
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

RELIABILITY OF STOCHASTIC FLOW NETWORKS WITH CONTINUOUS LINK
CAPACITIES

Zdravko I. Botev

School of Mathematics and Statistics
The University of New South Wales
Sydney, NSW 2052, AUSTRALIA

Slava Vaisman

Department of Mathematics
The University of Queenland

Brisbane, QLD 4072, AUSTRALIA

Reuven Y. Rubinstein

Faculty of Industrial Engineering and Management
Technion - Israel Institute of Technology

Haifa 32000, ISRAEL

Pierre L’Ecuyer

DIRO, Université de Montreal
C.P. 6128, Succ. Centre-Ville

Montréal (Québec), H3C 3J7, CANADA

ABSTRACT

We consider the problem of estimating the unreliability of a stochastic flow network, defined as the
probability that the maximum flow value from a source node to a terminal node in a directed network
with stochastic link capacities, is less than a specified demand level. The link capacities are assumed to
be continuous random variables with a known joint distribution. We are interested in the situation where
the unreliability is very small, in which case a crude Monte Carlo is not viable. We show how a Monte
Carlo splitting algorithm can be adapted to handle this problem effectively.

1 INTRODUCTION

Let G = (V ,E) be a directed graph with m = |E | edges (or links) and a set of nodes or vertices V , in
which the i-th edge (link) has a random flow capacity Xi > 0. Denote X = (X1, . . . ,Xm), the vector of flow
capacities, and let f be the joint density of X, over [0,∞)m. Let Ψ(X) be the maximum flow that can be
sent (say) from node 1 (the source) to node m (the sink), given the capacity vector X (Ford and Fulkerson
1962). We suppose that the network has to transport a given flow demand dnet > 0, and we are interested in
estimating the network unreliability ` (one minus the reliability) defined as the probability that the network
cannot satisfy the demand:

`= `(dnet) = P(Ψ(X)< dnet) =
∫

Ψ(x)<dnet

f (x)dx. (1)

This problem occurs naturally in communication, transportation, and power distribution networks, for
example, where link capacities are uncertain due to potential failures or degradations; see Gertsbakh and
Shpungin (2012), Lin et al. (2013), and the references given there.

It is well known that the exact computation of the unreliability ` is an NP-hard problem (Ball 1986, Ball
and Provan 1982, Colbourn 1987). This calls for alternatives such as Monte Carlo estimation techniques.
The most straightforward (or crude) Monte Carlo method operates as follows. Generate X from density
f and compute Y = I{Ψ(X) < dnet}, the indicator that the demand cannot be satisfied for the given
X. Repeat this n times independently, to obtain n realizations Y1, . . . ,Yn of Y , and estimate ` by the
average Ȳn = (Y1 + · · ·+Yn)/n. This estimator has variance Var[Ȳn] = `(1− `)/n and square relative error
RE2[Ȳn] = Var[Ȳn]/`

2 = (1− `)/(`n). When ` is very small, which is typical, n must be very large to keep

543978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Botev, Vaisman, Rubinstein and L’Ecuyer

the RE under control, and this eventually becomes impractical. Then, more refined Monte Carlo methods
are needed.

Such Monte Carlo methods were proposed by Fishman (1989), followed by Fishman and Shaw (1989),
Alexopoulos and Fishman (1993), Alexopoulos and Fishman (1992). This was later followed by the
recursive algorithm of Bulteau and Khadiri (2002), based on an iterative graph decomposition method of
Doulliez and Jamoulle (1972). All these algorithms operate under the assumptions that the random capacity
of each network link must have a discrete distribution over a finite number of values, that this number is
small, and that these random capacities are independent. In other words, the random vector X must take
its value in the finite set Ω =⊗m

i=1Ωi, where

Ωi = {ci,1, . . . ,ci,bi}, 0 6 ci,1 < ci,2 · · ·< ci,bi < ∞,

is the set of bi possible values of Xi andP(X= x)=∏
m
i=1P(Xi = xi) for all x∈Ω. As noted by Fishman (1989),

the stochastic flow network model is realistic “provided one can justify the assumption of independent,
discrete, integer-valued capacities”. In reality, the independence assumption is made mainly to make the
reliability computations tractable (Gertsbakh and Shpungin 2010).

