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ABSTRACT

“Input uncertainty” refers to the (often unmeasured) effect of not knowing the true, correct distributions

of the basic stochastic processes that drive the simulation. These include, for instance, interarrival-time

and service-time distributions in queueing models; bed-occupancy distributions in health care models;

distributions for the values of underlying assets in financial models; and time-to-failure and time-to-repair

distributions in reliability models. When the input distributions are obtained by fitting to observed real-

world data, then it is possible to quantify the impact of input uncertainty on the output results. In this

tutorial we carefully define input uncertainty, describe various proposals for measuring it, contrast input

uncertainty with input sensitivity, and provide and illustrate a practical approach for quantifying overall

input uncertainty and the relative contribution of each input model to overall input uncertainty.

1 INTRODUCTION

The “stochastic” in stochastic simulation is produced by input models that drive the simulation output. In

the simplest case the input models are fully specified univariate probability distributions from which the

simulation generates independent and identically distributed (i.i.d.) random variates. More generally, the

input models are stochastic processes described probabilistically (e.g., their joint distribution), rather than

logically (customers are served in the order they arrive). The fidelity with which the input models capture

the uncertainty in the system of interest directly affects the fidelity of the conclusions that can be drawn

from the simulation experiment.

In this tutorial we focus on input models that are “fit” to representative samples of real-world data.

Because the quantity of data is necessarily finite, the resulting input models are almost surely imperfect

representations of reality. Our interest is in quantifying this uncertainty in the input models that is propagated

to the simulation performance estimates.

Let F denote the collection of input models in the simulation (we will be more specific about this

collection later). We will represent the simulation output on replication j as

Yj(F) = η(F)+ε j(F)

where η(F) = E[Yj(F)] is the expected value of the simulation output random variable when we use

input distributions F, and ε j(F) is a mean 0 random variable representing the stochastic noise that is a

consequence of the input models. Since the output could be an average, an indicator variable, a sample

variance, a sample quantile or any number of other quantities, this is a very general representation that

emphasizes the dependence of the system performance measure η(F) and the simulation output Yj(F) on

the input models F.

To execute a simulation experiment we need a specific choice or choices for F , and the natural approach

when we have real-world input data is to use a fitted distribution F̂ , which is a stand-in for the unknown
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true real-world distribution denoted by Fc (the “c” indicates “correct”). Therefore, the simulation results

we observe are

Yj(F̂) = η(F̂)+ε j(F̂).

Given the choice F̂, there is a vast literature on simulation design and analysis that provides guidance

on how many replications we need, and what estimator to use, to estimate η(F̂). Clearly this analysis is

conditional on F̂, and therefore ignores a potentially large source of error due to using F̂ 6= Fc.

The input uncertainty problem is to quantify how much uncertainty in the simulation estimator of

η(Fc) is caused by the uncertainty in estimating Fc. In this tutorial we formally define input uncertainty,

describe various proposals for measuring it, contrast input uncertainty with input sensitivity, and provide

and illustrate a practical approach for quantifying overall input uncertainty and the relative contribution of

each input model to it. We start with a high-level discussion of input modeling itself.

2 INPUT MODELING

For ease of exposition, suppose (temporarily) that the system of interest has only one source of randomness

represented by a univariate input distribution Fc. Later we will extend to the case of multiple input

distributions. Generally Fc is unknown; however, we can observe a realization zm = {z1, z2, . . ., zm} of the

i.i.d. input process Z1,Z2, . . .,Zm ∼ Fc. Notice that we use capital letters such as Z to denote a random

variable, and lowercase letters such as z for a realization. We will also use Z for real-world input data from

Fc, and X for simulation-generated input data from F̂ . The estimated distribution F̂ depends on any prior

information we have about Fc and the observed data zm. Choosing F̂ is called input modeling.

What constitutes good input modeling? The goal of the simulation experiment is to precisely estimate

the true system performance measure, which is η(Fc) in our set up. Therefore, estimating Fc precisely is

a sufficient, but not a necessary condition; to achieve our goal we need η(F̂) to be close to η(Fc), not

F̂ = Fc. In some specialized situations we can figure out what specific properties of F̂ need to be close

to the corresponding properties of Fc for η(F̂) to be close to η(Fc), but this is certainly not possible in

general because η(·) is unknown. Therefore, the focus of input modeling is typically on the fidelity of F̂

with respect to Fc.

The two main philosophies of input modeling are frequentist and Bayesian, and while certainly different,

they share some common features when it comes to input uncertainty.

Frequentists assume that there exists a true distribution Fc, and the goal is to infer Fc from the real-world

data using methods that have good performance when averaged over the possible samples Z1,Z2, . . . ,Zm.

For instance, if Fc is believed to have a known distribution family but unknown parameters θ c—that

is, Fc(x) = F(x|θ c) with F known—then the parameters may be estimated using maximum likelihood

estimators (MLEs), least squares, generalized method of moments, or other methods. Typically these

estimators are asymptotically consistent for θ c as m → ∞. Prior information such as the physical basis

of the input process may influence the choice of distribution family. There is commercial input modeling

software that fits the parameters of a large collection of distribution families and also provides ways to assess

the fit, including goodness-of-fit tests such as Chi-square, Anderson-Darling and Kolmogorov-Smirnov.

Errors in fitting are characterized by the sampling distribution of the parameter estimator θ̂ ; since this

distribution is often hard to derive, approximations based on large-sample asymptotics or bootstrapping

are often used.

