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ABSTRACT 

Frequently, the problem cannot completely conform to one of the three existing modeling paradigms (dis-
crete event, system dynamics, or agent based modeling). Thinking in terms of a single-method modeling 
language, the modeler inevitably either starts using workarounds (unnatural and cumbersome constructs), 
or just leaves part of the problem outside the scope of the model (treats it as exogenous). If our goal is to 
capture business, economic, and social systems in their interaction, this becomes a serious limitation. In 
this paper we offer an overview of most used multi-method (or multi-paradigm) model architectures, dis-
cuss the technical aspects of linking different methods within one model, and consider examples of multi-
method models. The modeling language of AnyLogic is used throughout the paper. 

1 INTRODUCTION 

The three modeling methods, or paradigms, that exist today, are essentially the three different viewpoints 
the modeler can take when mapping the real world system to its image in the world of models. 

• The system dynamics paradigm suggests to abstract away from individual objects, think in terms 
of aggregates (stocks, flows), and the feedback loops. 

• The discrete event modeling adopts a process-oriented approach: the dynamics of the system are 
represented as a sequence of operations performed over entities. 

• In an agent based model the modeler describes the system from the point of view of individual 
objects that may interact with each other and with the environment.  

Depending on the simulation project goals, the available data, and the nature of the system being 
modeled, different problems may call for different methods. Also, sometimes it is not clear at the begin-
ning of the project which abstraction level and which method should be used. The modeler may start with, 
say, a highly abstract system dynamics model and switch later on to a more detailed discrete event model. 
Or, if the system is heterogeneous, the different components may be best described by using different me-
thods. For example in the model of a supply chain that delivers goods to a consumer market the market 
may be described in system dynamics terms, the retailers, distributors, and producers may be modeled as 
agents, and the operations inside those supply chain components – as process flowcharts. 

Frequently, the problem cannot completely conform to one modeling paradigm. A "single-method- 
minded" modeler inevitably either starts using workarounds (unnatural and cumbersome language con-
structs), or just leaves part of the problem outside the scope of the model. If our goal is to capture busi-
ness, economic, and social systems in their interaction, this becomes a serious limitation. In this paper we 
offer an overview of most used multi-method model architectures, discuss the technical aspects of linking 
different methods within one model, and consider two examples of multi-method models: 

• Consumer market and supply chain 
• Epidemic and clinic 
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2 MULTI-METHOD MODEL ARCHITECTURES 

The number of possible multi-method model architectures is infinite, and many are used in practice. Pop-
ular examples are shown in the Figure 1. In this section we briefly discuss the problems where these ar-
chitectures may be useful. 

 

 
Figure 1: Popular multi-method model architectures 

Agents in an SD environment. Think of a demographic model of a city. People work, go to school, 
own or rent homes, have families, and so on. Different neighborhoods have different levels of comfort, 
including infrastructure and ecology, cost of housing, and jobs. People may choose whether to stay or 
move to a different part of the city, or move out of the city altogether. People are modeled as agents. The 
dynamics of the city neighborhoods may be modeled in system dynamics way, for example, the home 
prices and the overall attractiveness of the neighborhood may depend on crowding, and so on. In such a 
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model agents' decisions depend on the values of the system dynamics variables, and agents, in turn, affect 
other variables. 

The same architecture is used to model the interaction of public policies (SD) with people (agents). 
Examples: a government  effort to reduce the number of insurgents in the society; policies related to drug 
users or alcoholics. 

Agents interacting with a process model. Think of a business where the service system is one of the 
essential components. It may be a call center, a set of offices, a Web server, or an IT infrastructure. As the 
client base grows, the system load increases. Clients who have different profiles and histories use the sys-
tem in different ways, and their future behavior depends on the response. For example, low-quality ser-
vice may lead to repeated requests, and, as a result, frustrated clients may stop being clients. The service 
system is naturally modeled in a discrete event style as a process flowchart where requests are the entities 
and operators, tellers, specialists, and servers are the resources. The clients who interact with the system 
are the agents who have individual usage patterns. 

Note that in such a model the agents can be created directly from the company CRM database and ac-
quire the properties of the real clients. This also applies to the modeling of the company's HR dynamics. 
You can create an agent for every real employee of the company and place them in the SD environment 
that describes the company's integral characteristics (the first architecture type). 

A process model linked to a system dynamics model. The SD aspect can be used to model the 
change in the external conditions for an established and ongoing process: demand variation, raw material 
pricing, skill level, productivity, and other properties of the people who are part of the process. 