These methods have limited efficiency when the network is large or the bi are large. The method of
Fishman (1989) requires finding minimal cut- and path- sets in the graph and then sampling from a discrete
distribution on Ω with time complexity O(b1 + · · ·+ bm). The algorithms in Alexopoulos and Fishman
(1992), Alexopoulos and Fishman (1993), Bulteau and Khadiri (2002) are a significant improvement over
the original method of (Fishman 1989), but they also all rely on the graph decomposition algorithm of
Doulliez and Jamoulle (1972) (see Alexopoulos (1995) for the correction of a mistake in this algorithm). As
a result, their worst-case time complexity is O(m×|V |3× (b1 + · · ·+bm)) (see Bulteau and Khadiri 2002,
Lemmas 3 and 4, for example). This means in particular that approximating a continuous distribution by a
discrete distribution over a large number of values would lead to a highly inefficient method. More recently,
Gertsbakh and Shpungin (2012) have adapted the permutation Monte Carlo (PMC) method of Elperin et al.
(1991) to the stochastic flow network problem, but only under the assumption that each Xi can take only two
possible values: zero and a fixed positive value (the link is failed or is operating). The idea of this method
is to extend the static reliability model to a dynamic one, where each link fails at an exponential random
time, generate only the order of the failures (a permutation), and compute the conditional probability that
the demand is not satisfied given the permutation, as an estimator of the unreliability `. This method is
very effective when ` is very small and the network is not too large.

None of these proposed methods can handle continuous distributions for the link capacities, neither
dependence across links. Here we take inspiration from what has been done recently for a different but
closely related static reliability problem, where each link is either failed or operating, and we want to
estimate the probability that two given nodes are not connected (the unreliability). This can be seen as a
special case of the stochastic flow network problem considered here, where each capacity is 0 or 1, dnet = 1,
and the two nodes that must be connected are labeled 1 and m. For this network connectivity problem, to
estimate small unreliabilities, when the network is relatively small, the most effective method is usually
the PMC method mentioned above and its refinement named the turnip method, proposed in Gertsbakh
and Shpungin (2010). For very large networks, on the other hand, these methods break down and the
most effective method we know is a generalized splitting (GS) algorithm introduced by Botev and Kroese
(2012) and adapted to this problem in Botev et al. (2013). This is particularly true when the individual
link unreliabilities P(Xi = 0) are not too small, but ` is very small because nodes 1 and m are connected
by a large number of redundant paths. This GS approach also works for certain models with dependent
links (Botev et al. 2012). For more details, see Botev et al. (2013).

This motivated us to investigate if and how the GS method could be applied to the stochastic flow
problem defined earlier. This is the purpose of this paper. The remainder is organized as follows. In
Section 2, we state the GS algorithm in a general form. In Section 3, we provide a mathematical formulation
of the max-flow problem and recall an algorithm to solve this problem, the Edmonds-Karp algorithm. To

544

Botev, Vaisman, Rubinstein and L’Ecuyer

adapt GS to our setting, we need an effective way to resample link capacities under certain conditional
distributions, and appropriate methods that permit one to foresee and update quickly the maximum flow in
the network when a link capacity is either increased or decreased. We address those key issues in Section
4. In Section 5, we provide a numerical example based on a popular test case originally given by Fishman
(1989). Conclusions and suggestion for future research are given in Section 6.