Bayesians are less interested in discovering the true distribution Fc and more interested in the likelihood

of possible choices given the data. Bayesian inference starts by capturing any prior knowledge available

about Fc in the form of a prior probability distribution; this distribution may be on the family of distributions,

the parameters of a specific family of distributions, or both. For instance, we might believe that Fc is one

of the families in the set {F1,F2, . . .,Fk} with prior probabilities π1,π2, . . .,πk. More often, we assume

that the family of Fc is known and provide a prior πΘ(θ ) on the value of its parameter vector Θ, which is

treated as a random vector.
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After collecting the real-world data zm, the prior distribution πΘ(θ ) is updated to a posterior distribution

pΘ(θ |zm) according to Bayes’ rule

pΘ(θ |zm) ∝ L(zm;θ )πΘ(θ ),

where L(zm;θ ) is the likelihood function of zm given Θ = θ . Notice that the posterior distribution is

conditional on the particular realization zm that was obtained. The posterior distribution pΘ(θ |zm) plays the

role for Bayesians that the sampling distribution of θ̂ plays for frequentists by quantifying the uncertainty

about θ c. Under some regularity conditions, the posterior distribution of Θ converges to a degenerate

distribution at θ c independent of the choice of the prior distribution as the sample size m → ∞; this is the

Bayesian concept of consistency.

Returning to the main purpose of the simulation study—to estimate η(Fc)—both frequentist and

Bayesian input modelers face a similar problem: to actually execute a simulation experiment requires

a specific choice of distribution and distribution parameters. When only the parameters are unknown,

we often use the single “best” choice, such as the MLE for frequentists or the maximum a posteriori

(MAP) estimator for Bayesians, but a single choice assumes away the very real uncertainty about the input

model. However, since η(·) is unknown, characterizing uncertainty about the input model (via a sampling

distribution or posterior) is not enough since the goal is to measure the uncertainty in estimating η(Fc).

Therefore, to quantify input uncertainty, some way to propagate the uncertainty about Fc through to the

estimate of η(Fc) is required.

In the remainder of the tutorial we define some specific measures of input uncertainty and illustrate

one practical approach to estimate them.

3 MEASURES OF INPUT UNCERTAINTY

One difficulty in describing input uncertainty is that there are many types of input models that may arise in

a computer simulation. These include univariate inputs such as customer service times; time-series inputs

such as the weekly demands for milk; multivariate inputs such as the age, income, gender and occupation

of a customer; and time-dependent inputs such as the arrival times of calls to a call center. For this tutorial

we will assume that the input models for the simulation consist of L independent, univariate distributions

F = {F1,F2, . . .FL} each of whose role is to model an i.i.d. input process. For instance, in a stationary

queueing system with server failures we might have F = {F1,F2,F3,F4}, the distributions of interarrival

times, service times, time until server failure, and server repair time, respectively. Let Y (F) be a random

variable that represents the generic output of the simulation—such as the average customer delay in the

queueing system with failures—when the input distributions are F.

We assume that there are unknown, but “correct,” real-world distributions Fc = {Fc
1 ,Fc

2 , . . . ,Fc
L}. From

the `th distribution we are able to observe m` i.i.d. real-world observations Z`1,Z`2, . . .,Z`m`
from which to

“fit” Fc
` , giving the collection of fitted input models F̂ = {F̂1, F̂2, . . . , F̂L}. We then run the simulation and

obtain outputs Y1(F̂),Y2(F̂), . . .,Yn(F̂) across n i.i.d. replications. The goal of the simulation experiment is

to estimate η(Fc) = E[Y(Fc)]. For ease of exposition here we assume that the η(Fc) is estimated by the

sample mean across n replications

Ȳ (F̂) =
1

n

n

∑
j=1

Yj(F̂)

= η(F̂)+
1

n

n

∑
j=1

ε j(F̂).
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The variance of the point estimator is

Var[Ȳ(F̂)] = Var
[
E(Ȳ(F̂)|F̂)

]
+E

[
Var(Ȳ(F̂)|F̂)

]

= Var
[
η(F̂)

]
+

1

n
E

[
Var(ε1(F̂)|F̂)

]
, (1)

where outer variance and expectation on the right hand side is with respect to the sampling distribution of

F̂ (frequentist) or the posterior distribution of F̂ (Bayesian). Notice that the second term in (1) accounts

for the inherent variability in the simulation error (given a choice of input distributions), and it can be

driven to 0 by increasing the simulation effort n. The size of the first term, however, depends on a complex

interaction between the real-world sample sizes m = {m1,m2, . . . ,mL} and the structure of η(·).

Our formal definition of input uncertainty is σ2
I = Var

[
η(F̂)

]
, the variance in the system mean due to

having estimated Fc. Although this definition is straightforward, how to estimate it is not immediately clear

as it requires 1) the sampling distribution of F̂ (frequentist case) and 2) the functional form of η(·), neither

of which is known in general. This illustrates why assessing input uncertainty is difficult and motivates

the methods that have been suggested in the literature and are reviewed below.

Conceptually, if we had B independent real-world samples of input data of size m, yielding B independent

fitted input distributions F̂1, F̂2, . . ., F̂B, and we knew the true mean response functional η(·), then we could

estimate σ2
I via the unbiased estimator

σ̂2
I =

1

B−1

B

∑
b=1

(η(F̂b)− η̄)2,where η̄ =
1

B

B

∑
b=1

η(F̂b).

