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ABSTRACT

Revenue management (RM) theory and practice frequently rely on simulation modeling. Simulations are
employed to evaluate new methods and algorithms, to support decisions under uncertainty and complexity,
and to train RM analysts. To be useful in practice, simulations have to be validated. To enable this, they
are calibrated: model parameters are adjusted to create empirically valid results. This paper presents two
novel approaches, in which genetic algorithms (GA) contribute to calibrating RM simulations. The GA
emulate analyst influences and iteratively adjust demand parameters. In the first case, GA directly model
analysts, setting influences and learning from the resulting performance. In the second case, a GA adjusts
demand input parameters, aiming for the best fit between emergent simulation results and empirical revenue
management indicators. We present promising numerical results for both approaches. In discussing these
results, we also take a broader view on calibrating agent-based simulations.

1 INTRODUCTION

Revenue management (RM) aims to channel demand to maximize overall revenue. The concept assumes
a perishable product, fixed capacity, low marginal cost, and distinct demand segments. Automated RM
systems forecast expected demand from historical sales data and use this forecast to calculate the optimal
availability of product-price-combinations. State of the art RM models account for customer choice and
aim to optimally exploit customers’ willingness to pay. An overview of application areas is provided e.g.
in Cleophas et al. (2011), mathematical methods of RM are surveyed e.g. in Talluri and Ryzin (2006).
By combining data analysis, forecasting, and optimization, revenue management represents a picture-book
example of business analytics (Davenport and Harris 2013).

Simulation modeling allows RM researchers and practitioners to analyze the potential consequences
of new strategies: Immediate real-world implementation would require considerable effort and pose a
major financial risk. Simulation experiments enable trial-runs under deliberately varied market conditions.
Simulations can model stochastic demand and long-term effects of feedback loops that are part of the RM
process. Finally, RM performance is difficult to analyze empirically. It is over-determined by economic
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conditions, competitor actions, and the company’s own efforts. In a simulation that provides ceteris paribus
conditions, any change in RM performance is caused by a corresponding change in RM strategy.

Agent-based simulations are especially well-suited to explicitely model the interactions of suppliers
and customers. These interactions are the focus of revenue management. Furthermore, in practice, RM is
not fully automated but is complemented by human analysts (Zeni 2003). Analysts supplement the demand
forecast as well as the parameters and the results of the optimization. They can also be modeled as agents.

To be applicable for decision support, simulations have to be validated – researchers have to show
that simulation results fit empirical observations. Calibrating model parameters to achieve this fit is a
pre-condition for successful validation.

However, calibrating agent-based simulations for decision support is difficult. Agents’ decision rules
have to be explicitly formulated and parameterized (Gilbert 2008). Direct information such the decision
rules for customers and RM analysts is rarely available. This calls for indirect calibration: Setting input
parameters, processing experiments, validating the results by comparing them to empirical data, and adjusting
the parameters until validity is achieved. Indirectly calibrating RM simulations can be both time-consuming
and frustrating as these steps have to be repeated iteratively. Researchers aiming to manually calibrate
the simulation have to wait until an experiment was processed, consider the output, and decide on how to
adjust the input. As the relationship between input and output is not straight-forward in an agent-based
simulation, it is not easy to predict which adjustments will increase validity.

The required effort and the repetitive nature render the task of manual, indirect calibration unwieldy and
unpopular. To avoid the necessity of extensive indirect calibration, significantly simplified models could
reduce the number of parameters. However, such models are not capable of modeling the emergent results
observable when simulating individual agents interacting. At the same time, employing complex simulation
models while neglecting the effort of calibration endangers the validity and thereby trustworthiness of RM
simulations. When they are not rigorously calibrated and validated, simulations are neither a reliable
research method nor a reliable tool for practical decision support; they remain toys (North and Macal 2007).