2 GENERALIZED SPLITTING ALGORITHM

Intuitively, the GS method given in (Botev and Kroese 2012) can be viewed as a way of estimating ` in
(1) by constructing a sample of realizations of X approximately from its conditional distribution given that
Ψ(X) < dt , using adaptive learning. We state a GS algorithm under the assumption that the capacities
Xi are continuous random variables, with a density. Then, Ψ(X) is also a continuous random variable
and it can be used as the importance function in the GS procedure. We select an integer s≥ 2 called the
splitting factor (usually s = 2 gives the best performance), and we introduce intermediate demand levels
∞ = d0 > d1 > d2 > · · ·> dτ = dnet, for some integer τ > 0, so that

ρt = P(Ψ(X)< dt |Ψ(X)< dt−1)≈ 1/s, t = 1, . . . ,τ−1, (2)

and ρτ ≤ 1/s (approximately). The intermediate demands dt represent the levels in the GS algorithm,
which gradually steers the vector X towards the rare-event regions of the sample space, where Ψ(X) is
small. At each level t we run a Markov chain {Yt, j, j > 0} with a stationary density equal to the density
of X conditional on Ψ(X)< dt . This density can be written as

ft(x) = f (x)
I{Ψ(x)< dt}
P(Ψ(X)< dt)

,

where f0 ≡ f is simply the unconditional density of the random capacities X. We postpone the specification
of the Markov chain {Yt, j, j > 0} until Section 4. For the moment, we simply assume that this Markov
chain is well-defined and can be easily simulated. We denote its transition density at level t by κt(· |Xt, j−1),
where Xt, j−1 is the current state, so Xt, j ∼ κt(x |Xt, j−1). The GS algorithm first samples from f0 ≡ f and
then sequentially from κ1,κ2, . . . ,κτ−1. It is stated as Algorithm 1. In all algorithms in this paper, the
indentation delimits the scope of the if, else, and for statements.

This algorithm generates a single random variable W such that E[W] = `. It will be invoked n times,
independently, to produce n independent realizations of W , say W1, . . . ,Wn, and ` is estimated by the sample
average ̂̀= 1

n

n

∑
i=1

Wi. (3)

The squared relative error of ̂̀ is RE2[̂̀] = Var[̂̀]/`2, which can be estimated by

R̂E
2
(̂̀) = 1

n̂̀2

n

∑
i=1

(Wi− ̂̀)2.

A key issue is how do we choose the intermediate levels dt to satisfy (2). These levels can be determined
easily (approximately) using a pilot splitting algorithm, as described in Botev and Kroese (2012), Botev
et al. (2013), and in the Appendix of Botev et al. (2012). In the coming sections, we detail additional
requirements: how to compute the maximum flow Ψ(X), how to define the transition density κt , and how
to sample from it efficiently.

3 STOCHASTIC MAX-FLOW PROBLEM VIA MONTE CARLO

In the section we provide some background on the maximum flow (max-flow) problem in a network,
and we recall the algorithm used in this paper to compute the maximum flow for given link capacities.

545

Botev, Vaisman, Rubinstein and L’Ecuyer

Algorithm 1 : GS, returning W , an unbiased estimate of `
Require: s, d0 > d1 > d2 > · · ·> dτ = dnet

Generate the random capacity vector X from its unconditional density f .
if Ψ(X)< d1 then

X1←{X}
else

return X1← /0
for t = 2, . . . ,τ do

if Xt−1 = /0 then
return W ← 0

else
Xt ← /0 {set of capacity vectors that yield demand below dt}
for all X0 ∈Xt−1 do

for j = 1, . . . ,s do
sample X j from the density κt−1(· | X j−1)
if Ψ(X j)< dt then

add X j to Xt

return W ← |Xτ |/sτ−1 as an unbiased unreliability estimate.

The max-flow problem actually has applications in hundreds of areas. It appears as a building block (or
subproblem) in various types of more complex optimization problems. Research on improving algorithms
that solve this problem is also very rich and ongoing; see Ford and Fulkerson (1962), Edmonds and Karp
(1972), Goldberg and Tarjan (1988), Goldberg, Tardos, and Tarjan (1990), Goldberg and Rao (1998),
Kumar and Gupta (2003) for various algorithms to compute the maximum flow and Kelner et al. (2013)
for a recent account of the most novel methods. Here we opt for the older but simpler method of Edmonds
and Karp (1972), whose time complexity is O(|V |× |E |2).