However, if we actually had multiple real-world data sets then we would certainly pool them to obtain

a better estimator of Fc; thus, no matter how much data we have it is best to treat it as one sample. In

addition, η(·) is unknown or we would not be simulating. In the next two subsections we consider these

problems (single sample, unknown response function) in turn, both from frequentist and Bayesian points

of view.

It is worth mentioning that one other aspect of input uncertainty that is rarely noted, even in the

input-uncertainty literature, is bias. Specifically,

E
[
Y(F̂)−η(Fc)

]
= E

[
η(F̂)

]
−η(Fc) 6= 0

in general. This is the case even when E[F̂] = Fc because η(·) is typically a nonlinear transformation. We

might hope that η(F̂) −→ η(Fc) in some sense as the real-world sample sizes m` → ∞, ` = 1,2, . . .,L, but

this is the most we can hope.

3.1 Variability of F̂

For a frequentist, the variability of F̂ as an estimator of Fc is quantified by its sampling distribution;

that is, we try to infer the distribution of possible F̂’s that could be realized from the single sample

of data that we actually have. There have been two primary approaches in the literature: large-sample

asymptotic distributions as in Cheng and Holland (1998) and bootstrapping as in Barton and Schruben

(2001), Ankenman and Nelson (2012), and Song and Nelson (2013).

To simplify the exposition, suppose again that there is only L = 1 input distribution, and we believe

Fc(z) = F(z|θc) is a parametric distribution with known family (e.g., Poisson), but unknown parameter

vector θ c. The family might be “known” because of process physics (e.g., an arrival process consisting of the

superposition of many customers making independent but infrequent decisions about when to arrive tends to

be Poisson), or from fitting a large number of possible parametric families and ranking their goodness of fit.
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For the parametric case there is a well-developed theory for parameter estimators θ̂ = θ̂ (Z1,Z2, . . .,Zm) such

as the MLE. The sampling distributions for these estimators are known, at least asymptotically as m → ∞.

For instance, MLEs are often asymptotically normally distributed. Thus, for parametric distributions, input

model uncertainty becomes input parameter uncertainty which is quantified by the sampling distribution

of θ̂ . Cheng and Holland (1998) provide an expression for σ2
I by applying a first-order Taylor series

approximation of η(θ̂ ) to obtain

σ2
I = Var[η(θ̂ )]≈ ∇(η(θ c))>Var[θ̂ ]∇(η(θ c)) (2)

where Var[θ̂ ] is the variance-covariance matrix of θ̂ and ∇(η(θ c)) is the gradient of η(·) evaluated at θ c.

The approximation (2) shows that input uncertainty depends both on how well the input model has been

estimated, and how sensitive the system response is to the input model. The sampling distribution (or an

approximation to it) can provide an estimator of Var[θ̂ ], but that still leaves the question of how to estimate

∇(η(θ c)).

In bootstrapping, we assume that the fitted distribution F̂ is a good stand-in for Fc. An empirical

cumulative distribution function (ecdf) is often used as the fitted distribution, although this is not required.

Then instead of gathering B distinct real-world samples of input data, we simulate B bootstrap samples

from the empirical distribution:

X
?(b)
1 ,X

?(b)
2 , . . .,X

?(b)
m

i.i.d.∼ F̂ for b = 1,2, . . .,B.

Each bootstrap sample yields a fitted input distribution F̂?(b). Therefore, an estimator of σ2
I is

σ̂2?
I =

1

B−1

B

∑
b=1

(η(F̂?(b))− η̄?)2

where η̄? = ∑B
b=1 η(F̂?(b))/B. The validity of the bootstrap can also be established as m → ∞. However,

this estimator requires a stand-in for η(·).

Bayesian input modeling typically emphasizes the choice of parameters for a parametric distribution,

although as noted earlier it is possible to extend the definition of “parameter” to include the distribution

family as well. The posterior distribution of the parameters pΘ(θ |zm) plays the role of the sampling

distribution of θ̂ for the frequentist. However, in a Bayesian treatment there is no need for an asymptotic

approximation because the posterior is valid for any quantity of real-world data. In fact, the posterior

explicitly accounts for the quantity of data that is available: the more data there is, the more concentrated

the posterior distribution will be.

From a Bayesian perspective, the corresponding overall measure of input uncertainty is σ2
I = Var[η(Θ)]

where the variance is with respect to Θ ∼ pΘ(θ |zm). One difficulty in computing this quantity arises when

the posterior distribution is not simple and can only be evaluated approximately via simulation methods,

such as Markov chain Monte Carlo. And, of course, η(·) is not known.

Instead of using the posterior distribution of Θ, Ng and Chick (2001, 2006) employ the asymptotic

normal distribution of the MAP estimator Θ̃m. Similar to Approximation (2), they combine the asymptotic

normal approximation with a first-order Taylor series expansion of η(Θ̃m) to derive σ2
I :

σ̂2
I ≈ ∇(η(θ̃m))>Σm∇(η(θ̃m)),

where θ̃m is the MAP of Θ and Σm is the inverse of the Bayesian observed information given zm. Likewise,

they need an assumption on the structure of the unknown η(·) to propagate the uncertainty in Θ to the

simulation estimator.
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3.2 Propagating Input Model Uncertainty

The second reason that σ̂2
I is not realizable is that η(·) is unknown, and it is this mapping that propagates

the input model uncertainty to the simulation performance measure uncertainty. Whether frequentist or

Bayesian, there is really no choice but to estimate η(·) using simulation, and we can only estimate η(F)
given specific choices of F. The key questions are, what should we estimate, and how should we expend

the simulation effort to do it?