The same architecture may be used to model manufacturing processes where part of the process is 
best described by continuous time equations – for example, tanks and pipes, or a large number of small 
pieces that are better modeled as quantities rather than as individual entities. Typically, however, the rates 
(time derivatives of stocks) in such systems are piecewise constants, so simulation can be done analytical-
ly, without invoking numerical methods.  

System dynamics inside agents. Think of a consumer market model where consumers are modeled 
individually as agents, and the dynamics of consumer decision making is modeled using the system dy-
namics approach. Stocks may represent the consumer perception of products, individual awareness, 
knowledge, experience, and so on. Communication between the consumers is modeled as discrete events 
of information exchange.  

A larger-scale example is interaction of organizations (agents) whose internal dynamics are modeled 
as stock and flow diagrams. 

Processes inside agents. This is widely used in supply chain modeling. Manufacturing and business 
processes, as well as the internal logistics of suppliers, producers, distributors and retailers are modeled 
using process flowcharts. Each element of the supply chain is at the same time an agent. Experience, 
memory, supplier choice, emerging network structures, orders and shipments are modeled at the agent 
level. 

Agents temporarily act as entities in a process. Consider patients with chronic diseases who period-
ically need to receive treatment in a hospital (sometimes planned, sometimes because of acute phases). 
During treatment, the patients are modeled as entities in the process. After discharge from the hospital, 
they do not disappear from the model, but continue to exist as agents with their diseases continuing to 
progress until they are admitted to the hospital again. The event of admission and the type of treatment 
needed depend on the agent's condition. The treatment type and timeliness affect the future disease dy-
namics. 

There are models where each entity is at the same time an agent exhibiting individual dynamics that 
continue while the entity is in the process, but are outside the process logic – for example, the sudden de-
terioration of a patient in a hospital. 
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2.1 The choice of the model architecture and methods 

The choice of the model architecture, the abstraction level(s), and the method(s) always depends on 
the problem you are solving. Among other things, this choice should be governed by the criterion of natu-
ralness. Compact, minimalistic, clean, beautiful, easy to understand and explain – if the internal texture of 
your model is like that, then your choice was most probably right. The design patterns and model exam-
ples further in this paper are given in the AnyLogic modeling language (see, for example, Borshchev and 
Filippov 2004). This is a multi-method object-oriented language designed on the basis of "no worka-
rounds" principle. This language allows you to create model architectures of arbitrary type and complexi-
ty, including all previously mentioned.  

3 TECHNICAL ASPECT OF COMBINING DIFFERENT MODELING METHODS 

In this section we will consider the techniques of linking different modeling methods together. Important 
feature of the modeling language we are using is that all model elements of all methods, be they SD va-
riables, statechart states, entities, process blocks, exist in the "same namespace": any element is accessible 
from any other element by name (and, sometimes, "path" – the prefix describing the location of the ele-
ment in the model hierarchy). The following examples are all taken from the real projects and purged of 
all unnecessary details. This set, of course, does not cover everything, but it does give a good overview of 
how you can build interfaces between different methods. 

 

 
Figure 2: SD impacts discrete elements of the model 

3.1 System dynamics impacts discrete elements 

The system dynamics model is a set of continuously changing variables. All other elements in the model 
work in discrete time (where any changes are associated with events). SD itself does not generate any 
events, so it cannot actively make an impact on agents, process flowcharts, or other discrete time con-
structs. The only way for the SD part of the model to impact a discrete element is to let that element 
watch on a condition over SD variables, or to use SD variables when making a decision. The Figure 2 
shows some possible constructs. 

In the Figure 2 case A an SD variable triggers a statechart transition. Events (low-level constructs that 
allow scheduling a one-time or recurrent action) and statechart transitions are frequent elements of agent 
behavior. Among other types of triggers, both can be triggered by a condition – a Boolean expression. If 
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the model contains dynamic variables, all conditions of events and statechart transitions are evaluated at 
each integration step, which ensures that the event or transition will occur exactly when the (continuously 
changing) condition becomes true. In the figure the statechart is waiting for the Interest stock to rise high-
er than a given threshold value. In the Figure 2 case B the flowchart source block NewPatientAdmissions 
generates new entities at the rate defined by the dynamic variable AdmissionsPerDay, which may be a 
part of a stock and flow diagram. 

3.2 Discrete elements impact system dynamics 

Consider the Figure 3. In case C, the SD stock triggers a statechart transition, which, in turn, modifies the 
stock value. Here, the interface between the SD and the statechart is implemented in the pair condi-
tion/action. In the state WantToBuy, the statechart tests if there are products in the retailer stock, and if 
there are, buys one and changes the state to User.  