To facilitate and enhance calibration through automation, this contribution proposes the use of genetic
algorithms (GA). We suggest representing a particular set of input parameters by the genetic code of a
GA and phrasing the genetic performance function as one of validity or RM performance. Thereby, we
automatize the gradual evolution of better input parametrizations. Setting up the algorithms and monitoring
this evolution still require manual attention from researchers. Nevertheless, the automation of large parts
of the calibration process renders it more efficient and thereby less likely to be avoided or neglected.

The next section briefly summarizes relevant research on simulation modeling in revenue management
and on genetic algorithms in simulation modeling. An approach to employing genetic algorithms to
model analyst influences is detailed in Section 3; an approach to employing genetic algorithms to adjust
demand parameters is detailed in Section 4. For both approaches, we present numerical results based on
the simulation system REMATE. We discuss the results in the larger context of calibrating agent-based
simulations for different business analytics problems in Section 5.

2 STATE OF THE ART

This state of the art summarizes research on simulation modeling for revenue management and on genetic
algorithms in simulation modeling. In both regards, we pay particular attention to agent-based modeling.

2.1 Simulation Modeling for Revenue Management

Simulation modeling plays a crucial role in RM theory and practice. Simulations can be used to evaluate
new forecast methods and optimization algorithms. For example, Cleophas, Frank, and Kliewer (2009) uses
simulations to evaluate forecast performance. They can support decisions under uncertainty by modeling
market aspects that are not included in the automated system, such as competitive pricing (Isler and Imhof
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2008). Through repeated what-if analyses as well as through participative game play, they can be used to
teach concepts of RM (Cleophas 2012b).

Several simulation systems designed to support RM research and practice exist. Creating a simulation
system to evaluate the success of an RM method is established research practice (Frank, Friedemann, and
Schröder 2008). PODS (Passenger Origin Destination Simulator) has been developed in a cooperation of
Boeing and MIT since the 1990s (Hopperstad 1995). PODS supported studies on topics ranging from the
evaluation of demand estimation methods (Zickus 1998) to effects of low-fare competition for network
carriers (Belobaba and Wilson 1997). PODS presentations frequently emphasize the challenge presented
by calibrating new and realistic network scenarios.

The simulation system used in this paper, REMATE (Revenue Management Training for Experts),
has been developed at Deutsche Lufthansa in cooperation with several German universities since 2009.
REMATE models airlines and customers as agents interacting in dynamic markets (Cleophas 2012a). The
simulation employs a stochastic, discrete-event-based paradigm and implements state-of-the-art algorithms
for RM forecasting and optimization to model airline RM. Customers are modeled as maximizing their
utility according to rational choice and request tickets following a Poisson distribution. The stochastic
variation of parameters such as demand volume and willingness to pay is calibrated on empirical data.
With regard to REMATE, too, calibration has been identified as a complex task. Individual instances of
RM simulation modeling are described in many research contributions:

Agent-based simulation models allows to explicitely model the dynamic interactions of customers and
suppliers and to gauge implications of emergent phenomena (Gilbert 2008): Both companies implementing
RM and customers seeking the best alternative at the lowest price can be modeled as agents (Cleophas
2012c). By allowing agents to learn and communicate, complex aspects of real markets that cannot be
efficiently included in analytical models of mathematical optimization can be represented in the simulation.

As described in Frank, Friedemann, and Schröder (2008), several challenges arise when employing
simulations to support revenue management research. First of all, software verification has to ensure
that market model and RM algorithms are correctly implemented. There exists extensive research on the
verification of simulation systems; Sargent (2013) lists relevant aspects of this topic.

Demand calibration poses a particular challenge for RM simulations, as information about the true
characteristics of demand is difficult to gauge even for the real-world systems. Such information is usually
estimated based on sales, which present a censored view: Sales data only list customers who are willing to
buy at the price offered at the time of their request (Weatherford and Pölt 2002). Customers who choose
to abstain or to accept a competing offer are not reported by sales data. Furthermore, the decision rules
underlying sales are not transparent.