Direct simulation chooses a collection of distributions F1,F2, . . .,FB, runs simulations at each choice,

and estimates η(Fi) by the average of the simulation results Ȳ (Fi). The distributions F1,F2, . . . ,FB are

usually randomly chosen from the sampling distribution of θ̂ (frequentist) or the posterior distribution of

Θ (Bayesian) so as to represent the input model uncertainty.

1. For b = 1 to B

(a) If frequentist:

i. Generate θ̂ ?
b from the sampling distribution of θ̂ (e.g., using the asymptotic distribution

or bootstrapping).

ii. Using θ̂ ?
b , run n replications to obtain the sample mean Ȳb(θ̂ ?

b ).

(b) Else if Bayesian:

i. Generate Θb ∼ pΘ(θ |zm)
ii. Using Θb, run n replications to obtain the sample mean Ȳb(Θb).

Next b

2. Use the data Ȳb(θ̂ ?
b ) or Ȳb(Θb) for b = 1,2, . . .,B to estimate measures of input uncertainty.

Notice that in either case input uncertainty is confounded with stochastic simulation noise so they may

need to be separated, which is the challenge.

Metamodeling chooses distributions F1,F2, . . .,Fd to cover a relevant design space, and then uses the

simulation results to fit a metamodel η̂(·) to stand in for η(·). Barton et al. (2014) take a frequentist

approach to input modeling and use Gaussian processes to build a metamodel at a chosen set of parameters.

Given the metamodel, σ̂2
I or a number of other measures can be estimated inexpensively. But there is still

a need to separate input uncertainty from metamodel error.

Gradients of η(θ ) are needed if we use parametric input models and approximate Var[η(θ̂ )] using

a Taylor series expansion of η(θ̂) around θc as in (2). Since η(θ) is unknown, its gradients are also

unknown. Cheng and Holland (2004) suggest several methods to estimate ∇(η(θ c)). The expansion in (2)

facilitates propagating uncertainty about θ (as represented by the sampling distribution of θ̂ or the posterior

distribution of Θ) to the performance measure η(θ̂ ). Clearly this is another form of metamodeling.

3.3 Additional Measures of Input Uncertainty

Although we focused on estimating σ2
I , there are other useful measures depending on the objective.

In (1) let σ2 = E
[
Var(ε1(F̂)|F̂)

]
, the simulation output variance. Then Ankenman and Nelson (2012)

standardize σ2
I as

γ =
σI

σ/
√

n
.

Thus, the ratio γ is the standard deviation due to input uncertainty in units of the standard error of the

simulation point estimator. For instance, γ = 0.5 means that the error due to input uncertainty is half as

large as that due to estimating η(F̂) via simulation. If the replication number n is sufficiently large, small

γ indicates that the input uncertainty is insignificant.
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Interval estimates are also valuable. The typical simulation confidence interval (CI) guarantees (1−
α)100% coverage of η(F̂). Instead, an interval [CL,CU ] that guarantees

Pr{η(Fc) ∈ [CL,CU ]} ≈ 1−α

accounts for input model uncertainty, simulation error and bias. The corresponding Bayesian credible

interval (CrI) would assert

Pr{η(Θ) ∈ [QL,QU ]}= 1−α .

This interval contains 1−α of the probability content of the induced posterior distribution on η(Θ) when

Θ ∼ pΘ(θ |zm). Many papers have proposed generating CIs or CrIs from direct simulation, as described

above, using empirical quantiles of Ȳb(θ̂ ?
b ) or Ȳb(Θb), respectively, for b = 1,2, . . .,B. See, for instance,

Xie et al. (2014) and Zouaoui and Wilson (2003, 2004).

So far we have only considered the measures of input uncertainty as a function of F̂, the collection

of all input models used in the simulation. We next turn our attention to assessing which input models

among F̂ make the greatest contributions to input uncertainty, and from which would we most benefit from

collecting more real-world data.

3.4 Measures of Contribution and Sample-Size Sensitivity

Contribution measures try to decompose σ2
I in a meaningful way. This is difficult, and in fact is currently an

area of active research. The ultimate goal is to identify from which distributions it would be most beneficial

to reduce uncertainty further, or even to specify how to spend a budget for additional data collection.

Clearly, the contribution of `th input model F̂̀ depends on the real-world sample size m`; as m` becomes

infinitely large, F̂̀ converges to Fc
` (frequentist) or to a degenerate posterior distribution(Bayesian). Therefore,

small m` causes bigger contribution. However, the contribution also depends on how sensitive η(·) is to

F̀ . To make the point clear, assume that F1 is in fact a dummy distribution so that the functional η(·)
does not depend on F1. Then, no matter how small m1 is, the contribution of F̂1 should be 0. On the other

hand, if η(·) is very sensitive to F1, the uncertainty in F̂1 is amplified as it is propagated to the uncertainty

in η(F̂).

