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ABSTRACT

Spatial statistical models are of considerable practical and theoretical interest. However, there has been
little work on rare-event probability estimation for such models. In this paper we present a conditional
Monte Carlo algorithm for the estimation of the probability that random graphs related to Bernoulli and
continuum percolation are connected. Numerical results are presented showing that the conditional Monte
Carlo estimators significantly outperform the crude simulation estimators.

1 INTRODUCTION

Random graph models are of significant practical importance; see, e.g., Sahini and Sahimi 1994. The
connectivity properties of such models are of considerable interest, for example in network reliability
(Gertsbakh and Shpungin 2010, Colbourn 1987), percolation theory (Bollobás and Riordan 2006) and
material design (Stenzel, Koster, Thiedmann, Oosterhout, Janssen, and Schmidt 2012). In percolation
theory the focus is on infinite random graph models, which are theoretically more tractable. However
physical systems of interest are necessarily finite and this suggests the use of finite random graph models
in applications.

This paper studies the following problem: consider a connected ‘base’ graph G, and retain vertices
independently with probability p. If we use this random vertex subset to construct the induced subgraph,
what is the probability that the induced subgraph is connected? Calculating such a probability exactly for
a finite but large random graph model constitutes a difficult counting problem. In the network reliability
setting this problem has been proved to be #P-complete (Colbourn 1987). Given the difficulties with exact
computation we naturally turn to Monte Carlo methods.

However, crude Monte Carlo techniques can be cumbersome because connectivity is often a rare event
and the problem becomes one of rare-event simulation. This is similar to the situation in network reliability,
which also involves rare-event simulation; however in that case disconnection is the rare event, rather
than connection. Typical methods for efficient rare event simulation include splitting (Kahn and Harris
1951, Glasserman, Heidelberger, Shahabuddin, and Zajic 1999, Garvels, van Ommeren, and Kroese 2002,
L’Ecuyer, Demers, and Tuffin 2006, Botev and Kroese 2012), importance sampling (Glynn and Iglehart
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1989, Asmussen and Rubinstein 1995) and conditional Monte Carlo (Asmussen and Glynn 2007). See
Rubinstein and Kroese 2008 or Kroese, Taimre, and Botev 2011 for an overview of these techniques.

The connectivity criterion we use has previously been considered in network reliability, where it is
known as residual network connectivity (Sutner, Satyanarayana, and Suffel 1991, Elmallah 1992, Colbourn,
Satyanarayana, Suffel, and Sutner 1993, Stivaros and Sutner 1997, Chernyak 2004). It is important to note
that residual network connectivity is a non-monotone criterion. That is, the addition of more vertices to
the observed random graph may add additional connected components to the graph, making an initially
connected graph disconnected. Similarly, the removal of vertices from an observed random graph may
remove all but one connected component, causing an initially disconnected graph to become connected.
In these non-monotone cases techniques based on permutation Monte Carlo (Elperin, Gertsbakh, and
Lomonosov 1991, Lomonosov 1994, Hui, Bean, Kraetzl, and Kroese 2005) are difficult to apply.

Random geometric graphs are the continuous analog of random graph models. The defining property
of these models is that the vertices of the graph are the points of a point process on a bounded sampling
window. Although these models can be viewed as strictly combinatoric, the spatial structure of the model
remains important. Even in the infinite domain case very little has been proved about the connectivity
properties of such models and related critical exponents (Brereton, Hirsch, Kroese, and Schmidt 2014).
This has lead to the widespread use of Monte Carlo methods to estimate unknown percolation thresholds
(Quintanilla and Ziff 2007, Li and Östling 2013, Torquato and Jiao 2012). We show that the Monte Carlo
estimate we propose can be applied to the Gilbert disk model with minimal change.

The rest of this paper is organized as follows. Section 2 describes the Bernoulli site percolation model
on a finite lattice and the Gilbert disk model. Section 3 outlines the conditional Monte Carlo estimator
for the Bernoulli site percolation model. Section 4 describes the adaptation of the conditional Monte
Carlo estimator in Section 3 to the Gilbert disk model. Section 5 gives numerical results showing that
the conditional Monte Carlo estimators perform significantly better than the crude simulation estimators.
Appendix A describes the use of the power diagram to compute the area of the union of closed balls in
R2. This material is used in Section 4.