For each link (u,v) ∈ E , let Cu,v > 0 be its capacity, where Cu,v = 0 means that no link exists between
nodes u and v, and let Fu,v be the flow from node u to node v (a negative value represents a flow of −Fu,v
units from v to u). Note that we can write the one-to-one correspondence i ≡ (u,v), so that Xi = Cu,v.
The max-flow problem can then be formulated as a linear programming problem, as follows (Ford and
Fulkerson 1962):

maximize ∑
v∈V

Fv,m

subject to

Fu,v =−Fv,u for all (u,v) ∈ V ×V

Fu,v 6Cu,v for all (u,v) ∈ V ×V

∑
v∈V

Fu,v = 0 for all u 6= 1, v 6= m .

(4)

The sum in the objective function represents the total flow landing in m. The first constraint states that
a flow Fu,v from u to v corresponds to a flow −Fu,v from v to u. The second condition ensures that the flow
must respect the capacity constraint on each link. Finally, the third condition ensures that the net flow out
of each node is zero, except for the source and sink.

Algorithm 2 describes a slightly modified version of the Edmonds-Karp algorithm to find the max-flow
from 1 to m. The modification is that as soon as the algorithm finds a flow larger or equal to the target
Ψbound, it stops. This early-exit option improves the efficiency significantly when we use the algorithm to

546

Botev, Vaisman, Rubinstein and L’Ecuyer

update the max-flow in the GS method (see Section 4). If Ψbound = ∞, the algorithm always delivers the
maximum flow. The algorithm searches for a path along which the flow from 1 to m can be increased, and
increases that flow, until no such path can be found or the target flow Ψbound is reached.

Algorithm 2 : Maximum flow computation via Edmonds-Karp.
Require: the capacity matrix C and the target flow Ψbound (a bound on the max-flow), possibly ∞

Set the flow matrix to the zero matrix F ← 0
loop

Compute the current net flow Ψ← ∑
m
v=1 F1,v

if Ψ = Ψbound then
return the max-flow (or its upper bound) Ψ(x) = Ψ

else
Compute the residual capacity matrix R←C−F .
if a shortest path P can be found between nodes 1 and m in the network with capacity matrix R
then

Compute the max-flow along path P , given by the capacity of the bottleneck link:

cP ← min
(u,v)∈P

Ru,v

Update the flow matrix F , making sure that the overall network flow does not exceed Ψbound:

Fu,v← Fu,v +min{cP ,Ψbound−Ψ}, ∀(u,v) ∈P

Update the reciprocal flow:
Fv,u←−Fu,v, ∀(u,v) ∈P

else
return the maximum (or upper bounded) network flow Ψ(x) = Ψ

4 RESAMPLING AND UPDATING THE LINK CAPACITIES IN GS

Resampling Via Gibbs Sampling. We now explain how we sample from κt−1(· | X j−1) in the GS
Algorithm 1. For each t, we define κt as the transition density of a systematic Gibbs sampler, which
resamples the capacity Xi of each link i, conditional on Ψ(X)< dt given the current capacities of all the
other links, in the order i = 1,2, . . . ,m. The conditional resampling of link i is stated in Algorithm 3. The
idea is simple: Given the current Xi and current flow Ψ, we first check what would happen if we increase
the capacity Xi to X∗i = Xi +dt −Ψ. If this increases the flow to dt , this means that link i is a bottleneck
link and remains so even after this increase, and therefore Xi must be resampled conditionally on Xi < X∗i .
Otherwise, there is no constraint on Xi because the bottleneck is elsewhere, so it can be resampled from
its distribution over [0,∞). In both cases, the resampling is done conditionally on the other coordinates of
X. This last conditioning matters when the Xi are not independent under the original density f .

Dynamic Updating of the Max-Flow. To implement the Gibbs sampler efficiently, we need an
efficient method to verify the condition Ψ∗ < dt in Algorithm 3 and to update the maximum flow of the
network when the capacity of one link is changed. The naive approach that recomputes the max-flow from
scratch via Algorithm 2 after each Xi is resampled has time complexity O(|V |× |E |3) and is much too
inefficient. Instead, we use a dynamic updating scheme of the max-flow in the Edmonds-Karp algorithm.
A similar updating scheme could also be defined for other max-flow algorithms.