Song and Nelson (2013) defined the contribution of F̂̀ to input uncertainty as

V`(m`)≡ Var
[
E[Y (Fc

1 ,Fc
2 , . . .,Fc

`−1, F̂̀ ,Fc
`+1, . . . ,Fc

L )|F̂̀ ]
]
. (3)

In words, V`(m`) is the variability in the simulation’s expected value when all of the true input distributions

except Fc
` are known and Fc

` is estimated by F̂̀ . Notice that V` is a function of the sample size m`; the

larger m` is, the smaller V`(m`) becomes as F̂̀ approaches Fc
` .

Unfortunately, ∑L
`=1 V`(m`) 6= σ2

I in general. Song and Nelson (2013) suggest looking instead at the

relative contribution of the `th input model,

V`(m`)

∑L
i=1 Vi(mi)

.

A reasonable heuristic to reduce σ2
I is to obtain more data for the distributions with the largest relative

contribution.

Song and Nelson (2013) propose a measure that does not decompose σ2
I , but instead quantifies the

impact of additional data for each input distribution: the sample-size sensitivity of Var[Ȳ(F̂)] with respect

to `th input model. If we approximate m` as real valued then this is

∂Var[Ȳ (F̂)]

∂m′
`

∣∣∣∣∣
m′

`=m`

. (4)
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The sample-size sensitivity quantifies how much the estimator variance would be reduced by observing

one more real-world sample from the `th input process given we already have m` observations. The input

distributions with the largest (most negative) sensitivities are targets for more real-world data. We illustrate

one method for estimating the relative contribution and sample-size sensitivity in Section 4.

Unfortunately, sample-size sensitivities are only local gradients, and therefore are not ideal for optimally

allocating a substantial amount of additional effort. Freimer and Schruben (2002) and Ng and Chick (2001,

2006) attempt to go further.

If the budget for real-world data is effectively unlimited, then it makes sense to collect enough data

so that Var[Ȳ(F̂)]≈ E[Var(Ȳ (F̂)|F̂)]; i.e., no input uncertainty. Freimer and Schruben (2002) achieve this

objective by sequentially adding real-world data until the effect of input model uncertainty is statistically

negligible relative to simulation output variability. To formalize this they use a random-effects metamodel

where the “random effects” are due to distribution parameter estimates obtained from bootstrapping the

available data. In the case of L = 2 parameters, their model for the simulation output on replication h is

Yi jh = η +Ai +Cj +ACi j +εi jh, for i, j = 1,2, . . .,B, h = 1,2, . . .,n (5)

where Ai, Cj and ACi j are the random effects of bootstrapped parameters θ ?
1i, θ ?

2 j and their interaction,

respectively, B is the number of bootstrap samples, and εi jh is the stochastic variability of the simulation.

They stop collecting input data when the hypothesis that these three variance effects are 0 is no longer

rejected.

If the budget for collecting real-world data, and perhaps also for running the simulation itself, is limited,

then it makes sense to try to allocate effort to minimize the variance of the point estimator within the

budget. This requires an approximation for the variance as a function of m and n. Ng and Chick (2001,

2006) obtain such an approximation by combining a Bayesian treatment of input model uncertainty with

a linear metamodel for the simulation output

Y (Θ) = η(Θ)+ε ≈ λ0 +
P

∑
p=1

λp(Θp − θ̃p)+ε (6)

where P is the total number of individual parameters of all input distributions, and θ̃p is the MAP of the

pth parameter Θp. Estimation of the metamodel parameters is also treated in a Bayesian manner. Using

this model they derive an expression for the posterior variance of η(Θ) as a function of m and n, which

they use to optimally allocate the budget for additional input data or additional simulation replications.

3.5 Connections to Sensitivity Analysis

“Sensitivity analysis,” as it is usually construed in stochastic simulation, means estimating terms like ∇g(θ )
at given values of θ . As we noted in approximation (2), input uncertainty is more than just sensitivity. As

illustrated in Section 3.4, input uncertainty is a function of both the size of the real-world data set from

which we estimate the input distribution parameters and the sensitivity of the response to the parameter.

There is at least a superficial connection between input uncertainty and global or probabilistic sensitivity.

Key references include Wagner (1995), Homma and Saltelli (1996), Oakley and O’Hagan (2004), and Plischke

et al. (2013). Expressing the global sensitivity problem in our notation, it is concerned with a response

y = η(θ ) where η(·) is a function that can be evaluated without noise, but usually at great computational

expense. The problem arises because the parameter θ is either unknown or uncontrollable (e.g., it contains

environmental factors). Therefore, its value is modeled as a random variable Θ with known distribution

FΘ(·). The response can also be treated a random variable Y = η(Θ) with Θ ∼ FΘ. Global sensitivity

analysis tries to decompose or explain Var[Y ] by attributing portions of it to each component parameter

of Θ = (Θ1,Θ2, . . . ,ΘL). Research is driven by the fact that direct evaluation of η(·) is too expensive to

do for many values of θ , rather than by lack of knowledge of FΘ. Our input uncertainty problem, on the

other hand, is characterized by lack of knowledge of the input distributions themselves and the presence

of simulation noise in the evaluation of η(·).
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4 A PRACTICAL APPROACH AND ILLUSTRATION

In this section, we summarize a method suggested by Song and Nelson (2014) to estimate the input

uncertainty measures introduced in Section 3, along with an illustration of its application on a practical

problem. This approach takes a frequentist’s view of input modeling and input uncertainty quantification.