2 PRELIMINARIES

Let G= (V,E) be a finite connected graph. For any vertex v the degree of v is the number of edges incident
to v, and we write deg(v). The maximum degree of any vertex in G is denoted by ∆(G). The cardinality of
a finite set S is denoted by |S|. If S is an uncountable subset of Rd then |S| denotes instead the Lebesgue
measure of the set.

Take some p ∈ (0,1) and let q = 1− p. Let X = {Xv}v∈V be a collection of independent and identically
distributed (iid) random variables with Xv ∼ Ber (p). The random variable Xv is the activation state of
vertex v. If Xv = 1 then v is said to be activated, otherwise it is said to be deactivated. Let V (X) denote
the set of activated vertices, that is

V (X) = {v ∈ V | Xv = 1} .

The random subset V (X) induces a random subgraph G = G(X) = (V (X) ,E (X)), where

E = E (X) = {(v1,v2) ∈ E | v1,v2 ∈V (X)} .

We typically omit the dependence of these random variables on X . We denote the collection of possible
induced subgraphs of G by P (G). We will write the density of G with respect to counting measure on
P (G) as fG (g; p). For g1,g2 ∈P (G) induced by vertex subsets V1,V2 ⊆ V we will write g1∩g2 for the
subgraph induced by the vertex set V1∩V2.

Models of this form for G are commonly known as discrete site percolation models, although G is
often implicitly assumed to be infinite. We will also refer to the case where G is an arbitrary finite graph
as being a discrete site percolation model. As vertices are retained independently with some probability p
these models are said to be Bernoulli site percolation models.
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Let C⊆ V be a subset of vertices such that the subgraph induced by the subset is connected. Define
∂C to be the boundary vertices of C in G. That is,

∂C= {v1 ∈ V | v1 /∈ C,{v1,v2} ∈ E for some v2 ∈ C} .

Define the connectivity probability `(G, p) = P(G is connected ). If we add vertices to G while
maintaining a bound on the maximum vertex degree ∆(G), then `(G, p) will decay exponentially fast in
the number of vertices. See Weichenberg, Chan, and Medard 2004 for results bounding the connectivity
probability in the related network reliability setting. The idea of prime failure events used in Weichenberg,
Chan, and Medard 2004 applies equally to our site-percolation model. Exponential decay means in particular
that `(G, p) will be small for large base graphs G when ∆(G) is small. Note that the whole of G, any
single-vertex subgraph and the empty graph are all connected, so situations with p close to 0 or 1 are
trivial.

The defining property of random geometric graphs is that their vertices are the points of a spatial
point process on some bounded Borel set R ⊆ Rd . Edges are added between vertices according to some
probabilistic or deterministic rule. One possibility is to connect each vertex to the k closest other vertices;
another is to connect a pair of vertices with some probability that depends on the Euclidean distance
between them.

We focus on the standard Gilbert disk model, a special case of the Boolean model (Chiu, Stoyan,
Kendall, and Mecke 2013). In this model the point process ξ that generates the vertices of the graph is
a homogeneous Poisson point process on R with some intensity λ > 0, and any pair of vertices that are
closer than some fixed distance r are connected by an edge. We will denote this model by Ggeo (R,λ ,r),
generally abbreviated to Ggeo. The open ball of radius r around a point x ∈Rd will be denoted by B(x,r).
We will consider this model in the specific case of d = 2.

3 CONDITIONAL MONTE CARLO FOR DISCRETE PERCOLATION

If
{

X (i)
}∞

i=1 are iid copies of X then the crude simulation estimator is

̂̀crude (G, p) =
1
n

n

∑
i=1

I
{

G
(

X (i)
)

is connected
}
, (1)

where n≥ 1 is an arbitrary fixed integer and I{A} denotes the indicator function of an event A. Our aim is
to find an estimator that has better asymptotic properties than the crude simulation estimator, as the number
of vertices in G is allowed to increase.

