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ABSTRACT

We provide a tutorial overview of simulation optimization methods, including statistical ranking & selection
(R&S) methods such as indifference-zone procedures, optimal computing budget allocation (OCBA), and
Bayesian value of information (VIP) approaches; random search methods; sample average approximation
(SAA); response surface methodology (RSM); and stochastic approximation (SA). In this paper, we provide
high-level descriptions of each of the approaches, as well as some comparisons of their characteristics
and relative strengths; simple examples will be used to illustrate the different approaches in the talk. We
then describe some recent research in two areas of simulation optimization: stochastic approximation and
the use of direct stochastic gradients for simulation metamodels. We conclude with a brief discussion of
available simulation optimization software.

1 INTRODUCTION

Simulation modeling is a powerful tool for capturing the complexity of real-world systems. Optimization
software packages now have the ability to consider the number of variables in the millions. However, the
combination of arguably the two most useful paradigms in the operations research/management science
(OR/MS) toolbox — simulation and optimization — is still in its relative infancy, which makes it an
extremely fertile area for research. We give a tutorial overview of the most well-known simulation
optimization methods, all of which address, in some form, the stochastic optimization problem

min
x∈Θ

f (x), (1)

where f (x) =E[Y (x,ξ )] is a performance measure, Y (x,ξ ) is a sample performance, ξ denotes the stochastic
effects, x denotes the decision variables, and Θ is the feasible region, which can be discrete, continuous, or
a mixture of both. Here we focus on expected value performance measures, although there has been much
research over the last decade or so on other performance measures such as quantiles, which are commonly
used for metrics such as Value-at-Risk in the financial services industry.

Optimization problems are generally classified according to the types of values the decision variables
x can take, the primary dichotomy being discrete versus continuous. If the decision variables are discrete,
they could be ordered or unordered. In the former case, the usual setting is the set of integers. In the latter
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case, the decision variables are often referred to as “categorical” variables, e.g., in a queueing system, it
could be the choice of a service discipline (such as different types of priorities versus first-come, first-
served). The simplest type of categorical variable would be a binary variable, often found in mathematical
programming formulations, which is used to model a “yes-no” decision. Another dichotomy involves the
size of the feasible region: finite versus infinite for discrete problems, bounded versus unbounded for
continuous problems. Statistical ranking & selection (R&S) procedures, where here is meant to include
efficient simulation budget allocation methods such as optimal computing budget allocation (OCBA), address
discrete problems where Θ is not too large. Response surface methodology and stochastic approximation
generally address continuous-variable problems, although in the latter case there have been some algorithms
for the discrete setting. Random search methods, robust metaheuristics, and sample average approximation
(also known as sample path optimization, stochastic counterpart) are generally applicable to both domains,
including in principle mixed problems. We summarize each of the main approaches — indifference-zone
procedures, Bayesian value-of-information approaches, optimal computing budget allocation (OCBA),
random search methods, sample average approximation (SAA), response surface methodology (RSM), and
stochastic approximation (SA), with more details provided for the R&S and SA procedures. We then
describe some recent research in stochastic approximation and the use of direct stochastic gradients for
simulation metamodels. Due to space limitations, the treatment is necessarily at a higher descriptive level,
and technical details, including theoretical proofs, can be found in the references provided.

The remainder of this paper is organized as follows. The main simulation optimization methodologies
are summarized in the subsections of Section 2, where longer descriptions are provided only for the R&S
and SA methods, due to space limitations; Section 2.2 is based heavily on material in Chau and Fu (2014).
Section 3 describes recent advances in SA methods and the use of direct stochastic gradients for simulation
metamodeling, which can be used in response surface methodology. Section 4 provides some concluding
remarks, including a brief discussion of available simulation optimization software. For a far more detailed
description of many of the techniques described here, the reader is encouraged to consult the two books,
Handbook of Simulation Optimization (Fu 2014a) and Optimal Learning (Powell and Ryzhov 2012); see
also Fu (1994) and Fu (2002).

2 SIMULATION OPTIMIZATION METHODS

2.1 Ranking and Selection

Ranking and selection (R&S) can be viewed as the most fundamental class of simulation optimization
problems. This class streamlines many computational and modeling challenges: the feasible region Θ is
typically taken to be a small, finite set (representing a collection of promising “alternatives,” e.g., simulation
designs), and the goal is to identify x ∈ {1, ...,M} with the “best” (smallest or largest) value µx ≡ f (x).
The problem would be trivial if we knew these values, but we suppose that they can only be estimated
using unbiased, i.i.d. observations Y (x,ξ ), and our simulation budget limits the number of observations
that can be collected (e.g. some finite number N).

The R&S model emphasizes the essential issue of exploration vs. exploitation: we may wish to use
part of our simulation budget to learn about a solution x that appears to be suboptimal, on the chance that
it may turn out to be better than we thought. At the same time, there is no point in learning about solutions
that are obviously poor. Thus, the goal of simulation optimization methods is to allocate the simulation
budget efficiently, by making a tradeoff between the estimated quality of an alternative and the uncertainty
of the estimate. This problem presents two research challenges: first, we need a statistical model that
quantifies our uncertainty about a decision, and second, we need an algorithmic procedure to make the
exploration/exploitation tradeoff.