We continue to assume that the collection of input models F consist of L independent, univariate distributions.

The goal of the experiment is to estimate η(Fc).

Song and Nelson (2014) describe a sequence of experiments: nominal, diagnostic and follow-up.

Typically, a simulationanalyst performs a nominal experiment by fitting the input models F̂ = {F̂1, F̂2, . . . , F̂L}
from a real-world sample zm = {zm1

,zm2
, . . . ,zmL

} and conducting multiple, say n, simulation replications

to obtain a point estimator Ȳ (F̂) and its CI conditional on F̂. As noted earlier, this estimator and CI do not

take into account input uncertainty caused by having estimated Fc by F̂. To address this problem, Song and

Nelson (2014) introduce the diagnostic and follow-up experiments, described in the following subsection.

4.1 The diagnostic and follow-up experiments

The purpose of the diagnostic experiment is to quantify the input uncertainty in the estimator from the

nominal experiment using the measures defined in Section 3. Song and Nelson (2014) employ the following

mean-variance effects metamodel as a stand-in for Yj(F):

Yj(F) = η(F)+ε j = β0 +
L

∑
`=1

β`µ(F̀ )+
L

∑
`=1

ν`σ
2(F̀ )+ε j, (7)

where µ(F̀ ) and σ2(F̀ ) denote the mean and variance, respectively, of F̀ ; β` and ν` are constant coefficients;

and ε j is an independent mean-zero random variable with constant variance σ2. The idea behind Model (7)

is that the effect of F̀ on the mean response can be captured by some summary properties of F̀ ; in particular,

the realized center (mean) and spread (variance) of F̀ . Also, β` and ν` represent how sensitive η(·) is

to the `th input distribution. We do not expect Model (7) to fit well over the entire sampling space of F̂;

rather, it is expected to have a good local fit for F̂ near Fc.

Under Model (7), the simulation uncertainty σ2
I can be represented as

σ2
I = Var[η(F̂)] =

L

∑
`=1

{
β 2

` Var[µ(F̂̀ )]+ν2
` Var[σ2(F̂̀ )]+2β`ν`Cov[µ(F̂̀ ),σ2(F̂̀ )]

}
. (8)

Likewise, the contribution of F̂̀ to the input uncertainty can be derived from the definition in (3) as

V`(m`) = Var

[

β0 +
L

∑
i=1,i6=`

βiµ(Fc
i )+

L

∑
i=1,i6=`

νiσ
2(Fc

i )+β`µ(F̂̀ )+ν`σ
2(F̂̀ )

]

= β 2
` Var[µ(F̂̀ )]+ν2

` Var[σ2(F̂̀ )]+2β`ν`Cov[µ(F̂̀ ),σ2(F̂̀ )]. (9)

Notice that under Model (7) the overall input uncertainty is the sum of each distribution’s contribution,

i.e., σ2
I = ∑L

`=1 V`(m`). Hence, the sample-size sensitivity defined as in (4) becomes

∂Var[Ȳ(F̂)]

∂m′
`

∣∣∣∣∣
m′

`=m`

=
∂V`(m′

`)

∂m′
`

∣∣∣∣
m′

`=m`

.

To estimate the contributions from (9), we need to estimate the parameters β` and ν`, and the variance

components of the sample statistics, Var[µ(F̂̀ )],Var[σ2(F̂̀ )] and Cov[µ(F̂̀ ),σ2(F̂̀ )], for ` = 1,2, . . .,L.

If we had B collections of real-world data, then the parameters β` and ν` could be obtained by fitting
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Model (7) using the corresponding fitted distribution F̂1, F̂2, . . ., F̂B. However, as discussed in Section 3.1,

we prefer to pool all real-world data to obtain a better estimate of Fc. Instead, Song and Nelson (2014)

bootstrap F̂ to obtain ecdfs F̂?
1, F̂?

2, . . . , F̂?
B from bootstrapped samples and fit Model (7) via least-squares

regression to estimate the β`’s and ν`’s.

Another advantage of the bootstrap approximation is that it yields simple expressions for the vari-

ance components in (9). Bootstrapping implies that we assume Var[µ(F̂?
` )|F̂̀ ],Var[σ2(F̂?

` )|F̂̀ ], and

Cov[µ(F̂?
` ),σ2(F̂?

` )|F̂̀ ] are stand-ins for Var[µ(F̂̀ )],Var[σ2(F̂̀ )], and Cov[µ(F̂̀ ),σ2(F̂̀ )]. Song and Nelson

(2014) derive

Var[µ(F̂?
` )|F̂̀ ] =

M2
`

m`

Var[σ2(F̂?
` )|F̂̀ ] =

(m`−1)2

m3
`

M4
` −

(m`−3)(m`−1)

m3
`

(M2
` )

2 ≈ M4
` − (M2

` )2

m`

Cov[µ(F̂?
` ),σ2(F̂?