We can construct a simple conditional Monte Carlo estimator based on knowledge of a single connected
component. After this connected component has been generated it is no longer necessary to simulate the
states of the remaining vertices, as the connectivity probability can be computed exactly; it is the probability
that the vertices not already simulated are all deactivated. See Equation (2) below for details. By the total
variance formula this gives an estimate with smaller variance than the crude estimator given in Equation
(1). See Billingsley 1995 for further details.

The idea of the algorithm is as follows. Select vertices randomly without replacement and generate Xv
according to the Ber (p) distribution. Continue this process until Xv = 1, meaning that the selected vertex
is activated, or until every vertex has been considered. The set of deactivated vertices is denoted by Vdeact,
with both Vdeact = /0 and Vdeact = V being possible.

If an activated vertex is generated denote it by ω . We can then simulate the entire connected component
Cact for ω by performing a depth-first search of V\Vdeact. For every visited vertex v the random variable
Xv ∼ Ber (p) is simulated. If Xv = 1 then v is activated and the search continues to the neighbors of
v. If no activated vertex was originally found, set Cact = /0. The random object we will condition on is
ZBer = (Vdeact,Cact). It will be convenient to define Ndeact = |Vdeact|. Note that the random variables defined
in this section are not just functions of the binary vector X .
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The process of generating ZBer is illustrated in Figure 1. In this case Vdeact contains the vertices v1,v2
and v3, all of which were generated to be deactivated. The fourth vertex picked was simulated as being
activated, so we have identified the vertex ω . The connected component for ω was then generated, and
contains three vertices. Note that v1 was already determined to be deactivated when we started to generate
Cact. The activation state has only been generated for the marked vertices; the activation states of the
unmarked vertices is unknown.

v3

v2

v1

ω

Figure 1: An example showing the process of generating ZBer where G is the 6 by 6 grid graph which does
not include diagonal edges. Cact contains three vertices. Vdeact also contains three vertices, labeled v1, v2
and v3. Activated vertices are marked by filled circles and deactivated vertices by empty circles.

Let fN (x;n, p) denote the density of a Binomial(n, p)-distributed random variable, and let k = vdeact∪
∂cact∪ cact. Then the density of G|ZBer is

fG|ZBer (g | (vdeact,cact) ; p) = fN (|g|− |cact| ; |V\ k| , p) .

This occurs because the activation states of the vertices in V\ k are an iid Bernoulli family with success
probability p. Conditional on ZBer, the only way for G to be connected is if all vertices outside the set
Vdeact∪∂Cact∪Cact are deactivated. This has probability

P(G is connected | ZBer = zBer) = P(V\ (cact∪∂cact∪ vdeact) are deactivated )

= q|V|−|cact∪∂cact∪vdeact|. (2)

Note that if Vdeact =V then G is the empty graph which is considered connected. The conditional probability
is simple to calculate, and ZBer is simple to simulate. We can use the expression

`(G, p) = E [P(G is connected | ZBer)] (3)

to construct the following conditional Monte Carlo estimator for the Bernoulli site percolation model.
Proposition 1 (Conditional Monte Carlo estimator for the Bernoulli site percolation model)

Let
{

Z(i)
Ber

}∞

i=1
be iid copies of ZBer and

{
X (i)
}∞

i=1 be iid copies of X , where each of the Z(i)
Ber depends

only on G
(
X (i)
)
. Define P(i) = P

(
G
(
X (i)
)

is connected
∣∣∣ Z(i)

Ber

)
.

Then for any fixed n≥ 1, the Rao–Blackwell estimator ̂̀rao (G, p) = 1
n ∑

n
i=1 P(i) is unbiased for `(G, p)

and has smaller variance than the crude simulation estimator introduced in (1).
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Proof. This proposition follows from standard properties of conditional expectation and the total variance
formula. See Billingsley 1995 for further details.