There are two types of statistical models for R&S, frequentist and Bayesian. Frequentist models
assume no prior knowledge about f and construct estimates based purely on the observed simulation
output. For example, if we consider an additive noise model Y (x,ξ ) = f (x)+ξ , where ξ is a zero mean

22



Chau, Fu, Qu, and Ryzhov

(perhaps normally distributed) random variable, and if we further suppose that each simulation produces
an independent noise, we can use the simplest possible model from classical statistics, given by

µ̄
n
x =

1
Nn

x

Nn
x

∑
i=1

Y (x,ξxi) , (σ̄n
x )

2 =
1

Nn
x −1

Nn
x

∑
i=1

(Y (x,ξxi)− µ̄
n
x )

2 ,

where Nn
x is the number of times that we have simulated alternative x out of the first n simulations, and

(ξxi) is a sequence of i.i.d. noise terms. The estimator µ̄n
x is a random variable whose mean is the unknown

(but fixed) quantity f (x). Allocating more simulations to alternative x improves the precision of µ̄n
x at the

expense of other alternatives.
By contrast, the Bayesian approach views the unknown performance µx as a random variable whose

distribution encodes our own uncertainty about the exact value. For example, the statement µx ∼N
(
θx,σ

2
x
)

means that we believe µx to be equal to θx, but we are uncertain about this belief to a degree represented
by σ 2

x . This belief may come from the decision-maker’s domain knowledge about the specific application
being modeled, or it may be constructed from a few preliminary simulations of different alternatives. Either
way, by making additional assumptions on the distribution of the simulation output, we can sometimes
characterize the process by which our beliefs evolve using simple recursive equations. For example, if
we assume that µx is normal, and furthermore that the noise ξ ∼N

(
0,σ 2

ξ

)
for some known σ 2

ξ
, the

conditional distribution of µx given Y (x,ξ ) is again normal with parameters

θ
′
x =

σ−2
x θx +σ

−2
ξ

Y (x,ξ )

σ
−2
x +σ

−2
ξ

,
(
σ
′
x
)−2

= σ
−2
x +σ

−2
ξ

.

This property, whereby the initial (or prior) and modified (or posterior) belief distributions come from the
same family, is known as conjugacy, and is attractive because it allows us to capture an entire probability
distribution over the possible values of µx using only a small number of parameters. The book by DeG-
root (1970) provides a catalogue of conjugate Bayesian models for most well-known probability distributions.

2.1.1 Indifference-zone Methods

How can we evaluate whether the simulation budget is spent efficiently? One standard algorithmic approach
uses the indifference-zone (IZ) criterion. Denote by µ( j) the jth smallest value, so that µ(1) ≤ ...≤ µ(M).
For a fixed indifference-zone parameter value δ , the relation

P
(

µ(1) = argmin
x

µ̄
Nn

x
x |µ(1) ≤ µ(2)−δ

)
≥ 1−α (2)

indicates that our simulation procedure is valid, i.e., we select the best (lowest-mean) alternative with high
probability as long as its value is sufficiently distinct from the next-best. Indifference-zone methods allocate
simulations in a way that ensures (2) is achieved. Numerous such methods have been developed, dating
back to early work by Bechhofer (1954) and Paulson (1964); see Bechhofer et al. (1995), Swisher et al.
(2003), Kim and Nelson (2006), Kim (2014), or the Hong and Nelson (2009) tutorial for an overview.

In this space, we briefly describe the KN procedure by Kim and Nelson (2001), which first runs n0
preliminary simulations of every alternative and calculates

S̄2
xy =

1
n0−1

n0

∑
i=1

(
Y (x,ξxi)−Y (y,ξyi)−

[
µ̄

n0
x − µ̄

n0
y
])2

,

the usual frequentist estimator of the difference of the true values of alternatives x and y. We then define

Kxy = b
h2S2

xy
δ 2 c for some suitably chosen constant h (depending on the desired performance level α), and

then calculate Kx = maxy6=x Kxy. The quantity K = maxx Kx represents the maximum number of simulations
needed to achieve the desired performance; if n0 > K, no further simulation is needed. Otherwise, we use
the remainder of the simulation budget to simulate alternatives whose values appear to be close to the best.
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In the nth step of the procedure, we simulate from alternative x as long as, for all alternatives y that were
simulated in the previous step, we have

µ̄
n
x ≤ µ̄

n
y +max

{
0,

δ

2cn

(
h2S̄2

xy

δ 2 −n

)}
,

i.e., our estimate of µx is still sufficiently close to our estimates of µy to prevent us from ruling x out as the
best. In this case, we stop when the procedure tells us to simulate only a single alternative. The parameter
c should be suitably chosen to maintain theoretical performance (Kim and Nelson 2001).

The KN procedure possesses several characteristics common to many IZ methods. We begin by taking
a first-stage sample in which every alternative receives equally many simulations. After that, however,
we focus more on alternatives that show high potential to be good, and screen out alternatives that are
unpromising. The procedure is said to be “fully sequential,” since the conditions for screening out alter-
natives in the nth iteration depend on the estimates at that time, and thus change as we run more simulations.

2.1.2 Bayesian Value of Information

Value of information procedures (VIPs) are based on Bayesian statistical models, and thus require the
decision-maker to specify a prior distribution of belief on each performance value µx. Under normality
assumptions, this amounts to providing θ 0

x and σ0
x for each x; these can be constructed by running a first-

stage sample (e.g., simulating each alternative n0 times), as in an IZ method. Once these parameters are
given, however, conjugacy provides us with a way to update our beliefs very quickly, leading to sequences
(θ n

x ,σ
n
x ) of belief parameters characterizing our estimates and uncertainty at the nth stage of sampling.

VIPs leverage the uncertainty in the belief distribution to quantify the potential of a new simulation to
improve the quality of our solution with respect to some performance measure.

One very straightforward performance measure is simply minx θ N
x , the estimated smallest value among

the alternatives after the simulation budget has been consumed. This metric is based on the intuitive idea
that, if we have already used all of our allotted simulations, we should simply report argminx θ N

x as being
the best alternative. While this decision may not actually be the best, we are not likely to do better than
this if there is no longer any way to learn. Below, we describe a VIP for this objective under independent
normal belief distributions; however, Chick (2006), Powell and Ryzhov (2012), or the WSC tutorial Frazier
(2012) can be seen for a much more detailed technical overview.