Representing RM analysts in simulations is another unsolved problem. The need for such analysts is
frequently acknowledged: (Zeni 2003) emphasize the role of analysts in supplementing the demand forecast.
(Isler and Imhof 2008) stress the role of RM analysts in dealing with competitive markets. Commercial
RM systems include interfaces that enable analysts to influence the forecast or the optimization results.
To our knowledge, PODS does not explicitly model RM analysts. While REMATE allows manual analyst
influences, it does not represent analysts as intelligent agents.

This contribution presents an approach employing GAs to model analyst influences and to calibrate
demand for RM simulations. As the remainder of this section shows, GAs are a fitting tool for this task
and one that is already established in the domain of simulation modeling.

2.2 Genetic Algorithms in Simulation Modeling

Genetic algorithms (GA) are a meta-heuristic inspired by nature (Simon 2013): A population of instances,
each implementing a different solution as an individual ”genetic code”, is initialized and evaluated on
a particular problem instance. The best performers are cross-bred to generate new instances. Mutations
introduce random variations to avoid the algorithm converging on locally optimal solutions. The algorithm
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stops after a given number of iterations or when a steady state has been reached, in which solution
performance no longer changes.

GA are well-suited to solve complex combinatorial optimization problems. Application areas range
from lot sizing (Goren, Tunali, and Jans 2010) over resource allocation (Hegazy 1999) to pricing (Macı́as
and Guitart 2011). In solving optimization problems, GAs are frequently cited as a type of ”simulation
optimization” (Paul and Chanev 1998): To identify the best solution using a GA, a simulation of the
problem is required that evaluates the performance of alternatives.

Predictive analytics and model fitting can also be phrased as optimization problems: These aim to
minimize the distance between a model’s output and training or validation data. Accordingly, predictive
analytics and model fitting, too, are application areas for GAs. For example, (Sarimveis and Bafas 2003)
formulates a prediction problem as a non-linear optimization model and applies a GA to develop solutions
online. Models that can be fit using GA range from abstract mathematical curves (Lybanon and Messa Jr
1999), to agent-based models (Midgley, Marks, and Kunchamwar 2007). In the latter example, the authors
consider ”destructive validation”, elaborating on an idea phrased in (Miller 1998). However, if GA can be
applied to search for invalid parametrizations, it appears intuitive that they can also be applied to search
for valid parametrizations. This contribution presents an approach to employ GA in such a way that it
supports airline revenue management simulations.

As described in Gilbert (2008), GAs can be employed to model intelligent agents, too: The evaluation
of solutions and crossbreeding of successful candidates serves as a model of learning. Thereby, a GA can
model an individual or a population attempting to solve a problem, such as utility maximization (Chen
and Huang 2007). Employing genetic algorithms to model RM analysts represents a novel variant of this
concept. In this context, GA are applied to improve revenue performance beyond the level of automated
systems given imperfect forecast performance.

3 CALIBRATING ANALYST INFLUENCES

RM parameters define the availability of product-and-price-combinations. They can be influenced through
relative or absolute changes by analysts. Analyst influences are observable and stored in databases. However,
there exists no possibility to evaluate their impact. No situation with exactly the same demand yet without
these influences can be observed. Therefore, we cannot empirically calculate and evaluate the effect of
analyst influences. For this purpose, simulation modeling is required. This section describes a novel
approach to calibrate influences set by RM analysts.

3.1 Approach

Our RM model is defined through three dimensions: supply, demand and RM methods. The parameters of
the model define a time-dependent availability over the sales horizon. The sales horizon considered starts
360 days before departure and ends at the day of departure. To divide the booking horizon in discrete
parts, we define a set D of time slices d. In the following we only use these discrete time slices to define
influences. To model supply, we have to define a set F of flights f and a set C of compartments c used on
each flight. F uniquely defines a set J of origin-destination (OD) combinations j. Combining an OD with
a specific departure time defines a set O of origin-destination-itineraries (ODI) o. Let B be a set of booking
classes b used on each ODI and po

b ∈ P the corresponding price for each ODI-booking class combination.
The demand side is defined by a set Y =

{
Yj, j ∈ J

}
, where Yj defines a set of customers y j for OD j.