While the variance of ̂̀crude can be calculated analytically, computing the variance of ̂̀rao appears
intractable. This occurs because although we can simulate from ZBer, its distribution is unknown. However
its variance can be estimated via simulation, by the sample variance of the P(i). Proposition 1 leads to the
following algorithm for estimating `(G, p).
Algorithm 1 (Conditional Monte Carlo algorithm for the Bernoulli site percolation model)

1. Set i = 1.
2. Generate N(i)

deact =min
(
|V| ,N(i)

geom

)
, where N(i)

geom has aGeometric(q) distribution on the non-negative
integers.

3. If N(i)
deact = |V|, set P(i) = 1, set i = i+1 and go to Step 2.

4. Select N(i)
deact vertices uniformly at random from V without replacement, and denote the chosen

vertices by V (i)
deact. These vertices will be deactivated.

5. Select a vertex ω(i) uniformly at random from V\V (i)
deact. This vertex will be activated.

6. Generate the connected component C(i)
act of G(i) containing ω(i), conditional on the vertices in V (i)

deact
being deactivated and ω(i) being activated.

7. Calculate P(i) = P
(

G(i) is connected
∣∣∣ Z(i)

Ber =
(

V (i)
deact,C

(i)
act

))
according to (2).

8. If i < n set i = i+1 and repeat Step 2. Otherwise return 1
n ∑

n
i=1 P(i).

Note that our construction of ZBer does not depend on an ordering of the vertices. Another possibility
is to take some total ordering of V and let ZBer be the connected component of the first activated vertex
of G. Here ‘first’ is with respect to the ordering of V. Although we do not pursue this idea further in the
discrete case, it leads to a very similar conditional Monte Carlo algorithm to the one described here. We
continue this ordering-based approach with reference to random geometric graphs in Section 4.

4 CONDITIONAL MONTE CARLO FOR THE GILBERT DISK MODEL

Recall from Section 2 that for the Gilbert disk model on R2, the point process ξ generating the vertices
of the graph is a homogeneous Poisson process with intensity λ on a bounded Borel set R of R2. The
random graph Ggeo = Ggeo (R,λ ,r) is then generated by connecting any pair of vertices closer than r in
the Euclidean distance by an edge. The probability to be estimated is

`(R,λ ,r) = P
(
Ggeo (R,λ ,r) is connected

)
.

Similar to Section 3, we can define the crude simulation estimator as

̂̀crude (R,λ ,r) =
1
n

n

∑
i=1

I
{

G(i)
geo is connected

}
,

where n≥ 1 is an arbitrary fixed integer and
{

G(i)
geo

}∞

i=1
are iid copies of Ggeo (R,λ ,r).

For simplicity we will assume that R is a rectangular region with width w and height h, with bottom left
corner at the origin. Similar to Section 3, the conditional Monte Carlo estimator proposed in this section
is based around observing a single connected component, and then conditioning on there being no other
connected components. The connected component will be chosen by assuming some total ordering of R,
and then observing the connected component of ξ which contains the first point of ξ with respect to the
ordering.
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One natural ordering is the lexicographic ordering. For x = (x1,x2) ,y = (y1,y2)∈R2, the lexicographic
ordering is defined by

(x1,x2)<l (y1,y2) if and only if x1 < y1 or (x1 = y1 and x2 < y2) .

Another choice is the distance ordering, where for some fixed point z ∈ R the ordering is

x <d y if and only if ‖x− z‖< ‖y− z‖ .

Note that we do not define the ordering among points which are equally distant from z. This is acceptable
because we will only apply the ordering to the points of a Poisson process, and with probability 1 there
will be no pair of points equally distant from the nonrandom point z. In the numerical examples in Section
5 we take z to be the center of R.

Let η = (η1,η2) be the first point of ξ with respect to the chosen ordering of R. Let Zgeo be the vertices
of the connected component of Ggeo that contains η . Then conditional on Zgeo there must be no vertices
in the region

Rempty = {r ∈ R | r < η} ⊆ R.

The set Zgeo is equal to ξ ∩Rknown, where

Rknown =
(
R\Rempty

)
∩
(
∪v∈ZgeoB(v,r)

)
.