Essentially, a VIP first calculates the expected improvement in the desired performance measure that
can be achieved by running one more simulation of alternative x. In this respect, the procedure is analogous
to a steepest ascent algorithm (and is sometimes referred to by the name “knowledge gradient” for this
reason). We assume the basic normal model with independent observations, and further simplify it by
assuming that only one alternative can be simulated in each stage of the procedure (in contrast with the
KN algorithm presented earlier). In this setting, the expected improvement quantity can be written as

ν
n
x = E

[
min

y
θ

n
y −min

y
θ

n+1
y |x is simulated in the nth stage

]
. (3)

Note that (3) is a conditional expectation. First, we are implicitly conditioning on our beliefs at the nth
stage; that is, θ n

x and σn
x will be known at the time the calculation is made, and so miny θ n

y is non-random
from the point of view of this expectation. Second, we are also conditioning on the next decision. The
quantity νn

x assumes that we have committed to simulating x, but have not yet observed the outcome. The
expectation in (3) is thus taken over the conditional distribution of miny θ n+1

y given the nth-stage beliefs.
Fortunately, this distribution is actually quite simple, owing to the fact that x is the only alternative simulated
in the nth stage. As a consequence, we can write

min
y

θ
n+1
y = min

{
min
y′ 6=y

θ
n
y′ ,θ

n
x + σ̃

n
x Z
}
,
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where Z is a standard normal random variable and (σ̃ n
x )

2 = (σ n
x )

2−
(
σn+1

x
)2 is the uncertainty reduction

achieved by simulating x. We omit the derivation of this fact; for our purposes, it is enough to note that
the randomness of miny θ n+1

y originates from a single scalar random variable, making (3) into an expected
value of a function of Z. The work by Gupta and Miescke (1996) gives the closed-form solution of (3) as

ν
n
x = σ̃

n
x g
(
−
∣∣∣∣θ n

x −miny6=x θ n
y

σ̃n
x

∣∣∣∣) ,

where g(z) = zΦ(z)+φ (z) and φ and Φ are the repective standard normal pdf and cdf. This quantity can
be computed quickly for any x, leading to a simple decision rule: simulate argmaxx νn

x at each time step.
The VIP considers the estimated value of x relative to the others (represented by the “best-of-the-rest”

value miny6=x θ n
y ), but scales the gap between these values by the uncertainty reduction σn

x . Potentially, we
could measure an alternative that appears to be quite suboptimal (significantly higher than the estimated
best), as long as σ n

x was high enough. On the other hand, it is not worth simulating even a very good
alternative with very low σn

x ; essentially, this means that we are already highly confident of its performance
and have no need for further information about it.

2.1.3 Optimal Computing Budget Allocation (OCBA)

The OCBA methodology has gained attention in the literature due to its flexibility, as it can be adapted to
both frequentist and Bayesian models, as well as both IZ-style objectives (related to the probability that
the estimated-best alternative really is the best) and the “economic” objectives used by VIP. To focus the
discussion, suppose that our objective is to maximize the probability of correct selection

P
(

µ(1) = argmin
x

µ̄
kx
x

)
(4)

subject to the constraint k1 + ...+ kM = N, using frequentist estimates of the parameter values. We can
view this problem as that of finding an optimal deterministic policy, in which the computing budget is
pre-allocated once, before any simulations are made, but in a way that optimizes the final performance
metric. This view is generally used to derive OCBA procedures; however, once the optimal kx values have
been calculated, the procedure can easily be made fully sequential by randomizing the simulation decision
in each time stage (so alternative x is simulated w.p. kx

k1+...+kM
). If the optimal allocation is difficult to

compute, we can substitute an approximation kn
1, ...,k

n
M, making the procedure adaptive.

We briefly describe one OCBA rule for the objective in (4) stated in Chen, Fu, and Shi (2008);
interested readers are referred to the monograph by Chen and Lee (2010) for more details. At the nth
stage of sampling, let xn = argminx µ̄n

x be the current-best alternative. The approximation to the optimal
allocation k maximizing (4) can be expressed via the ratio

kn
x

kn
y
=

(
σ̄n

x

σ̄n
y

µ̄n
xn− µ̄n

y

µ̄n
xn− µ̄n

x

)2

, x 6= y 6= xn; kn
xn = σ̄

n
xn

√√√√∑
x 6=xn

(
kn

x

σ̄n
x

)2

.

As n→ ∞, the estimators of the means and variances will converge to their true values, and the estimated
allocations will likewise converge to the true optimal kx values. See Glynn and Juneja (2004) for a proof
of optimality for these allocations using large deviations theory.

2.1.4 Comparison of Approaches

The three surveyed classes of R&S procedures are based on very different ideas, and each type has numerous
generalizations and extensions. A study by Branke, Chick, and Schmidt (2007) conducted an extensive
empirical comparison of these methods, although each area has experienced new developments since the
time of the study. Below, we give a summary of the main conceptual and empirical strengths of each class:
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• Indifference-zone methods retain their computational and theoretical advantages in a wide variety of
settings, e.g., common random numbers, problems with constraints, and subset selection procedures.
IZ methods sometimes “over-deliver” or produce better performance than what is actually required,
as was observed empirically by Branke, Chick, and Schmidt (2007); Frazier (2014) proposes a
Bayesian-inspired method to correct this behavior.

• Value of information procedures can be extended to handle common random numbers unknown
sampling noise, and non-normal sampling distributions, but are mainly attractive for their modeling
flexibility. The VIP approach is more powerful when used in conjunction with Bayesian models with
“correlated beliefs,” meaning that a simulation of a single alternative can provide information about
other, “similar” alternatives (Frazier, Powell, and Dayanik 2009). The computational advantages of
these methods are heavily tied to the use of a conjugate Bayesian model, though recent work by Qu,
Ryzhov, and Fu (2012) suggests ways to approximate conjugate models when none is available.