` )|F̂̀ ] =
(m`−1)2

m`
3

M3
` ≈ M3

`

m`

where Mk
` is kth central moment of F̂̀ . Therefore, the contribution and sample-size sensitivity estimator

can be written as

V̂`(m`) =
1

m`

{
β̂ 2

` M2
` + ν̂2

` (M4
` − (M2

` )
2)+2β̂`ν̂`M

3
`

}
,

∂ V̂`(m′
`)

∂m′
`

∣∣∣∣∣
m′

`=m`

= − V̂`(m`)

m`
. (10)

The algorithm for the diagnostic experiment is as follows:

Diagnostic Experiment

1. Given the estimated input models F̂ (either parametric or non-parametric), do the following:

2. For bootstrap sample b = 1 to B

(a) For input model ` = 1 to L

i. Generate X
?(b)
`1 ,X

?(b)
`2 , . . . ,X

?(b)
`m`

by sampling m` times from F̂̀ .

ii. Let F̂
?(b)
` be the ecdf of X

?(b)
`1 ,X

?(b)
`2 , . . . ,X

?(b)
`m`

and calculate the mean µ(F̂
?(b)
` ) and variance

σ2(F̂
?(b)
` ).

Next `

(b) Using input models F̂?(b) =
{

F̂
?(b)
1 , F̂

?(b)
2 , . . ., F̂

?(b)
L

}
, simulate R i.i.d. replications Yj(F̂?(b)),

j = 1,2, . . .,R and calculate the sample mean Ȳ (F̂?(b)).

Next b

3. Fit the model

Yj(F̂?) = β0 +
L

∑
`=1

β`µ(F̂?
` )+

L

∑
`=1

ν`σ
2(F̂?

` )+ε j (11)

via least-squares regression with dependent variable Ȳ(F̂?(b)) from Step 2b and independent vari-

ables µ(F̂
?(b)
1 ),µ(F̂

?(b)
2 ), . . .,µ(F̂

?(b)
L ) and σ2(F̂

?(b)
1 ),σ2(F̂

?(b)
2 ), . . . ,σ2(F̂

?(b)
L ) from Step 2a for

b = 1,2, . . .,B to estimate the coefficients β0,β1, . . . ,βL,ν1,ν2, . . . ,νL.

4. Estimate the contribution V̂`(m`) and the sensitivity for ` = 1,2, . . .,L using (10).
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5. Estimate the overall input uncertainty σ̂2
I = ∑L

`=1 V̂`(m`) and the estimated ratio

γ̂ =
σ̂I

σ̂/
√

n
=

√
n∑L

`=1 V̂`(m`)

σ̂
.

Notice that σ̂2 in Step 5 is an estimator of the simulation error variance from the nominal experiment and

n is the number of replications in the nominal experiment.

Because the diagnostic experiment requires additional simulation effort, Song and Nelson (2014) also

study how to break the given simulation budget N = BR into B bootstraps of R replications each. For

the estimation quality, large B is beneficial because it reduces the variance of the estimated β̂`’s and ν̂`’s.

However, from a computational perspective, small B is preferred. Therefore, finding a balance between

these two is the key to the experiment design. One suggestion made by Song and Nelson (2014) is to

allocate N according to

B > 2L+2+

√
2L+2

δ
(12)

with R = bN/Bc. This choice makes B just as big enough so that the incremental variance reduction of

increasing B by 1 is less than δ100%, where they recommend δ = 0.01.

As mentioned in Section 3.3, the estimated ratio γ̂ can be used to decide the significance of the

input uncertainty in the simulation estimator provided that the number of replications n for the nominal

experiment is sufficiently large. If γ̂ is large, e.g., γ̂ = 20, then we can conclude that there is substantial

input uncertainty and move on to the problem of deciding from which input processes we should collect

additional real-world data (if possible). This question can be answered by the sample-size sensitivities of

the input models. See Section 4.2 for details.

Song and Nelson (2014) also propose a heuristic way to adjust the nominal CI using γ̂ to include the

input uncertainty σ2
I . Roughly, the adjusted 100(1−α)% CI is given as

Ȳ (F̂)±qα/2

σ̂√
n

√
1+ γ̂2, (13)

where qα/2 is the 100(α/2)-th quantile of the standard normal distribution.

Even if γ̂ is large, it may be infeasible to collect additional data from any of the input processes

(for instance, the system no longer exists). In this case, Song and Nelson (2014) suggest to improve the

estimator from the nominal experiment by combining it with the replications obtained from the diagnostic

experiment. The combined estimator Ỹ is

Ỹ = ωȲ (F̂)+(1−ω) ¯̄Y (F̂),

where ¯̄Y (F̂) = ∑B
b=1 Ȳ(F̂?(b))/B and ω ∈ [0,1]. The optimal weight ω? given F̂ can be obtained by minimizing

the conditional mean squared error (MSE) of Ỹ given F̂; an estimator of the optimal weight is

ω̂? =
(b̂?)2 + σ̂2

I /B+ σ̂2/BR

(b̂?)2 + σ̂2
I /B+ σ̂2/BR+ σ̂2/n

,

where b̂? = ¯̄Y (F̂)− Ȳ(F̂) is an estimator of bias. By combining Ȳ(F̂) and ¯̄Y(F̂), the bias is increased as

bootstrapped distributions add more bias to the estimator ¯̄Y(F̂), but the variance is decreased because we

have more replications. The optimal weight ω? balances these two.

When input uncertainty is significant, and it is possible to collect additional real-world data on the most

offending input models, then a follow-up experiment is performed using the refined input models formed
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from m′ = {m′
1,m′

2, . . .,m′
L} observations, where m′

` ≥ m`. Song and Nelson (2014) investigated whether

it is worthwhile to combine simulation results from the nominal and follow-up experiments and concluded

that typically it is not. Because of the increased real-world sample, Ȳ (F̂m′) is less biased than Ȳ (F̂m). In

addition, the variance of Ȳ (F̂m′) is smaller as it has less input uncertainty. Therefore, combining the two

estimators is unlikely to reduce the MSE.

