strategies that are proposed in 
the literature.  

There are several directions for future research. First of all, we have to decrease the huge simulation 
burden by using reduced simulation models as proposed by Hung and Leachman (1999) or by Ehm et al. 
(2011). In addition, we are also interested in the reduction or better utilization of the independent simula-
tion replications using optimal computing budget allocation (OCBA) techniques (cf. Chen and Lee 2011). 
Much more computational experiments with a larger number of products, different planned CT settings, 
and more realistic supply chain models are necessary. Finally, we believe that it is worth and possible to 
extend the proposed GA in such a way that it makes simultaneously decisions on appropriate safety 
stocks and product partitioning. However, carrying out all the necessary details is part of future research. 
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