• Optimal computing budget allocation methods have the ability to work with both frequentist and
Bayesian models and can handle common random numbers. There is substantial work on improving
the quality of the approximations used in the OCBA calculations (Chen et al. 2000, Chen, He, and
Fu 2006). Recent work has considered constrained problems (Pujowidianto et al. 2009) as well
as multi-objective simulation optimization (Lee et al. 2010). The large deviations characterization
of OCBA (Glynn and Juneja 2004) has also led to new computational work on allocations that
maximize theoretical rates of convergence (Hunter et al. 2011), which are generally very difficult
to show for other R&S procedures.

2.2 Stochastic Approximation

Stochastic approximation (SA) is a recursive algorithm that can be viewed as the stochastic counterpart to
steepest descent in deterministic optimization. SA was introduced by Robbins and Monro (1951) to solve
noisy root-finding problems and was later applied to the setting of stochastic optimization by solving for
the zero of the gradient. The gradient-free setting was addressed by Kiefer and Wolfowitz (1952). SA is
an online method that requires very little memory and is currently one of the most widely applicable and
most useful methods for simulation optimization.

Consider the stochastic optimization problem (1), where Θ⊆Rd is a continuous parameter space. In
this case, the objective is to find a sequence {xn} that converges to a unique (local) optimum

x∗ = argmin
x∈Θ

f (x), (5)

by using the iteration

xn+1 = ΠΘ

(
xn−an∇̂ f (xn)

)
, (6)

where ΠΘ(x) is a projection of x back into the feasible region Θ if x /∈Θ, an > 0 is the step size or gain size,
and ∇̂ f (xn) is an estimate of the gradient ∇ f (xn). The projection operator is only required in the constrained
setting. Moreover, the minimization problem in (1) and (5) could easily be changed to maximization by
changing the sign of an in (6). The two classical methods, Robbins-Monro (RM) and Kiefer-Wolfowitz
(KW), estimate ∇ f (xn) using unbiased direct gradient estimates and finite difference gradient estimates,
respectively. Under certain conditions, RM and KW have the respective asymptotic convergence rates
O(n−1/2) and O(n−1/3). Although, RM is superior to KW in terms of asymptotic convergence rate, it is not
always applicable in practice since direct gradients are not always available. In the simulation context, direct
gradient estimation techniques include perturbation analysis, the likelihood ratio/score function method,
and weak derivatives; see Fu (2006) and Fu (2014b) for more details and references.

Now, we describe the two classical methods, Robbins-Monro (RM) and Kiefer-Wolffowitz (KW),
followed by three of the most useful modifications/variants: simultaneous perturbation stochastic approxi-
mation (SPSA), Kesten’s rule, and iterate averaging. Recent SA advances will be discussed in Section 3.
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2.2.1 The Robbins-Monro (RM) Algorithm

The RM algorithm was introduced to solve the root-finding problem M(x) = α for x ∈ R, where M(x)
is a monotone function and α ∈ R. However, it was later applied to a specific case of root-finding in
the stochastic optimization setting, where the objective is to optimize a stochastic objective function f (x)
by setting M(x) = ∇ f (x) and α = 0. RM solves this problem iteratively as in (6) by replacing ∇̂ f (xn)
with an unbiased estimator, and the output is taken as the last iterate, x∗N , where N is the stopping time.
However in RM, the direct gradient measurements are still approximations to the actual gradient because
of the presence of noise (∇̂ f (xn) = ∇ f (xn)+εn, where εn is noise with zero mean). Given the appropriate
parameters, this algorithm converges asymptotically at a rate of O(n−1/2).

The most well-known conditions are restrictions on the gain sequence {an}. Generally, an→ 0 but
∑

∞
n=1 an = ∞, which prevents the step size from converging to zero too quickly, so the iterates are able

to make progress to x∗ and do not get stuck at a poor estimate. The usual form is an =
θa

(n+A)α , where

θa > 0, A≥ 0 and 1
2 < α ≤ 1, with A = 0 and α = 1 as a commonly used choice. The objective function

f is assumed to have a global minimum with a bounded derivative.

2.2.2 The Kiefer-Wolfowitz (KW) Algorithm

The KW stochastic approximation algorithm is referred to as a gradient-free or stochastic zeroth-order
method in the following chapter, since it only requires noisy measurements of the function and does not
require additional information on the system dynamics or input distributions. The original KW iterative
scheme

xn+1 = xn−an
Y (xn + cn,ξ

+
n )−Y (xn− cn,ξ

−
n )

2cn
, (7)

estimates the gradient using a symmetric finite difference gradient estimate, and under certain conditions,
KW can achieve an asymptotic convergence rate of O(n−1/3). In addition, common random numbers (CRN)
can be employed to decrease the variance of estimates, and KW can achieve an asymptotic convergence
rate of O(n−1/2) in certain settings.

Although the KW algorithm converges asymptotically, its finite-time performance is dependent on the
choice of tuning sequences, {an} and {cn}. If the current xn is in a relatively flat region of the function
and the an is small, then the convergence will be slow. On the other hand, if the xn is located in a very
steep region of the function and {an} is large, then the iterates will experience a long oscillation period.
If {cn} is too small, the gradient estimates using finite differences could be extremely noisy.