547

Botev, Vaisman, Rubinstein and L’Ecuyer

Algorithm 3 Resampling of capacity Xi of link i conditional on Ψ(X)< dt .
Require: Current vector of capacities X, with corresponding max-flow Ψ = Ψ(X).

Set the capacity of link i temporarily to X∗i = Xi +dt −Ψ and compute the max-flow Ψ∗.
if Ψ∗ < dt then

sample the new capacity Xnew
i from its original pdf f (xi |X1, . . . ,Xi−1,Xi+1, . . . ,Xm)

else
sample the new capacity Xnew

i from f (xi |X1, . . . ,Xi−1,Xi+1, . . . ,Xm) conditional on Xnew
i < X∗i .

To describe our dynamic updating scheme, we assume that the current flow and current capacity of all
links are in matrices F and C, respectively, as in Section 3. We do this only for the notation, it does not
imply that these are actually stored in arrays in the implementation. Suppose the current maximum flow
is Ψ = ∑

m
v=2 F1,v, that we consider a change of the capacity of link (u,v) from its current value of Cu,v to

the new value of c(u,v), and we want to update the max-flow to its new value Ψnew. We distinguish two
situations: the case where Cu,v is increased and the case where it is decreased.

Increased link capacity. If c(u,v) > Cu,v, the max-flow can either increase or remain the same,
depending on whether (u,v) is a bottleneck link or not. If Fu,v <Cu,v, the link is underutilized, so increasing
its capacity will not change the max-flow, it will only increase the unused capacity of that link, from
Cu,v−Fu,v to c(u,v)−Fu,v. If Fu,v = Cu,v, the link is fully utilized (it is a bottleneck), so increasing its
capacity may increase the max-flow. After updating Cu,v to c(u,v), we search for paths along which the
flow can be increased, in the residual network whose link capacities are given by the residual capacity
matrix R =C−F . If no such paths exist, then F and the maximum flow remain the same (this means that
at least one other link is also a bottleneck). If some (one or more) augmenting paths are found that give
rise to a nonzero flow matrix Faug over the residual graph, then the updated flow is Fnew = F +Faug and
the maximum flow is now Ψnew = Ψ+Ψaug, where Ψaug is the maximum flow carried by the augmenting
paths.

Reduced link capacity. Suppose c(u,v) < Cu,v, i.e., the capacity of link (u,v) is reduced. If
Fu,v 6 c(u,v), then the new capacity is still sufficient to handle the current flow on that link, and therefore
there is no change on the flow. If Fu,v > c(u,v), then there is an amount of flow of ∆ = Fu,v− c(u,v) that
can no longer pass thought this link. The max-flow Ψ may be reduced by ∆, unless this extra flow can
be re-routed (in part or in totality), in which case the flow reduction can be less than ∆. To find paths
along which this flow can be re-routed, we start by replacing Fu,v by c(u,v) and Fv,u by −c(u,v) in the
matrix F , we put Cu,v = c(u,v), and we compute the matrix R = C−F of residual capacities. Then we
apply the max-flow algorithm to transfer the maximum flow (but no more than ∆) from node u to node
v in the network with capacity matrix R. Let Freroute be the flow matrix found by this subproblem and
Ψreroute ≤ ∆ be the corresponding max-flow transferred from u to v. The new (updated) max-flow in the
network is now Ψnew = Ψ−∆+Ψreroute. Updating the flow matrix F is a bit more involved. Note that
after setting Fu,v = c(u,v), the flow balance equation (4) no longer holds at nodes u and v, because there is
an excess flow of ∆−Ψreroute at node u and a deficiency of ∆−Ψreroute at node v. To rebalance the flow
matrix, we push the excess flow ∆−Ψreroute back from node u to 1 (unless u = 1 already) along the shortest
augmenting paths that we can find. We also push flow from the sink node m to node v in the same way.

The procedure just described is stated in Algorithm 4. We use it as a subroutine in the systematic
Gibbs sampler to update the flow matrix F and the corresponding max-flow Ψ.