In the RM model, two availability parameters can be influenced by analysts. The first availability
parameter e f ,c,d is defined per flight, compartment and time before departure. E denotes the set of all
such parameters within a simulation scenario. e f ,c,d models the opportunity costs of a unit of capacity for
the airline on this ( f ,c,d)-combination. We call influences targeting this parameter supply-side-influences
(SI). Let To,b be the set of parameters per ODI and booking class for the second availability parameter and
T the set of all parameters used in a scenario. to,b,d defines the specific parameter for an itinerary, booking
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class and time before departure combination. This parameter represents the marginal revenue for a single
customer. We call influences targeting this parameter demand-side-influences (DI). Let sk = {ik,l ∈ R|l ∈ Ik}
be a strategy consisting of influences and S the index-set for k. We use the values ik,l to manipulate the
parameters calculated by the RM system. In terms of GAs, we subsequently refer to these strategies as
”individuals” and to single influences as ”genes”.

Initialization: For the approach described in this section, we initialize the values of all influences
by drawing uniformly distributed random values from a defined interval. There exist alternative ways to
initialize individuals, for example setting the initial values manually.

Supply-side-influences: To define the range of randomly drawn initial influences per compartment and
flight, we calculate the average net price pc, f for all booking classes b ∈ Bc, f within a compartment-flight
combination (c, f ). We denote with b̂c the number of booking classes within a specific compartment c.
Since prices are defined per ODI, we have to slightly transform all corresponding prices to calculate

pc, f =
1
b̂c
· ∑

b∈Bc, f

p f
b .

In a next step, we define the range from which the random initial values pc, f are drawn, depending on
a parameter r1 ∈ [0,1]. This range is used to define the initial value e f ,c,d as a realization of X (r1) ∼
U
([
−r1 · pc, f ,r1 · pc, f

])
.

Demand-side-influences: To define initial values per itinerary and class, we calculate the mean to,b of
all parameter values to,b,d within an ODI-class combination (o,b)

to,b =
∑d∈D to,b,d
|To,b|

.

In a next step, we define the range from which the initial random values to,b are drawn. This range
depends on a parameter r2 ∈ [0,1] and is used to define a random variable X (r2)∼U ([−r2 · to,b,r2 · to,b]).
Accordingly the initial value tb,o is defined as a realization of X (r2).

We based the formulation of our GA on the structure described in (Yu and Gen 2010). A generation
consists of a set A of nA parent individuals, from which a mating pool M with nM individuals and subsequently
a population P consisting of nP individuals is derived. The individuals within the mating pool are a subset
of the parents that form the basis for creating the new population. Based on individual fitness values, we
select a subset of nA individuals from the population as the parents for the following generation.

Calculating the fitness value: A frequent objective pursued by RM analysts, as by automated RM
systems, is revenue maximization. Therefore, we define the fitness value vk as the revenue for individual
sk. According to this definition, our aim is to maximize the fitness value.

Constructing the mating pool: Before breeding a new population, we construct a mating pool M ⊆ A
by imitating natural selection according to (Yu and Gen 2010). We draw individuals from the set of parents
based on relative fitness: Individuals with a higher fitness value a more likely selected for the mating pool.
Denote by

ρk =
vk

∑i∈A vi
∈ [0,1]

the probability for individual sk ∈ A to be selected. According to those probabilities we draw nM individuals
where we allow multiple drawings of the same individual. So it is possible that the same individual is
selected several times for the mating pool. For our approach, we use a slightly different calculation of the
relative fitness: Before calculating the new probability ρ̂k we transform the fitness-value of the nA parents
with a dynamically chosen parameter r ∈ R according to v̂k = vk− r. The transformed probability ρ̂k of
individual sk to be selected as mate is then calculated as

ρ̂k =
v̂k

∑i∈A v̂i
∈ [0,1] .
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This transformation appears useful due to the tight and large fitness values of the nA parents. The resulting
probabilities create a quasi-uniform distribution. The above mentioned transformation results in better
distributed probabilities and guarantees a greater amount of variability within the selection process.