2.2.3 Simultaneous Perturbation Stochastic Approximation (SPSA)

Simultaneous perturbation stochastic approximation (SPSA) specifically addresses multivariate optimization
problems (Spall 1992). Similar to KW-type algorithms, SPSA only requires the objective function values to
approximate the underlying gradient and is therefore easy to implement. However, SPSA only requires two
function evaluations at each iteration regardless of the dimension of the parameter space Θ, which could
potentially reduce the computational cost significantly in high-dimensional problems. SPSA perturbs the
vector x randomly in all directions simultaneously (hence, the name of the method) and the ith component
of the gradient estimate has the form

∇̂ fi(xn) =
Y (xn + cn∆n,ξ

+
n )−Y (xn− cn∆n,ξ

−
n )

2cn∆n,i
, (8)

where ∆n = (∆n,1, . . . ,∆n,d) ∈Rd and generally assumed to be i.i.d. and independent across components,
cn ∈R+ is the finite difference step size, and ξ±n denotes the randomness. Observe that the numerator in
(8) involves two function estimates and is identical for all i; therefore, the cost of the full gradient (aside
from generating ∆n) is independent of dimension.
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The optimal convergence rate for SPSA is O(n−1/3). The perturbation sequence {∆n}, where
∆n = (∆n,1, . . . ,∆n,d) with {∆n,i} independent must have mean zero (i.e., E[∆n] = 0), and finite inverse
moments (i.e., E[|∆n,i|−1] < ∞ for i = 1, . . . ,d). As a result, the Gaussian distribution is not applicable.
Instead, the most common distribution used is the symmetric Bernoulli taking a positive and negative value
(i.e., ±1) with probability 0.5. In addition, an appropriately scaled xn is approximately normal for large
n, and the relative efficiency of SPSA depends on the geometric shape of f (x), choice of {an} and {cn},
distribution of {∆n,i}, and noise level.

2.2.4 Kesten’s Rule

It is well-known that the classical SA algorithms are extremely sensitive to the step-size sequence {an}.
Therefore, it could be advantageous to consider adaptive step sizes that adjust based on the ongoing
performance of the algorithm, in hopes of adapting them to the characteristics of the function at the current
location of the iterate and proximity of the current iterate to the optimum. Kesten’s rule (Kesten 1958)
decreases the step size only when there is a directional change in the iterates. The notion behind this
adaptive step size is that, if the iterates continue in the same direction, there is reason to believe they are
approaching the optimum and the pace should not be decreased in order to accelerate the convergence. If
the errors in the estimate values change signs, it is an indication that either the step size is too large and
the iterates are experiencing long oscillation periods or the iterates are in the vicinity of the true optimum;
either way, the step size should be reduced to a more appropriate step size or to hone in on x∗. Kesten’s
rule can be applied to both RM and KW and still guarantee convergence in probability, as long as {an}
satisfies certain conditions.

2.2.5 Iterate Averaging

Iterate averaging approaches SA from a different angle. Instead of fine-tuning the step sizes to adapt to the
function characteristics, iterate averaging takes bigger steps (i.e., an larger than O(n−1)) for the estimates
to oscillate around the optimum, so the average of the iterates will result in a good approximation to the
true optimum. The idea is simple, and yet can be very effective. It is easy to see that for this method to be
successful, it is essential for the iterates to surround the optimum in a balanced manner, and the domain
for which the iterates oscillate shrinks as n increases. Averaging trajectories reduces the sensitivity to the
initial step size choice. The algorithm follows recursion (6) for the RM case; however, instead of the taking
the last iterate xN as the output, the optimum is estimated by x∗N = 1

N ∑
N
n=1 xn, which is an average of N

iterates, where N is the stopping time. Under “classic” assumptions, iterate averaging achieves the same
convergence rate as the RM method. Furthermore,

√
n(x∗n− x∗) is asymptotically normal with mean zero

and the smallest covariance matrix, which is the inverse of the average Fisher information matrix (Polyak
and Juditsky 1992). A constant step size can be applied and yields convergence in distribution (Kushner
and Yin 2003). A variation of this method is called the “sliding window” average, which is based on the
last m iterates. In general, averaging iterates leads to more robustness with respect to step-size sequence
because of the reduced sensitivity, while converging at the same optimal asymptotic rate as RM.

2.3 Random Search Methods
Random search is covered in four different chapters in the simulation optimization handbook (Fu 2014a).
Chapters 10 (Andradóttir 2014) and 11 (Zabinsky 2014) are dedicated to the topic on a more general level,
focusing primarily on the unconstrained continuous setting, whereas Chapters 2 (Hong, Nelson, and Xu
2014) and 12 (Hu 2014) treat some specialized settings. Specifically Chapter 2 presents some locally and
globally convergent algorithms for discrete optimization on a large countable (possibly infinite) set, and
Chapter 12 presents iterative model-based algorithms for which a probability distribution over the solution
space is updated based on the performance of solutions sampled from the probability distribution. The
following is a generic random search algorithm adapted from Andradóttir (2014), where at iteration n, Mn
is the number of designs sampled, Sn is the sampling strategy used to select the Mn candidate solutions,
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and N(i)
n is the number of simulations used to estimate the ith candidate performance.

Step 0 (initialize): Choose the initial sampling strategy S1 and let n = 1.
Step 1 (sample): Select x(1)n , . . . ,x(Mn)

n ∈Θ according to the sampling strategy Sn.
Step 2 (simulate): Estimate f (x(i)n ), for i = 1, . . . ,Mn, via simulated Y (x(i)n ,ξ

(i)
n, j), j = 1, . . . ,N(i)

n .
Step 3 (update): Use the simulation results obtained in Step 2 to compute an estimate

of the optimal solution x∗n and to choose an updated sampling strategy Sn+1.
Let n = n+1 and go to Step 1.

Generally, f (x(i)n ) is estimated using the sample mean. Random search methods differ according to the
sampling strategies {Sn} used, which can be updated adaptively or chosen in advance; Mn can also be
adaptive. “The sampling strategy can be used both to identify new, promising system designs, and also
to obtain improved objective function estimates for previously sampled designs (by re-sampling them)”
(Andradóttir 2014). See Nelson (2010) and Hong, Nelson, and Xu (2014) for the discrete setting, including
the Convergent Optimization via Most-Promising-Area Stochastic Search (COMPASS) algorithm introduced
by Hong and Nelson (2006), which is the basis of an open-source solver described in the concluding remarks.