548

Botev, Vaisman, Rubinstein and L’Ecuyer

Algorithm 4 Max-flow updating after changing the capacity of link i = (u,v).
Require: current flow matrix F , capacity matrix C, new link capacity c(u,v), and max-flow Ψ

if c(u,v)>Cu,v then
if Fu,v <Cu,v then

return Fnew← F and Ψnew←Ψ

else
Set Cu,v← c(u,v) and use Algorithm 2 with Ψbound = ∞ to compute the max-flow Faug and Ψaug
from node 1 to node m, in the network with capacity matrix R =C−F
return Fnew← F +Faug and Ψnew←Ψ+Ψaug

else
if Fu,v 6 c(u,v) then

return Fnew← F and Ψnew←Ψ

else
Set Fu,v← c(u,v), Fv,u←−c(u,v), Cu,v← c(u,v), and use Algorithm 2 with Ψbound = ∆ to compute
the maximum flow Freroute and Ψreroute from u to v, in the network with capacity matrix R =C−F
if u 6= 1 then

Use Algorithm 2 with Ψbound = ∆−Ψreroute to compute the flow matrix F∗ giving the max-flow
from u to 1 in the network with capacity matrix R
Fnew← Fnew +F∗

if v 6= m then
Use Algorithm 2 with Ψbound = ∆−Ψreroute to compute the flow matrix F∗ giving the max-flow
from m to v in the network with capacity matrix R
Fnew← Fnew +F∗

return Ψnew←Ψ−∆+Ψreroute and Fnew← Fnew +Freroute

5 NUMERICAL ILLUSTRATION

Consider the network in Figure 1, with |V |= 10 nodes and m = 25 links, labeled from 1 to 25. This example
has been widely used as a test problem (Fishman 1989, Fishman and Shaw 1989, Alexopoulos and Fishman
1993, Alexopoulos and Fishman 1992). Suppose that the link capacities X1, . . . ,Xm are independent and
have the uniform distribution over (0,1000). We want to estimate the probability ` that the maximum
flow from node 1 to node 10 is less than dnet. We use the GS estimator (3), with splitting factor s = 2
and sample size n = 5000. Note that the expected total simulation effort is approximately proportional to
n× s× τ , where τ ≈ d− ln2(̂̀)e is the number of levels in the GS procedure.

Table 1 shows the estimated unreliability ̂̀obtained by this procedure, as well as the estimated relative
error R̂E(̂̀), the expected simulation effort n× s× τ , and the efficiency gain over crude Monte Carlo, for
different values of the network demand dnet. The efficiency gain is defined as the work-normalized variance
of the crude Monte Carlo estimator divided by that of the GS estimator. Equivalently, it is defined as the
simulation effort required by the crude estimator divided by the simulation effort required by GS to achieve
the same variance (or same relative error).

We see from the table that GS yields significant gains over the naive estimator when the network is
highly reliable, and this gain increases when the unreliability ` decreases.

549

Botev, Vaisman, Rubinstein and L’Ecuyer

Figure 1: A network with 25 links, taken from Fishman (1989)

Table 1: Unreliability estimates for the network in Figure 1, for different values of dnet.

dnet ̂̀ R̂E(̂̀) simulation effort efficiency gain
250 0.0061 2.8% 7×104 3
200 0.0029 2.8% 8×104 5
150 0.0011 2.8% 1.0×105 10
100 0.00037 3.3% 1.1×105 20
50 4.3×10−5 4.8% 1.5×105 70
40 2.1×10−5 4.8% 1.6×105 100
30 9.2×10−6 3.6% 1.7×105 500
20 2.7×10−6 4.4% 1.9×105 1000
10 3.4×10−7 5.4% 2.1×105 4500

6 CONCLUSION

We have shown how to use a Monte Carlo splitting technique to estimate the probability that the maximum
flow in a stochastic network fails to meet a predetermined demand, when this probability is small. Our GS
procedure works well in the case where the link capacities have a continuous distribution, a situation not
covered by previous methods.