Crossovers and mutations: Creating a new population is based upon crossover recombination tech-
niques for real numbers following the framework outlined in Yu and Gen (2010) and Simon (2013). After
recombining two individuals from the mating pool, mutation guarantees a level of variation. Mutations
are realized independently for each influence included in the newly created individual by adding a random
factor m. To this end, we draw m from a normal distribution with mean 0 and standard deviation σ ∈ R.

The simplest way to create new individuals is to select some of the best individuals from the parent
generation and mutate every gene with m. We call this method Parent-Mutation. For all influences ik,l
with l ∈ Ik of the new individual s∗k we calculate the new value i∗k,l as i∗k,l = ik,l +m. Additionally, we use
multiple crossover methods to provide sufficient variation and to address the specific characteristics of an
RM simulation. In the following, we do not use any preferences for the location of the offspring in our
crossover methods. Our basic crossover method is the general Hoelder-mean

Mp (s1, . . . ,sn) =

(
1
n

n

∑
i=1

sp
i

)1/p

,

which will be used with different parameters p to define multiple crossovers. First we implement the
arithmetic crossover. For all influences of new individual s∗k we calculate the new value i∗k,l as the arithmetic
mean of all individuals, using the general Hoelder-mean with p = 1. The harmonic crossover is the second
technique. For all influences of new individual s∗k we calculate the new value i∗k,l as the harmonic mean of
all individuals, using the Hoelder-mean with p =−1. The blend crossover is adapted from (Yu and Gen
2010). For all influences i∗k,l with l ∈ Ik of new individual s∗k , the blend crossover (BLX) is defined for two
individuals s1,s2 (Yu and Gen 2010). We define a uniform distributed random variable

XBLX ∼U ([i1,l−α |i1,l− i2,l| , i2,l +α |i1,l− i2,l|]) , i1,l < i2,l.

The new influence i∗k,l is calculated as realization of X . The blend crossover is similar to the arithmetic
crossover. All offspring are represented as a linear combination of the two parents. To increase variation,
we expand the range to allow values outside the line connecting the two parents. The additional amount
of range depending on the distance between s1 and s2 is defined by a parameter α ∈ [0,1].

Additionally, we define situation-specific crossover methods. These crossovers depend on the special
scenario characteristics. For example, for a scenario including substitutable itineraries, the crossover method
can exchange parts of the strategy between the itineraries. For scenarios including only a single flight and
multiple influence types we defined a SI-DI crossover. Here the influences i1,l and i2,l of two individuals
are used to calculate a new individual in the following way

i∗k,l =

{
i1,l if ik,l is a demand-side influence,

i2,l if ik,l is a supply-side influence.

3.2 Results

To demonstrate the potential of our approach, this section provides numerical results based on a simulation
study. The scenario considered includes a single itinerary, defined by one direct flight. On this itinerary,
12 booking classes are offered in two compartments at one constant price per class. The implemented
RM algorithms were adapted from Fiig et al. (2009). Demand parameters were calibrated using empirical
flight data.

Each experiment includes 100 simulation runs: The first 50 runs are used to initialize the RM algorithms,
from run 51 on, influences are applied. When calculating the fitness value, we average revenue resulting
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from runs 51-100, reflecting the part of the experiment affected by analyst influences. The GA parameters
generated for the simulation study are defined as follows: We use |D| = 13 time slices, a generation as
well as the mating pool consists of nA = nM = 10 parent-individuals. According to the number of crossover
and mutation methods used, a population contains nP = 27 individuals. In preliminary studies, this number
resulted in an appropriate balance between run-time and positive convergence effects. We set r1 = 0.3,
r2 = 0.3, α = 0.5, and r dynamically equal to the fitness value of the 15th individual of the current population.
For drawing the mutation factor m, we propose σ = 0.05 in our simulation setup.