 

 
Figure 3: Discrete elements of the model impact SD 

You can freely change the values of the system dynamic stocks from outside the system dynamics 
part of the model. This does not interfere with the differential equation solving: the integrator will just 
start with the new value. However, trying to change the value of a flow or auxiliary variable that has an 
equation associated with it, is not correct: the assigned value will be immediately overridden by the equa-
tion, so assignment will have no effect 

DE objects can be referenced in a SD formula. In Figure 3 case D, the flow ProductionRate switches 
between 0 and 1, depending on whether the finished products inventory (the number of entities in the 
queue FinishedGoods returned by the function size()) is greater than 2 or not. Again, one can close the 
loop by letting the SD part control the production process. 

3.3 Interaction of agent based and discrete event parts of the model 

In the Figure 4 case E a server in the DE process model is implemented as an agent. Imagine complex 
equipment, such as a robot or a system of bridge cranes. The behavior of such objects is often best mod-
eled "in agent based style" by using events and statecharts. If the equipment is a part of the manufacturing 
process being modeled, you need to build an interface between the process and the agent representing the 
equipment. 
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In this example, the statechart is a simplified equipment model. When the statechart comes to the 
state Idle, it checks if there are entities in the queue. If yes, it proceeds to the Working state and, when the 
work is finished, unblocks the hold object, letting the entity exit the queue. The hold object is set up to 
block itself again after the entity passes through.  

The next entity will arrive when the equipment is in the Idle state. To notify the statechart, we call the 
function onChange() upon each entity arrival (see the On enter action of the queue). This is necessary 
because, unlike in the models with continuously changing SD elements, in the models built of purely dis-
crete elements events and transitions triggered by a condition, do not monitor the condition continuously. 

 

 
Figure 4: Interaction of AB and DE parts of the model 

In the case F the agent removes entities from the DE queue. Here, the supply chain is modeled using 
discrete event constructs; in particular, its end element, the retailer stock, is a Queue object. The consum-
ers are outside the discrete event part, and they are modeled as agents. Whenever a consumer comes to the 
state WantToBuy, it checks the RetailerStock and, if it is not empty, removes one product unit. Again, as 
this is a purely discrete model, we need to ensure that the consumers who are waiting for the product are 
notified about its arrival – that's why the code onChange() is placed in the On enter action of the Retai-
lerStock queue. 

In this simplified version, there is only one consumer whose statechart is located "on the same can-
vas" as the supply chain flowchart. In the full version there would be multiple agents-consumers and, in-
stead of calling just onChange(), the retailer stock would notify every consumer. 

4 EXAMPLES OF MULTI-METHOD MODELS 

4.1 Consumer market and supply chain 

We will model the supply chain and sales of a new product in a consumer market in the absence of com-
petition. The supply chain will include the delivery of the raw product to the production facility, produc-

4094



Borshchev 
 

 

tion, and the stock of the finished products. The QR inventory policy will be used. Consumers are initially 
unaware of the product; advertizing and word of mouth will drive the purchase decisions. The product has 
a limited lifetime, and 100% of users will be willing to buy a new product to replace the old one. The full 
version of the model is available at RunTheModel.com. 

We will use discrete event methodology to model the supply chain, and system dynamics methodolo-
gy, namely, a slightly modified Bass diffusion model (Bass 1969), to model the market. We will link the 
two models through the purchase events. 

 

 
Figure 5: DE model of the supply chain and SD model of the market (so far, not linked) 

The supply chain flowchart (top of the Figure 5) includes three stocks: the supplier stock of raw ma-
terial, the stock of raw material at the production site, and the stock of finished products at the same loca-
tion. Delivery and production are modeled by the two Delay objects with limited capacity. The Supply 
block of the flowchart is not generating any entities unless explicitly asked to do so (the inventory policy 
is not yet present at this stage). To load the supply chain with some initial product quantity we will add 
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this Startup code: Supply.inject( OrderQuantity );. If we run this model, at the beginning of the 
simulation, four hundred items of the product are produced and accumulate in the ProductStock. 

The market is modeled by a system dynamics stock and flow diagram as shown in the bottom of the 
same Figure 5. The SD part is located on the same canvas where the flowchart was created earlier. The 
difference of this market model from the classical Bass diffusion model with discards (Sterman 2000) is 
that the users, or adopters, stock of the classical model is split into two: the Demand stock and the actual 
Users stock. The adoption rate in this model is called PurchaseDecisions. It brings PotentialUsers not di-
rectly into the Users stock, but into the intermediate stock Demand, where they wait for the product to be 
available. The actual event of sale, i.e., "meeting" of the product and the customer who wants to buy it, 
will be modeled outside the system dynamics paradigm. If we run this part of the model alone, the poten-
tial clients will gradually make their purchase decisions (triggered by advertizing), building up the De-
mand stock. 