2.4 Sample Average Approximation

Sample average approximation (SAA) tackles (1) by converting it into a deterministic problem to be solved
using an appropriate numerical procedure. First, select and fix ξ1,ξ2, . . . ,ξn, where ξi follows the same
distribution as ξ for all i. Then the problem becomes

min
x∈Θ

fn(x), where fn(x) =
1
n

n

∑
i=1

Y (x,ξi). (9)

SAA is conceptually straightforward and simple to implement. According to Kim, Pasupathy, and Henderson
(2014), SAA is most effective when f is continuous, which is the same requirement for infinitesimal
perturbation analysis (IPA). Two decisions must be made at the start of SAA: sample size n and a method
used to solve the generated sample path problem (9). The sample size can be chosen to ensure an ε-optimal
solution for problem (1), i.e., if xε is an ε-optimal solution of (1) if f (xε)≤ θ ∗+ ε , where θ ∗ is the true
optimal objective value for (1). Suppose that the feasible set Θ is finite, then for ε > 0,ε ′ ∈ [0,ε),α ∈ (0,1),
and for sample size n satisfying n≥ 2σ2

(ε−ε ′)2 ln
(
|Θ|
α

)
, then the ε ′-optimal solution of the SAA problem (9) is

an ε-optimal solution of the true solution of (1) with probability 1−α , where σ2 is the variance of Y (x,ξ ).
In the literature, asymptotic convergence rates for SAA refers to the convergence of the objective function
f (xn) to f (x∗), in contrast to the classical results that focus on asymptotic convergence properties of the
estimated optimum x∗. Under certain conditions, SAA can achieve an asymptotic convergence rate of n−1/2,
along with asymptotic normality; see also Shapiro (2013). In general, Kim, Pasupathy, and Henderson
(2014) assert that the implementation of SAA is inferior to that of SA, mainly because it uses a fixed
sample size regardless of the progression or lack thereof; however, a recent modification of SAA called
retrospective approximation (RA) described there (including reference to the original papers) circumvents
this issue and proposes to generate and solve a sequence of sample-path problems as opposed to solving a
single sample path problem. Also, for problems where Y (x,ξ ) has a closed form but its expectation does
not, SAA has been very effective.

2.5 Response Surface Methodology
Introduced by Box and Wilson (1951) in the same year as the two stochastic approximation algorithms,
response surface methodology (RSM) is an iterative search procedure that combines statistical design
of experiments, regression analysis, linear search, and deterministic optimization. After the preliminary
transformation (to stabilize variance), scaling (to standardize across dimensions), and screening (to reduce
dimensionality) of the input variables (called factors in the experimental design terminology), there are
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two main phases to RSM. In Phase I, which is the iterative portion of RSM, a linear regression model is
generally used to estimate a search direction to explore. Once a relatively flat area is found, RSM proceeds
to Phase II where a higher-order — usually quadratic — model is fitted, which is generally used to estimate
the optimum. The following is a generic RSM procedure adapted from Barton (2013); see Barton and
Meckesheimer (2006) and Kleijnen (2014) for more detailed discussion.

1. Scale x variables and transform Y values.
2. Screen for important components of the x vector.
3. Phase I:

a. Select an experimental design appropriate for fitting a first-order regression model.
b. Conduct the experiment, fit the appropriate model, assess significance and fit.
c. If the first-order model is satisfactory, then identify a search direction and conduct a sequence

of experiments in this direction, and return to step 3a; else proceed to Phase II.
4. Phase II:

a. Select an experiment design appropriate for fitting a second-order regression model (could be
an augmentation of an existing first-order design).

b. Conduct the experiment, fit the appropriate model, assess significance and fit.
c. If the second-order model is satisfactory, then identify whether an optimum, saddle point or a

ridge has been identified, and return the optimum settings or a ridge of near-optimum settings
in the original units of x; else identify a search direction and conduct a sequence of experiments
in this direction, and return to step 4a.

2.6 Robust Metaheuristics
Robust metaheuristics comprise techniques that have found success in deterministic optimization, primarily
focusing on combinatorial optimization problems. Into this category we include such well-known approaches
as tabu search, scatter search, simulated annealing, genetic algorithms, as well as the nested partitions
method, as categorized by Ólafsson (2006), where more details on metaheuristics can be found. Most
of the commercial software packages, e.g., OptQuest and SimRunner, rely on some combination of these
approaches, possibly with some random search, where the details of any specific algorithm are proprietary.

3 RECENT DEVELOPMENTS

We describe some recent research aimed at improving SA and RSM methods for simulation optimization,
made possible by the availability of direct gradient estimates in the simulation setting.

3.1 Secant-Tangents AveRaged Stochastic Approximation (STAR-SA)

The Secant-Tangents AveRaged (STAR) stochastic approximation algorithm (Chau, Qu, and Fu 2014, Chau,
Fu, and Qu 2014) estimates the gradient using a hybrid estimator, which is a convex combination of a
symmetric finite difference and an average of two direct gradient estimators:

∇̂ f (xn) = αn
Y (xn + cn,ε

+
n )−Y (xn− cn,ε

−
n )

2cn
+(1−αn)

(
Y ′(xn + cn,δ

+
n )+Y ′(xn− cn,δ

−
n )

2

)
, (10)

where ε±n and δ±n denote the randomness (i.e., f (xn±cn) = E[Y (xn±cn,ε
±
n )] and f ′(xn±cn) = E[Y ′(xn±

cn,ξ
±
n )]), αn ∈ [0,1] for all n, cn→ 0 and αn→ 0 as n→∞. The STAR gradient estimate requires function

and gradient estimates on two points, xn± cn for each ∇̂ f (xn). In a setting where direct gradients are
available, if the direct gradient is very noisy relative to the function estimates, it is difficult to decide between
implementing RM or KW, even though RM converges faster asymptotically. Since the performance of
neither algorithm is always superior to the other, the STAR gradient incorporates both. The weights of the
convex combination play a critical role in the performance of STAR-SA and can be chosen to minimize
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the variance of the gradient estimate such that it is less than the variance of both the symmetric finite
difference gradient estimate and direct gradient estimate. The extension to higher dimensions using SPSA
is described in Chau, Fu, and Qu (2014).