To create the GA population, we apply all crossover techniques presented in the previous section. Within
the first 40 generations, parent mutations perform exceedingly well when evaluating the average rank of
all individuals created across generations. BLX and SI-DI crossover show a slightly poorer performance;
harmonic crossover comes in last. When evaluating the minimum rank achieved, SI-DI crossover achieves
slightly superior results. The parent mutation precisely exhibits the behavior expected from experiences
gathered with manual influence setting: Small changes for all influences can lead to large result deterioration.
Rank variance for the set of individuals created by the parent mutation method is high; compared to all
other crossover techniques, ranks are not stable across generations.

To benchmark the automated setting of analyst influences using GA, we compare the results to reference
values achieved by using a ”psychic” forecast. For each simulation run, this forecast is created based on
knowledge of the generated demand: The actual amount of customers willing to buy particular booking
classes is predicted. We define a non-deterministic expected achievable value (EAV) that can be calculated
based on an averaged psychic forecast over all runs. Obviously, it is possible to beat the EAV because
it does not represent the deterministic optimum for this scenario. Additionally, we calculate a base case
(BC) by executing the simulation given a realistic forecast and no analyst influences.

Figure 1: Fitness values for the ten best individuals over all generations for calibrating user influences.

Figure 1 shows box plots representing the fitness values of the 10 best-performing individuals of each
generation. While the y-axis displays fitness in terms of achieved revenue as a monetary value, the x-axis
displays the generation considered. Each box plot consists of a box with a band inside, lines extending
vertically, called whiskers, and in some cases single dots above or underneath the whiskers. The bottom
of the box represents the first quartile of the underlying data, the top the third quartile. The horizontal
line inside the box represents the median, while the end of the whiskers include all values that are within
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1.5 · IQR of the upper respectively lower quartile, following the definition of Tukey (Tukey 1977). Any data
not included in the range of the whiskers is plotted as an outlier, symbolized by single dots. The horizontal
black line over the whole figure marks the fitness value of the best individual over all generations (MAX).
The EAV is displayed by the dotted horizontal line, while the BC is displayed as dashed line.

Figure 1 illustrates a convergence of fitness indicators over the generations. Within the first 10
generations, revenue can be increased by about 8%, whereas over the last 10 generations, the incremental
increase is about 3%. In generation 39, the GA could even find a solution which exceeds the EAV.
Additionally, the variance within a generation decreases over the generations. Considering the individuals’
ranks and the corresponding crossover-methods reveals that individuals created by the situation-specific
crossover SI-DI and the parent-mutation are most likely to be among the top performers.

3.3 Discussion

From our experience, manually calibrating a complex simulation is difficult and requires considerable
effort and time. In particular, big alterations in validation indicators frequently result from small parameter
changes. With this in mind, we were surprised by the high performance and fast convergence of the algorithm
presented here. The performance within the first 15 generations shows that the GA provides a suitable
way to calibrate user influences. Especially the fast convergence behavior compared to manual approaches
is astonishing. To avoid an over-fitting the model and parameters were designed using state-of-the-art
approaches before the data used for the numerical approaches was known.

Our expectation of large alterations from small changes could be confirmed by analyzing the different
crossover methods individually. However, the overall convergence of top performing individual solutions
represented by Figure 1, contradicts this expectation. This can be explained by the combination of a variety
of crossover methods. Especially the SI-DI crossover exceeds our expectations. We conclude that focusing
on the structure of the problem while designing a GA for calibration is extremely helpful. For further
analysis, the algorithm should be tested on larger scenarios. Here, we expect an even higher performance
boost in contrast to manual calibration.

4 CALIBRATING DEMAND

When using simulations to support RM decisions, simulation results have to be empirically validated.
Realistically replicating RM methods and supply appear to be merely a problem of data collection and
verification. Estimating demand parameters from real data to parametrize scenarios, however, constitutes a
greater challenge. This section introduces an approach that uses a GA to automatically adapt demand input
parameters. The aim is to generate simulation results that fit empirical booking-data as well as possible.