4.2 Illustration: Remote Order-taking System

In this section, we summarize an illustration in Song and Nelson (2014)—borrowed from Nelson (2013)—to

describe a practical use of the three-phase experiments. All results in this illustration are performed using

Simio and its input uncertainty analysis add-in that implements the diagnostic experiment procedure in

Section 4.1.

The problem is to evaluate replacing the current order-taking system at the drive-though window of

a chain of fast-food restaurants by a remote order-taking system. In the current system, there is a server

at each store who takes orders from the incoming customers when they reach the order board. Under the

proposed system, the server at the store is replaced by a pool of agents at a remote call center. The hope is

that many fewer agents are needed than one per store. The fast food chain has high standards for service

quality and in particular wants the average time that a customer waits until being greeted by an agent to be

less than 1.5 seconds. A simulation study of this new system using the data from 7 stores is undertaken.

Table 1 shows 9 input processes used in the simulation: inter-arrival times of customers at 7 stores;

order-taking times for the remote agents; and the time for a car to pull up to the order board after the

previous car (if there is one) departs. The inter-arrival times were collected during the busiest 3-hour period

over 10 days. With these data, Song and Nelson (2014) fit parametric distributions to perform the nominal

experiment. Although these “real-world” data were actually generated from exponential distributions, they

did not take advantage of knowing the families of distributions or parameters. The fitted distributions

were exponentials, Weibulls, and Gammas. To obtain an estimator of the mean customer waiting time,

they performed 1,000 replications of a steady-state simulation adopting a replication-deletion experiment

design. The results showed that with 4 agents the 95% CI for mean customer waiting time was 0.99±0.04

seconds, which is clearly less than 1.5 seconds. However, as mentioned earlier, this nominal CI does not

take into account the input uncertainty. Therefore, to make a more robust management decision, one can

conduct a diagnostic experiment.

Given the budget N = 10,000 for the diagnostic experiment, (B = 80,R = 125) is chosen according

to (12) where δ = 0.01 is used. The diagnostic experiment gave γ̂ = 17.48, indicating that there is significant

input uncertainty in the simulation estimator from the nominal experiment. The heuristic adjustment (13)

expands the CI half width to 0.04×
√

1+17.482 ≈ 0.63. The resulting CI (0.36,1.62) contains the critical

value, 1.5 seconds.

To further investigate which input model contributes the most to input uncertainty, Table 1 shows the

estimated relative contributions and sample-size sensitivities of input models using (10). Notice that the

contributions are normalized to sum to 1 and sensitivities are scaled relative to the most sensitive input

model (i.e., order taking time). Based on these results it makes sense to collect additional order-taking

times to reduce input uncertainty, since it has the largest (most negative) sensitivity.

To see the effect of having additional observations, Song and Nelson (2014) conducted follow-

up/diagnostic experiments with increasing numbers of observations of order-taking time (the “observations”

are generated from an exponential distribution with mean 90 seconds). Figure 1 shows the point estimate

and adjusted CI. The trend in γ̂ , indicated by •, and the adjusted 95% CIs, are presented for different total

amounts of data. The number of simulation replications for the follow-up experiments and the number of

agents at the remote order-taking system remain n = 1,000 and 4, respectively. We observe that γ̂ decreases

as the amount of real-world data increases and it also becomes more clear that the adjusted CI includes 1.5.

Therefore, one might consider increasing the number of agents from 4 to 5, which would be a different

final decision than what would have been made by performing the nominal experiment only.
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Table 1: Scaled contribution and sample-size sensitivity results for the remote order taking system.

` Input data m` Average Contribution Sensitivity

1 Interarrival 1 351 307.0 0.014 -0.007

2 Interarrival 2 153 701.3 0.011 -0.012

3 Interarrival 3 421 256.1 0.021 -0.008

4 Interarrival 4 261 413.0 0.008 -0.005

5 Interarrival 5 342 308.9 0.018 -0.008

6 Interarrival 6 354 304.4 0.006 -0.003

7 Interarrival 7 472 228.5 0.006 -0.002

8 Order taking 150 84.8 0.914 -1.000

9 Moving 70 5.4 0.003 -0.006
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Figure 1: The adjusted confidence interval for expected customer waiting time along with γ̂ (indicated by

•) for different real-world sample sizes for the order-taking time.

5 CONCLUSIONS

In this tutorial, we described the input uncertainty problem and investigated different measures of input

uncertainty. See Barton (2012) for a more comprehensive list of the relevant literature. We put particular

emphasis on contribution and sensitivity measures proposed by Song and Nelson (2014) that can be used

to decide from which input processes to collect more data. While useful, challenges arise when we have

multivariate input models where two or more input random variables are correlated; see Biller and Corlu

(2011). Also, questions remain as to how to quantify input uncertainty when we have time series input

models or input model parameters that vary over time (e.g., a non-homogeneous Poisson process).

Although input uncertainty quantification for point estimation has been an active area of research,

little has been done on the implications of input uncertainty for other analysis problems. An exception is

Corlu and Biller (2013) who consider a subset selection problem in the presence of input uncertainty. We

expect that many “solved” problems in stochastic simulation output analysis will be revisited taking input

uncertainty into account.
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