On the remainder of R the points of ξ are unknown. That is, conditional on Zgeo the distribution of ξ on
the region

Runknown = R\
(
Rempty∪Rknown

)
is that of a homogeneous Poisson point process with intensity λ . The random graph Ggeo can be connected
only if there are no points of ξ in Runknown. Therefore we have

P
(
Ggeo is connected

∣∣ Zgeo
)
= exp(−λ |Runknown|) .

This leads to the following conditional Monte Carlo estimator for the Gilbert disk model.
Proposition 2 (Conditional Monte Carlo estimator for the Gilbert disk model)

Let
{

Z(i)
geo

}∞

i=1
be iid copies of Zgeo and

{
G(i)

geo

}∞

i=1
be iid copies of Ggeo (R,λ ,r), where each of the

Z(i)
geo depend only on G(i)

geo. Define P(i)
geom = P

(
G(i)

geo is connected
∣∣∣ Z(i)

geo

)
. Then for any fixed n ≥ 1, the

Rao–Blackwell estimator ̂̀rao (R,λ ,r) = 1
n ∑

n
i=1 P(i)

geo is unbiased and has smaller variance than the crude
simulation estimator ̂̀crude (R,λ ,r).

The difficulty with applying this estimator is determining the area of Runknown, or equivalently Rempty∪
Rknown. However in some cases this can be relatively straightforward. The following two propositions
calculate these areas for the lexicographic ordering and distance ordering.
Proposition 3 (Lexicographic ordering) Consider the lexicographic ordering of R. Then Rempty = [0,η1)×
[0,h], and therefore

|Runknown|= |R|−
∣∣Rempty∪Rknown

∣∣= h(w−η1)−
∣∣(∪v∈ZgeoB(v,r)

)
∩ ([η1,w]× [0,h])

∣∣ .
Proposition 4 (Distance ordering) Consider the distance ordering of R with respect to a fixed point z ∈ R.
Then Rempty = B(z,‖z−η‖), and therefore

|Runknown|= |R|−
∣∣Rempty∪Rknown

∣∣= hw−
∣∣(∪v∈ZgeoB(v,r)∪B(z,‖z−η‖)

)
∩R
∣∣ .
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η

Rempty

Rknown

Runknown

w

h

0

(a) Lexicographic ordering

η z

Rknown
Rempty

Runknown

w

h

0

(b) Distance ordering

Figure 2: Illustration of the regions Rknown,Runknown and Rempty for the lexicographic and distance orderings.
Crosshatched regions represent balls of radius r

2 around other points of ξ that are not in the connected
component of η . These regions are included in Runknown.

Propositions 3 and 4 are easy to prove. The key observation is that we know the first point of ξ with
respect to the ordering, and this excludes the possibility of observing any other points occurring in a region
whose shape depends on the ordering chosen. See Figure 2 for illustrations of the regions Rknown, Runknown
and Rempty for both orderings. In Figure 2a, region Rempty is the rectangular region on the left, Rknown is
the shaded region at the bottom left and Runknown is the remaining region of R.

In the lexicographic ordering case, we can write |Runknown| as hη1−|Rknown|. As Rknown is the intersection
of a union of disks of equal radius with a rectangular region, we can use the power diagram approach outlined
in Appendix A to efficiently compute |Runknown|. In the distance ordering case the set Rempty∪Rknown is a
union of disks of unequal radius, one of which is centered around z. We can again apply the power diagram
to efficiently calculate this area.

For the lexicographic ordering, this leads to the following algorithm. The algorithm for the distance
ordering is similar.
Algorithm 2 (Conditional Monte Carlo algorithm for the Gilbert disk model using lexicographic ordering)

1. Set i = 1.
2. Simulate G(i)

geo. Determine the first vertex η(i) =
(

η(i)
1 ,η(i)

2

)
of G(i)

geo with respect to the lexicographic

ordering, and let Z(i)
geo be the connected component containing η(i).

3. Construct the power diagram V (i) of the points in Z(i)
geo, with all points taken to be the centers of

disks of radius r.
4. Use V (i) to calculate

∣∣∣R(i)
known

∣∣∣.
5. Set P(i)

geo = exp
(
−λ
(

h
(

w−η (i)
1

)
−
∣∣∣R(i)

known

∣∣∣)).