4.1 Approach

In the simulation model used to generate numerical results, customer types are used as templates to
stochastically draw individual customers. These customer types are defined by a set of mean parameters
and distributions. Calibrating demand means adjusting these parameters. The objective is to generate
customers whose interaction with the RM system results in bookings fitting the empirical indicators. For
this purpose, we modify the approach presented in Section 3.

We define an individual sk,k ∈ S as a uniquely defined set T of nT customer types and a parameter
dk(c)∈ [0,1] describing the relative share of type c. Demand for an individual is defined by dk = ∑

nT
c=1 dk(c).

The number of customer types, the supply, and RM algorithms are kept constant during calibration.
Let L be the set of parameters within an individual. A single customer type is defined by n different

parameters. From this follows that the number of parameters defining an individual can be calculated as
|L| = nt ·n+nt

2. Based on the simulation model, for all parameters ik,l within a customer type, it holds
that ik,l ∈ R+ \∞. The values have to be chosen in intervals such as ik,l ∈

[
0, imax

l

]
for all parameters.
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Initialization: As mentioned in Section 3, there exist several alternative ways to parametrize the first
generation of GA individuals. For demand calibration, we use parameters that were manually generated
during earlier calibration attempts. We mutate the parameters to create a basic variation within the first
generation. The mutation factor for each parameter ik,l is drawn from a normally distributed random variable

X ∼ N
(

ik,l,max
{

0.1,
ik,l
10

})
.

Mutations and crossover: The crossover and mutation techniques used in this approach follow those
described in Section 3. Since ik,l ≥ 0,∀l ∈ L, we can introduce the geometric mean as an additional crossover
method. Besides, the situation-specific crossover has to be modified to fit the new requirements. We use a
slightly modified parent-mutation method, too, as it is defined for initialization. The geometric crossover
will be used for all influences ik,l with l ∈ Ik of new individual s∗k . We calculate the new value i∗k,l using
the Hoelder-mean with p→ 0.

Situation-specific crossover: The idea behind this crossover technique is to exploit the specific structure
of the currently examined demand situation. Let s1,s2 denote two individuals. We then define the following
crossover to calculate the parameters i∗k,l of our new individual s∗k :

i∗k,l =

{
i1,l if ik,l corresponds to customer type t ∈ T1,

i2,l if ik,l corresponds to customer type t ∈ T2,

where we define the set T1 :=
{

t ∈ T | t ≤
⌊ nt

2

⌋}
and T2 :=

{
t ∈ T | t ≥

⌈ nt
2

⌉}
.

Calculating the fitness value: The objective of demand calibration is to fit customer types so that
generated customers cause bookings that fit an empirically given ideal. Manual calibration compares the
number of final bookings per booking class b, flight f and individual sk with a given target value. This
requires the absolute number of bookings for each booking class-flight combination ẋb, f and the number
of simulation bookings xb, f ,k for each individual sk. The fitness value for individual sk is then calculated as

vk = ∑
f∈F

∑
b∈B

∣∣ẋb, f ,k− xb, f
∣∣.

According to this definition the objective is to minimize the fitness value.

4.2 Results

The results presented here are based on the scenario introduced in Section 3 using 50 simulation runs. The
demand is defined by nt = 6 customer types. The GA modifies parameters defining the willingness-to-pay
and the customer-choice function; this affects n = 27 parameters per customer type leading to an overall
number of 162 parameters per scenario. The RM system relies on the psychic forecast that was used to
generate the EAV presented in Section 3. We set na = nm = 10. According to the additionally introduced
crossover methods the population size increases to np = 32 individuals. For this approach we do not
transform the fitness value during the creation of the mating pool, as the magnitude of the values is smaller.