There are a number of different possibilities for future exploration. First, we need further numerical
investigation, on larger examples, and on examples where the link capacities are dependent. Dependent link
capacities can be handled provided that we can perform the conditional resampling in Algorithm 3. One
type of situation where this can be achieved is if X has a multivariate normal distribution, or a distribution
specified by a normal copula. Second, one can explore more efficient dynamic updating algorithms to
speed up the Gibbs sampler based on recently proposed novel max-flow algorithms. Finally, all methods
considered so far have assumed that the network demand was fixed in advance. However, a more realistic
model might consider a random demand dnet.

550

Botev, Vaisman, Rubinstein and L’Ecuyer

ACKNOWLEDGMENTS

Zdravko Botev has been supported by the Australian Research Council Discovery Early Career Researcher
Award RG133085 and the Early Career Researcher Grant of the School of Mathematics and Statistics at
the University of New South Wales (UNSW), Sydney, Australia. Pierre L’Ecuyer received support from an
NSERC-Canada Discovery Grant, a Canada Research Chair, and an Inria International Chair. This paper
was written during his visit at UNSW, supported by the Faculty of Science Visiting Researcher Award.

REFERENCES

Alexopoulos, C. 1995. “A note on state-space decomposition methods for analyzing stochastic flow net-
works”. IEEE Transactions on Reliability 44 (2): 354–357.

Alexopoulos, C., and G. S. Fishman. 1992. “Capacity Expansion in Stochastic Flow Networks”. Probability
in the Engineering and Informational Sciences 6:99–118.

Alexopoulos, C., and G. S. Fishman. 1993. “Sensitivity Analysis in Stochastic Flow Networks Using the
Monte Carlo method”. Networks 23:605–621.

Ball, M. O. 1986. “Computational complexity of network reliability analysis: An Overview”. IEEE
Transactions on Reliability 35 (3): 230–239.

Ball, M. O., and J. S. Provan. 1982. “Bounds on the Reliability Polynomial for Shellable Independence
Systems”. SIAM Journal on Algebraic and Discrete Methods 3:166–181.

Botev, Z. I., and D. P. Kroese. 2012. “Efficient Monte Carlo simulation via the generalized splitting method”.
Statistics and Computing 22 (1): 1–16.

Botev, Z. I., P. L’Ecuyer, G. Rubino, R. Simard, and B. Tuffin. 2013. “Static network reliability estimation
via generalized splitting”. INFORMS Journal on Computing 25 (1): 56–71.

Botev, Z. I., P. L’Ecuyer, and B. Tuffin. 2012. “Dependent failures in highly reliable static networks”. In
Proceedings of the 2012 Winter Simulation Conference, 430–441. IEEE Press.

Bulteau, S., and M. E. Khadiri. 2002. “A New Importance Sampling Monte Carlo Method for a Flow
Network Reliability Problem”. Naval Research Logistics 49 (2): 204–228.

Colbourn, C. J. 1987. The Combinatorics of Network Reliability. New York: Oxford University Press.
Doulliez, P., and E. Jamoulle. 1972. “Transportation networks with random arc capacities”. R.A.I.R.O.:45–59.
Edmonds, J., and R. M. Karp. 1972. “Theoretical improvements in algorithmic efficiency for network flow

problems”. Journal of the ACM 19 (2): 248–264.
Elperin, T., I. B. Gertsbakh, and M. Lomonosov. 1991. “Estimation of Network Reliability Using Graph

Evolution Models”. IEEE Transactions on Reliability 40 (5): 572–581.
Fishman, G. S. 1989. “Monte Carlo Estimation of the Maximal Flow Distribution with Discrete Stochastic

Arc Capacity Levels”. Naval Research Logistics 36 (4): 829–849.
Fishman, G. S., and T.-Y. D. Shaw. 1989. “Evaluating Reliability of Stochastic Flow Networks”. Probability

in the Engineering and Informational Sciences 3:493–509.
Ford, L. R., and D. R. Fulkerson. 1962. Flows in Networks. New Jersey: Princeton University Press.
Gertsbakh, I., and Y. Shpungin. 2012. “Spectral Approach to Reliability Evaluation of Flow Networks”.