6. If i < n set i = i+1 and repeat Step 2. Otherwise return 1
n ∑

n
i=1 P(i)

geo.
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5 NUMERICAL RESULTS

The efficacy of a rare event probability estimator ̂̀is generally assessed using its relative error, defined by

RE
(̂̀)=√Var

(̂̀)/`2 .

We give the relative error (expressed as a percentage) for all our simulations, denoted by RE%.
If the estimators to be compared require different levels of computation, the work normalized relative

error may be more useful. This is defined by

WNRE
(̂̀)=√T

(̂̀)Var
(̂̀)/`2 ,

where T
(̂̀) is the expected time required to compute the estimator ̂̀. We also give the work normalized

relative error for all our simulations.
Example 1 Let G be the 6 by 6 grid graph without diagonal edges. This graph is small enough to allow
complete enumeration of the 236 subgraphs. We can therefore compute the probability of observing a
connected subgraph exactly, for any parameter value p. A grid search for the parameter value which
minimized the probability of connectivity gave a value of p = 0.285. The probability of connectivity for
p = 0.285 was calculated to be 0.00125143.

Both conditional Monte Carlo and crude Monte Carlo were applied with sample size n = 100,000,
and these simulations were repeated 1000 times. The estimated relative error was 8.93% for crude Monte
Carlo and 2.48% for conditional Monte Carlo. The estimated work normalized relative error was 0.0456
for crude Monte Carlo and 0.0173 for conditional Monte Carlo.
Example 2 We started with a 20 by 20 grid graph which included diagonal edges and generated a random
subgraph by retaining at random 340 of the 400 vertices. The base graph that was generated is shown in
Figure 3. In this case exact computation is infeasible. Both crude Monte Carlo and conditional Monte Carlo
were applied for 21 equally spaced different parameter values between p = 0.05 and p = 0.99 inclusive. For
values of p between 0.097 and 0.332 inclusive the crude method did not identify any connected subgraphs
and therefore estimated a probability of 0. A sample of the results where both methods estimated non-zero
probabilities is shown in Table 1. The average values estimated by both methods were similar and are
not shown. An up to five-fold improvement in relative error is observed when using the Rao–Blackwell
estimator as compared to the crude estimator. The work normalized relative error is improved by up to a
factor of 3.

Table 1: Simulation results for a randomly generated subgraph of the 20 by 20 grid graph.

p Crude RE% Crude WNRE Conditional RE% Conditional WNRE
0.05 129.64 2.88 25.08 1.10
0.43 251.41 11.65 67.54 3.85
0.47 29.54 1.11 11.19 0.62
0.52 5.76 0.22 3.08 0.19
0.57 1.73 0.09 1.03 0.06

Example 3 We considered the Gilbert disk model on a 6 by 6 square region of R2. The homogeneous
Poisson point process generating the vertices of the graph had intensity 10, and the distance r at which
points are connected was allowed to be 0.38,0.40 or 0.42. Both the distance and lexicographic orderings
were considered. In the case of the distance ordering the fixed point z was taken to be the center of R.
We used n = 1,000,000 samples for the crude estimator, and n = 100,000 samples for the conditional
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Figure 3: Subgraph of the 20 by 20 grid graph used as the base graph in Example 2.

Monte Carlo estimator. Different numbers of samples were used due to the different running times of both
approaches. These simulations were repeated 1,000 times to estimate the relative error. The simulation
results are shown in Table 2. The distance ordering appears to outperform the lexicographic ordering in
terms of relative error. However when the orderings are compared using the WNRE, which accounts for
simulation time, the lexicographic ordering is found to perform slightly better. The WNRE values can be
used to compare the performance of the crude estimator with that of the conditional Monte Carlo estimator.
They show equal performance for the two approaches when r = 0.4, and that if r = 0.42 the conditional
Monte Carlo has half the WRNE of the crude estimator. For r = 0.38 the target event is not sufficiently
rare to justify the extra computation of the conditional Monte Carlo approach, and the crude estimator
performs better.