 

 
Figure 6: Linking the supply chain and the market 

How do we link the supply chain and the market? We want to achieve the following: 
• If there is at least one product item in stock and there is at least one client who wants to buy it, the 

product item should be removed from the ProductStock queue, the value of Demand should be 
decremented, and the value of Users should be incremented, see the Figure 6 on the left. 

We, therefore, have a condition and an action that should be executed when the condition is true. The 
construct that does exactly that is the condition-triggered event. The implementation of the scheme shown 
in same figure on the right. The condition-triggered events work this way: in the presence of continuous 
dynamics in the model the condition of the event is evaluated at each numeric micro-step. Once the condi-
tion evaluates to true, the event's action is executed. 

In the Action code of the event we put the sale into a while loop, because a possibility exists that 
two or more product items may become available simultaneously, or the Demand stock may grow by 
more than one unit per numeric step. Therefore, more than one sale can potentially be executed per event 
occurrence. By default, the condition event disables itself after execution. As we want it to continue 
monitoring the condition, we explicitly call restart() at the end of the event's action. 

With the Sales event in place, the sales start to happen, and the 400 items produced in the beginning 
of the simulation disappear in about a week. The Users stock increases up to almost 400; it then slowly 
starts to decrease according to our limited lifetime assumption. And, since we have not implemented the 
inventory policy yet, no new items are produced. This is the last missing piece of the model. We will in-
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clude the inventory policy in the same Sales event; the inventory level will be checked after each sale. 
The following piece of code is added to the Action of the Sales event:  

//apply inventory policy 
int inventory = //calculate inventory 
      ProductStock.size() + //in stock 
      Production.size() + //in production 
      RawMaterialStock.size() + //raw product inventory 
      Delivery.size() + //raw product being delievered 
      SupplierStock.size(); //supplier's stock  
if( inventory < ReorderPoint ) //QR policy 
   Supply.inject( OrderQuantity ); 

Now, the supply chain starts to work as planned, see the Figure 7. During the early adoption phase the 
supply chain performs adequately, but as the majority of the market starts buying, the supply chain cannot 
keep up with the market. In the middle of the new product adoption (days 40-100), even though the 
supply chain works at its maximum throughput, still the number of waiting clients remains high. As the 
market becomes saturated, the sales rate reduces to the replacement purchases rate, which equals the Dis-
card rate in the completely saturated market, namely TotalMarket / ProductLifetime = 16.7 sales per day. 
The supply chain handles that easily. 

An interesting exercise would be to make the supply chain adaptive. You can try to minimize the or-
der backlog and at the same time minimize the inventory by adding the feedback from the market model 
to the supply chain model. 

 

 
Figure 6: The supply chain dynamics pattern changes as the market gets saturated 

4.2 Epidemic and clinic 

We will create a simple agent based epidemic model and link it to a simple discrete event clinic model. 
When a patient discovers symptoms, he will ask for  treatment in the clinic, which has limited capacity. 
We will explore how the capacity of the clinic affects the disease dynamics. This model was suggested in 
2012 by Scott Hebert, a consultant at AnyLogic North America. The full version of the model is available 
at RunTheModel.com. 

We will model patients as agents (individual objects); their initial number is 2,000. The patients will 
be connected with a distance-based network: two patients are connected if they live at most 30 miles 
away. 

The behavior of a patient will be modeled by a statechart (see the Figure 7) structured according to 
the classical SEIR compartmental epidemiology model. The patient is initially in the Susceptible state, 
where he can be infected. Disease transmission is modeled by the message "Infection" sent from one pa-
tient to another. Having received such a message, the patient transitions to the state Exposed, where he is 
already infectious, but does not have symptoms. After a random incubation period, the patient discovers 
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symptoms and proceeds to the Infected state. We distinguish between the Exposed and Infected states be-
cause the contact behavior of the patient is different before and after the patient discovers symptoms: the 
contact rate in the Infected state is significantly lower. The internal transitions in both states model con-
tacts. We model only those contacts that result in disease transmission; therefore, we multiply the base 
contact rate by Infectivity, which, in our case, is 7%. 

 

 
Figure 7: Patient behavior: a statechart built according to the SEIR epidemic model 

There are two possible exits from the Infected state. The patient can be treated in a clinic (and then, he 
is guaranteed to recover), or the illness may progress naturally without intervention. In the latter case, the 
patient can still recover with a high probability, or die. If the patient dies, it deletes himself from the mod-
el, see the Action of the Dead state. The completion of treatment is modeled by the message "Treated" 
sent to the agent. In the absence of the clinic model, this message is, of course, never received.  