In Proceedings of the European Modeling and Simulation Symposium, 68–73.
Gertsbakh, I. B., and Y. Shpungin. 2010. Models of Network Reliability: Analysis, Combinatorics, and

Monte Carlo. Boca Raton, FL: CRC Press.
Goldberg, A. V., and S. Rao. 1998. “Beyond the flow decomposition barrier”. Journal of the ACM 45 (5):

783–797.
Goldberg, A. V., E. Tardos, and R. E. Tarjan. 1990. “Network Flow Algorithms”. In Algorithms and

Combinatorics: Paths, Rows, and VLSI-Layout, Volume 9, 101–164. Berlin: Springer-Verlag.
Goldberg, A. V., and R. E. Tarjan. 1988. “A New Approach to the Maximum-Flow Problem”. Journal of

the ACM 35 (4): 921–940.

551

Botev, Vaisman, Rubinstein and L’Ecuyer

Kelner, J., Y. Lee, L. Orecchia, and A. Sidford. 2013. An Almost-Linear-Time Algorithm for Approximate
Max Flow in Undirected Graphs, and its Multicommodity Generalizations, Chapter 16, 217–226.

Kumar, S., and P. Gupta. 2003. “An Incremental Algorithm for the Maximum Flow Problem”. Journal of
Mathematical Modelling and Algorithms 2:1–16.

Lin, Y.-K., L. Fiondella, and P.-C. Chang. 2013. “Quantifying the impact of correlated failures on system
reliability by a simulation approach”. Reliability Engineering and System Safety 109:32–40.

AUTHOR BIOGRAPHIES

ZDRAVKO I. BOTEV is a Lecturer at the School of Mathematics and Statistics at the University of
New South Wales in Sydney, Australia. He obtained his Ph.D. in Mathematics from The University of
Queensland, Australia, in 2010. His research interests include splitting and adaptive importance sampling
methods for rare-event simulation. He has written jointly with D. P. Kroese and T. Taimre a Handbook of
Monte Carlo Methods published by John Wiley & Sons in 2011.

SLAVA VAISMAN is a Postdoctoral Research Fellow at the University of Queensland in Brisbane, Aus-
tralia. He obtained his PhD in Operations Research from the Technion, Haifa, Isreal in 2013. His research
interests include rare event simulation, randomized algorithms, and on-line planning. He has written jointly
with Reuven Rubinstein and Ad Ridder a monograph on Fast Sequential Monte Carlo Methods for Counting
and Optimization published by Wiley in 2013.

REUVEN R. RUBINSTEIN was Professor at the Faculty of Industrial Engineering and Management of
the Technion, Israel. Professor Rubinstein passed away in December 2012. He was a member of several
societies including the Operations Research Society of Israel and the American Operations Research Society.
Having written numerous books and articles throughout his long career, Rubinstein is widely-known as a
pioneer of the score function (SF) method in simulation and the cross-entropy (CE) method for combinatorial
optimization. His research was recognised with several awards, including the 2010 Lifetime Professional
Achievement Award from the INFORMS Simulation Society, and the 2011 Lifetime Achievement Award
from ORSIS.

PIERRE L’ECUYER is Professor in the Département d’Informatique et de Recherche Opérationnelle,
at the Université de Montréal, Canada. He holds the Canada Research Chair in Stochastic Simulation
and Optimization and an Inria International Chair in Rennes, France. He is a member of the CIRRELT
and GERAD research centers. His main research interests are random number generation, quasi-Monte
Carlo methods, efficiency improvement via variance reduction, sensitivity analysis and optimization of
discrete-event stochastic systems, and discrete-event simulation in general. He has served as Editor-in-
Chief for ACM Transactions on Modeling and Computer Simulation from 2010 to 2013. He is currently
Associate Editor for ACM Transactions on Mathematical Software, Statistics and Computing, International
Transactions in Operational Research, and Cryptography and Communications. More information can be
found on his web page: http://www.iro.umontreal.ca/∼lecuyer.

552