Since for all parameters ik,l, l ∈ L, defining customer types holds that ik,l ≥ 0, we can use all crossover
methods for this approach, including the geometric crossover. For the BLX crossover we set α = 0.5.
Parent mutations and arithmetic crossover perform exceedingly well when evaluating the average rank of
all individuals created across all generations. Geometric, harmonic, and customer crossover show a slightly
poorer performance; BLX crossover comes in last. Evaluating the minimum rank achieved by the different
crossover methods, BLX and parent mutations achieves slightly poorer results than all other methods.
Looking at the variance within the achieved ranks the parent mutation shows exactly the behavior that
would be expected from experiences gathered with manual influence setting. A good performance is shown
by customer crossover, the result deterioration is half as large as from the other crossover techniques.
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Figure 2: Fitness values for the ten best individuals over all generations for calibrating demand.

We calculate the fitness value using averaged bookings per booking class, flight and individual xb, f ,k.
As target values ẋb, f , we use empirical booking data. Figure 2 shows GA performance in terms of box
plots. Every box plot represents the ten best-performing individuals of a generation and their fitness values.
The x-axis of the graph indicates the generation, while the y-axis shows the fitness value. The box plots
follow the description given in Section 3. Two reference cases are displayed as horizontal lines within the
graph: The base case (BC), indicated by a dashed line, shows the fitness resulting from customer types
used for initialization. The perfect fit (PF), where the fitness value is 0, presents a lower bound. Note that
this lower bound is unrealistic as it is hardly feasible to achieve a perfect fit. The continuous horizontal
line marks the fitness value of the best individual across all generations (MIN).

4.3 Discussion

Compared to the results of Section 3, we observe both slower convergence and higher variance of individual
fitness within the generations. This can be explained by the substantially more complex objective function
and the high number of genes. To achieve improved convergence, modeling the mutation probability as a
variable factor appears promising.

The GA clearly outperformed manual calibration in terms of efficiency. We were not able to obtain
similar fitness values by manual calibration within such a short time: Calibrating the simulation using the
GA took about one week including the parametrization of the GA. Manual calibration of similarly sized
scenarios has required up to 10 weeks of dedicated work.

We were able to improve fitness values further by additional manual calibration of the fittest individual
obtained by the GA. This fact may be addressed through additional crossover methods, taking the structure
of the problem into account. For example, in the current implementation, we do not use information
describing for which booking classes the fit is particularly low. We could take this information into account
by introducing a crossover that mates an individual with high fitness in higher booking classes with an
individual with high fitness in lower booking classes. Here, an intelligent way to define which genes should
be incorporated into the new individual has to be found. Finally, a more sophisticated way to calculate the
fitness value could further improve GA performance. Using the sum of the squared deviations or another
definition incorporating situation specific details could lead to better convergence.
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5 CONCLUSION

This contribution first outlined the potential benefits of employing simulations for decision support in
revenue management. We highlighted the challenges of calibrating such simulations for empirical validation,
particular with regard to analyst influences and demand. To meet this challenge, we proposed the use of GAs
and introduced two novel approaches. In numerical experiments, we achieved promising results: The system
including GA-set analyst influences systematically outperformed a system lacking such influences. Demand
calibration using GA achieved an improved model fit and proved to be significantly more time-efficient
than manual calibration.

By introducing formal approaches and presenting numerical results, we were able to show that GAs
clearly are a versatile tool for calibrating agent-based simulations. This was demonstrated for the revenue
management domain, but can be expected to apply to other domains, as well. Indirectly calibrating
heterogeneous groups of agents is difficult and time-consuming; GAs offer a way of effectively and efficiently
automatizing large parts of this process. As mentioned in the respective sections, both approaches presented
here still hold potential for technical improvement and extension. Such a possible extension of our approach
could be the generalization to input data modeling methods.

Research on agent-based simulations in general requires further ideas for automated calibration. Such
methods would make simulation modeling as a rigorous method for the purpose of decision support easier to
implement. The possibility of rigorously validating simulations without excessive calibration effort would
make this tool even more applicable and popular across research domains.
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