The recovered patient acquires a temporary immunity to the disease. We reflect this in the model by 
having the state Recovered, where the patient does not react to the message "Infection" that may possibly 
arrive. At the end of the immunity period the transition ImmunityLost takes the patient back to the Sus-
ceptible state. We need to create the initial entry of the infection into the population. This can be done at 
the top level of the model, by, for example, sending the message "Infection" to a few randomly chosen 
people in the beginning of the simulation. 

If you run the epidemic model at this stage, you will see the dynamics like shown in the Figure 8. The 
epidemic does not end after the first wave, because the immunity period is not long enough. 

The next step is to add the clinic, and let the patients be treated there. Our clinic will be modeled via a 
very simple discrete event model: the Queue for the patients waiting to be treated and the Delay modeling 
the actual treatment. We will put the process flowchart (see the bottom right of the Figure 9) at the top 
level of the model. Unlike in classical discrete event models, however, the entities in this process are not 
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generated by a Source object, but are injected by the agents via an Enter object. The communication 
scheme between the patients-agents and the clinic process is shown in the Figure 9 on the left.  

 

 
Figure 8: The natural dynamics of the epidemic (patients are not treated) 

Once the patient discovers symptoms, he creates an entity – let's  call it "treatment request" – and in-
jects the entity into the clinic process. Once the treatment is completed, the entity notifies the patient by 
sending him a message "Treated" that causes the patient to transition to the Recovered state. If, however, 
the patent is cured or dies before the treatment is completed, he will discard his treatment request by re-
moving it from whatever stage in the process it is. 

 

 
Figure 9: The model of the clinic linked to the agent based model of epidemic 

With the clinic added, the model shows a different dynamic, or, to be more precise, a different range 
of dynamics. The oscillations are still possible, but a possibility also exists that the epidemic will end after 
the first wave, see the Figure 10. One may experiment with different clinic capacities to figure out the 
number of beds needed in order to treat everybody on time and prevent the further waves of the epidemic. 
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Figure 10: The epidemic dynamics with patients being treated in the clinic 

5 DISCUSSION 

When developing a discrete event model of a supply chain, IT infrastructure, or a contact center, the mod-
eler would typically ask the client to provide the arrival rates of the orders, transactions, or phone calls. 
He would then be happy to get some constant values, periodical patterns, or trends, and treat arrival rates 
as variables exogenous to the model. In reality, however, those variables are outputs of another dynamic 
system, such as a market, a user base. Moreover, that other system can, in turn, be affected by the system 
being modeled. For example, the supply chain cycle time, which depends on the order rate, can affect the 
satisfaction level of the clients, which impacts repeated orders and, through the word of mouth, new or-
ders from other customers. The choice of the model boundary therefore is very important. 

The only methodology that explicitly talks about the problem of model boundary is system dynamics 
(Sterman 2000). However, the system dynamics modeling language is limited by its high level of abstrac-
tion, and many problems cannot be addressed with the necessary accuracy. With multi-method modeling 
you can choose the best-fitting method and language for each component of your model and combine 
those components while staying on one platform. 

REFERENCES 

Bass, F. 1969. A new product growth model for consumer durables. Management Science 15 (5): p215–
227. 

Borshchev, A, and A. Filippov. 2004. From System Dynamics and Discrete Event to Practical Agent 
Based Modeling: Reasons, Techniques, Tools. In Proceedings of the 22nd International Conference of 
the System Dynamics Society, Oxford, England. 

Compartmental models in epidemiology. Wikipedia article. 
http://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology. 

Sterman, J. 2000. Business Dynamics: Systems Thinking and Modeling for a Complex World. Ir-
win/McGraw-Hill. 

AUTHOR BIOGRAPHY 

ANDREI BORSHCHEV is CEO and co-founder of The AnyLogic Company (former name XJ Technol-
ogies). He received his Ph.D. in Computer Science and Complex Systems Modeling from St.Petersburg 
Polytechnic University. Since 1998 Andrei has been leading the development of AnyLogic software 
product. His interests include applied agent based modeling, multi-method simulation modeling, hybrid 
discrete/continuous simulation, design of languages for dynamic simulation. Andrei has conducted nu-
merous lectures, seminars, and training sessions on simulation modeling and AnyLogic. He is a member 
of the System Dynamics Society, and a constant participant and speaker at International System Dynam-
ics Conference, Winter Simulation Conference, and INFORMS Annual Meeting. His e-mail address is 
andrei@anylogic.com and the company website is http://www.anylogic.com. 

4100