3.2 Use of Direct Gradients for Enhanced Metamodels

We summarize some recent work in using direct gradients to enhance the accuracy of simulation metamodels
that can be used in simulation optimization, e.g., in sequential RSM. Technical details can be found in Fu
and Qu (2014), Qu and Fu (2012), Qu and Fu (2014), Chen, Ankenman, and Nelson (2013).

3.2.1 Direct Gradient Augmented Regression (DiGAR)
As described in Section 2.5, the central component of RSM is the fitting of the local response surface
using a metamodel, and the most common procedure used is regression. Direct Gradient Augmented
Regression (DiGAR) is an approach that augments traditional regression to provide a better metamodel.
In the simulation optimization setting, simulation replications are often computationally expensive, so it is
desirable to use as few of them as possible for each value of the input variable. When applying RSM for
sequential search, the direction of improved performance is perhaps the most critical output of the fitted
metamodel in Phase I. In several numerical experiments reported in Fu and Qu (2014) for an M/M/1
queue with relatively small number of simulation replications per design point, the slope of the standard
linear regression model often gave the wrong sign, whereas the DiGAR model always estimated the sign
correctly. Thus, where applicable, DiGAR should provide a better metamodel for simulation optimization
using RSM.

3.2.2 Augmented Stochastic Kriging
Stochastic kriging is another multivariate metamodeling technique that was introduced by Ankenman,
Nelson, and Staum (2010). Without providing the technical details (i.e., not even the mathematical model),
we summarize two different ways that stochastic kriging can be augmented using direct gradient estimates:
• Stochastic Kriging with Gradients (SKG), introduced by Chen, Ankenman, and Nelson (2013),

parallells DiGAR, in that it models the added gradient analogously with a separate term. Under certain
conditions, it can be shown that the integrated mean-squared error is reduced, and experimental
results indicate that infinitesimal perturbation analysis (IPA) generally outperforms the likelihood
ration/score function method when incorporated with SKG.

• Gradient Extrapolated Stochastic Kriging (GESK) uses the gradients in a totally different manner
by generating new output data. Rather than modeling the gradient directly as in DiGAR and SKG,
it extrapolates in the neighborhood of the original design points, i.e., additional response data are
generated via linear extrapolation. Different extrapolation techniques can be applied, and multiple
points can also be added around each original design point. The GESK model requires the choice
of step sizes for the extrapolated points; large step sizes allow better coverage but at the cost of
additional bias since the linearity is less likely to hold further from the original point. Thus, there
is a basic bias-variance tradeoff to consider. In Qu and Fu (2014), this tradeoff is analyzed in a
simplified setting, leading to conditions under which improvement can be guaranteed.

4 CLOSING REMARKS

Simulation optimization is one of the most exciting research areas, due to its mathematical foundations and
practical applications. It offers opportunities and challenges for researchers in many fields, from OR/MS
to mathematics to statistics to computer science to economics to most engineering fields. For some current
thoughts on the state of the art in research and practice, see Fu et al. (2014). Other areas not discussed
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here include stochastic constraints (Homem-de-Mello and Bayraksan 2014) and Markov decision processes
(Gosavi 2014), which add dynamics (time) explicitly to the optimization problem given by (1), where the
optimal solution is given by a policy rather than a static set of values.

Simulation optimization software includes integrated commercial products such as ProModel’s SimRun-
ner and WITNESS Optimizer, the commercial standalone solver OptQuest, and the open-source software
Industrial Strength COMPASS (ISC) available for free download at http://www.iscompass.net (Xu, Nelson,
and Hong 2010). The first three handle both continuous and discrete problems, whereas ISC is designed for
discrete problems. According to Nelson (2010), “The ISC algorithm divides the optimization process into
three phases: a global phase that explores the entire feasible region and identifies several areas that possibly
contain competitive locally optimal solutions, a local phase that searches for a locally optimal solution
in each of the regions identified in the global phase, and a cleanup phase that selects the best solution
among all solutions identified as locally optimal and estimates its true expected performance to within a
user-provided precision. The ISC uses a niching genetic algorithm for the global phase, the COMPASS
algorithm for the local phase, and an R&S procedure for the cleanup phase. It also defines meaningful and
testable transition rules between the phases.”
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Chen, C.-H., J. Lin, E. Yücesan, and S. E. Chick. 2000. “Simulation Budget Allocation for Further Enhancing
the Efficiency of Ordinal Optimization”. Discrete Event Dynamic Systems 10 (3): 251–270.

Chen, X., B. Ankenman, and B. L. Nelson. 2013. “Enhancing Stochastic Kriging Metamodels with Gradient
Estimators”. Operations Research 61 (2): 512–528.

Chick, S. E. 2006. “Subjective Probability and Bayesian Methodology”. In Handbooks of Operations
Research and Management Science, vol. 13: Simulation, edited by S. G. Henderson and B. L. Nelson,
225–258. North-Holland Publishing, Amsterdam.

DeGroot, M. H. 1970. Optimal Statistical Decisions. John Wiley and Sons.
Frazier, P. I. 2012. “Optimization via Simulation with Bayesian Statistics and Dynamic Programming”.

In Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque, J. Himmelspach,
R. Pasupathy, O. Rose, and A. M. Uhrmacher, 1–16. Piscataway NJ: IEEE, Inc.

Frazier, P. I. 2014. “A Fully Sequential Elimination Procedure for Indifference-Zone Ranking and Selection
with Tight Bounds on Probability of Correct Selection”. Operations Research 62 (4): 926–942.