Although this example suggests that the distance ordering performs better than the lexicographic ordering
in terms of relative error, it is not conclusive. Further work, possibly involving a more comprehensive
simulation study, could be done to compare these orderings.

Table 2: Simulation results for the Gilbert disk model on a 6×6 region with intensity 10.

Method r Estimate Relative Error % WNRE
Crude 0.38 3.55×10−06 166.01 24.10
Crude 0.40 4.94×10−04 14.32 1.99
Crude 0.42 1.34×10−02 2.71 0.38
Lexicographic 0.38 3.55×10−07 107.59 11.52
Lexicographic 0.40 4.96×10−05 15.02 2.00
Lexicographic 0.42 1.34×10−03 3.90 0.60
Distance 0.38 3.49×10−07 96.99 13.61
Distance 0.40 4.93×10−05 14.15 2.31
Distance 0.42 1.34×10−03 3.64 0.64

ACKNOWLEDGMENTS

We would like to thank the referees for all their comments, which helped to improve the quality of this
paper. This work was supported by the ARC Center of Excellence in Mathematical and Statistical Frontiers

518



Shah, Hirsch, Kroese and Schmidt

B1 B2

B3

V1 V2

V3
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A THE POWER DIAGRAM

Assume that R ⊆ R2 is a rectangular region. Let x1, . . . ,xn be points in R, let r1, . . . ,rn be positive real
numbers and let Bi = B(xi,ri) be the open ball with radius ri centered around the point xi. In Section 4 it
will be important to efficiently compute the area of the union of these open balls which is contained in R.
That is, to compute the area of A = R∩ (

⋃n
i=1 Bi).

Computing this area is non-trivial. Let D j be the set containing all j-element subsets of {1, . . . ,n},
where the j elements must also be distinct. Then the naive approach is to use the inclusion-exclusion
principle. This involves computing

|A|=
n

∑
j=1

(−1) j−1
∑

(i1,...,i j)∈D j

∣∣R∩Bi1 ∩·· ·∩Bi j

∣∣= n

∑
i1=1
|R∩Bi1 |−

n

∑
i1=1

n

∑
i2=1

i1 6=i2

|R∩Bi1 ∩Bi2 |+ · · · (4)

Each of the terms in (4) is an intersection of open balls with R, and the areas of such regions can be
calculated easily. However if many of the Bi intersect then the number of terms that must be calculated
grows extremely fast. In our application the inclusion-exclusion computation is prohibitively slow.

Another approach is to partition R into sub-regions V1, . . . ,Vn, so that the part of A contained in Vj
can be attributed uniquely to the open ball B j. This eliminates the problem of multiple counting that the
inclusion-exclusion principle tries to deal with, allowing |A| to be decomposed as

|A|=
n

∑
j=1

∣∣Vj ∩A
∣∣= n

∑
j=1

∣∣Vj ∩B j
∣∣ .

Such a partition of R can be constructed using the power diagram, also known as the Laguerre
tessellation. Let Ci denote the circle of radius ri around point xi. Then for any point y ∈ R at distance d
from xi, the power of y with respect to Ci is d2− r2. Note that the power can be negative. As an example,
let C be the circle of radius 2 located at the origin. Then the power of the point (1,0) with respect to C is
−3, while the power of (3,0) with respect to C is 5.

The set Vi is constructed as being all those points whose power with respect to Ci is smaller than their
power with respect to any other Cj. An example using three equally sized disks is given in Figure 4. In
this case all three disks intersect V2, while two disks intersect regions V1 and V3. However, the area of the
union can be written as |V1∩B1|+ |V2∩B2|+ |V3∩B3|.

Note that if Bi is completely contained within B j then the partition region Vi corresponding to Bi will be
the empty set, as there will be no points with smaller power with respect to Ci than Cj. The use of the power
diagram to compute the area of a union of open balls was originally proposed in Avis, Bhattacharya, and
Imai 1988 and Edelsbrunner 1993. In two dimensions the power diagram can be constructed for n points
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in O(n logn) time (Imai, Iri, and Murota 1985). For d > 2 the complexity is O
(

nb
d+1

2 c
)

(Aurenhammer
1987).
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