Frazier, P. I., W. B. Powell, and S. Dayanik. 2009. “The Knowledge-Gradient Policy for Correlated Normal
Rewards”. INFORMS Journal on Computing 21 (4): 599–613.

Fu, M. C. 1994. “Optimization via Simulation: A Review”. Annals of Operations Research 53: 199–248.
Fu, M. C. 2002. “Optimization for Simulation: Theory vs. Practice (Feature Article)”. INFORMS Journal

on Computing 14 (3): 192–215.
Fu, M. C. 2006. “Gradient Estimation”. In Handbooks in Operations Research and Management Science:

Simulation, edited by S. G. Henderson and B. L. Nelson, Chapter 19, 575–616. Elsevier.
Fu, M. C. 2014a. Handbook of Simulation Optimization. Springer.
Fu, M. C. 2014b. “Stochastic Gradient Estimation”. In Handbook of Simulation Optimization, edited by

M. C. Fu, Chapter 5. Springer.
Fu, M. C., G. Bayraksan, S. G. Henderson, B. L. Nelson, I. O. Ryzhov, and B. Thengvall. 2014. “Simulation

Optimization: A Panel on the State of the Art in Research and Practice”. In Proceedings of the 2014
Winter Simulation Conference, edited by A. Tolk, S. D. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley,
and J. A. Miller, 478–489. Piscataway NJ: IEEE, Inc.

Fu, M. C., and H. Qu. 2014. “Regression Models Augmented with Direct Stochastic Gradient Estimators”.
INFORMS Journal on Computing 26 (3): 484–499.

Glynn, P., and S. Juneja. 2004. “A large deviations perspective on ordinal optimization”. In Proceedings
of the 2004 Winter Simulation Conference, edited by R. Ingalls, M. D. Rossetti, J. S. Smith, and B. A.
Peters, 577–585. Piscataway NJ: IEEE, Inc.

Gosavi, A. 2014. “Solving Markov Decision Processes via Simulation”. In Handbook of Simulation
Optimization, edited by M. C. Fu, Chapter 13. Springer.

Gupta, S. S., and K. J. Miescke. 1996. “Bayesian look ahead one-stage sampling allocations for selection
of the best population”. Journal of Statistical Planning and Inference 54 (2): 229–244.

Homem-de-Mello, T., and G. Bayraksan. 2014. “Stochastic Constraints and Variance Reduction Techniques”.
In Handbook of Simulation Optimization, edited by M. C. Fu, Chapter 9. Springer.

Hong, L. J., and B. L. Nelson. 2006. “Discrete Optimization via Simulation Using COMPASS”. Operations
Research 54:115–129.

Hong, L. J., and B. L. Nelson. 2009. “A Brief Introduction to Optimization via Simulation”. In Proceedings
of the 2009 Winter Simulation Conference, edited by M. Rosetti, R. Hill, B. Johansson, A. Dunkin,
and R. Ingalls, 75–85. Piscataway NJ: IEEE, Inc.

33



Chau, Fu, Qu, and Ryzhov

Hong, L. J., B. L. Nelson, and J. Xu. 2014. “Discrete Optimization via Simulation”. In Handbook of
Simulation Optimization, edited by M. C. Fu, Chapter 2. Springer.

Hu, J. 2014. “Model-Based Stochastic Search Methods”. In Handbook of Simulation Optimization, edited
by M. C. Fu, Chapter 12. Springer.

Hunter, S. R., C.-H. Chen, R. Pasupathy, N. A. Pujowidianto, L. H. Lee, and C. P. Yap. 2011. “Optimal
Sampling Laws for Constrained Simulation Optimization on Finite Sets: The Bivariate Normal Case”. In
Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey, J. Himmelspach,
K. P. White, and M. C. Fu, 4294–4302. Piscataway NJ: IEEE, Inc.

Kesten, H. 1958. “Accelerated Stochastic Approximation”. The Annals of Mathematical Statistics 29 (1):
41–59.

Kiefer, K., and J. Wolfowitz. 1952. “Stochastic Estimation of the Maximum of a Regression Function”.
The Annals of Mathematical Statistics 23 (3): 462–466.

Kim, S., R. Pasupathy, and S. G. Henderson. 2014. “A Guide to Sample Average Approximation”. In
Handbook of Simulation Optimization, edited by M. C. Fu, Chapter 8. Springer.

Kim, S.-H. 2014. “Statistical Ranking and Selection”. In Encyclopedia of Operations Research and Man-
agement Science, edited by S. I. Gass and M. C. Fu. Springer.

Kim, S.-H., and B. L. Nelson. 2001. “A Fully Sequential Procedure for Indifference-zone Selection in
Simulation”. ACM Transactions on Modeling and Computer Simulation 11 (3): 251–273.

Kim, S.-H., and B. L. Nelson. 2006. “Selecting the Best System”. In Handbooks of Operations Research
and Management Science, vol. 13: Simulation, edited by S. G. Henderson and B. L. Nelson, 501–534.
North-Holland Publishing, Amsterdam.

Kleijnen, J. P. C. 2014. “Response Surface Methodology”. In Handbook of Simulation Optimization, edited
by M. C. Fu, Chapter 4. Springer.

Kushner, H., and G. Yin. 2003. Stochastic Approximation and Recursive Algorithms and Applications. New
York, NY: Springer.

Lee, L. H., E. P. Chew, S. Teng, and D. Goldsman. 2010. “Finding the Non-dominated Pareto Set for
Multi-objective Simulation Models”. IIE Transactions 42 (9): 656–674.

Nelson, B. L. 2010. “Optimization via Simulation Over Discrete Decision Variables”. In TutORials in
Operations Research, edited by J. J. Hasenbein, Chapter 7, 193–207. Hanover, MD: INFORMS.
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