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ABSTRACT 

We present a detailed simulation model with the purpose of analyzing the congestion and interaction be-

tween bus lines and passengers at stops. Our main goal is to perform a complete validation of a simulation 

model formalized in a standard language in order to use it as a basis to perform more complex experi-

ments. The basis of the model is a queuing model that leads us to perform an operational validation. Since 

the model is completely represented using a formal language, the specialist can perform a formal valida-

tion of the model previously to any implementation. Thanks to the modular structure of the formal lan-

guage used to define the model, the model can be easily expanded to represent more complex systems. 

Due to a formal representation, the implementation process can be done automatically implying that ana-

lysts should only be concerned about the correct definition of the diagrams that represent the model be-

havior. 

1 INTRODUCTION 

In the planning of public transportation systems, one of the key factors is the evaluation of the perfor-

mance of stations in terms of available capacity for waiting passengers and the possibility for buses queu-

ing in order to access the boarding/alighting berths. Operations and interactions between passengers and 

vehicles at bus stops are very complex, especially in congested situations. In fact, there has been the ob-

ject of a large number of empirical studies such as those of TCRP in (Transportation Research Board 

National Research Council 2011) to model operational times such as dwell times and queuing of buses for 

the case of conventional urban bus lines. Moreover, the need for increasing the capacity of urban public 

transportation systems at a moderate cost has made to emerge the so-called Bus-Rapid-Transit systems, 

now implemented in a number of cities. The planning of these transportation systems has demanded the 

study of bus stops with special configurations, such as multiple berths, or with weaving sections.
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Analytical models for describing bulk service queuing of passengers at bus stops are very complex. No 

analytical models are known for the interactions between vehicles at multiple berth stations. Thus, the de-

sign of these systems has relied on simulators, capable of determining bus stop capacities for the complex 

configurations under study. Specifically designed simulators such as PASSION 5.0 by (Fernández 2007) 

and (Fernández 2010), used in the TransSantiago bus system, have replaced others initially developed 

such as the IRENE simulator, see (Gibson and Baeza 1989). These simulators are focused on a single bus 

stop and require inputs performance measures and characteristics of external flows.  

Passenger flows and their behavior on bus stops such as the willingness to wait accordingly to a set of 

external parameters (for instance crowding of the bus stop and observance of passenger queues, fares, 

etc.) have received some attention. See, for example, (Hongfei, Yang and Tang 200). However, these as-

pects have not yet been included in the previous simulators. 

Furthermore, because of interactions with external vehicular traffic, methods to evaluate the effects of 

traffic lights and the configuration of special lanes reserved for buses, have demanded the integration of 

specific simulation tools with existent microscopic traffic simulators. For this purpose, simulation exper-

iments are described in (Sorratini, Liu and Sinha 2008) for a single bus line, where DRACULA, a dynam-

ic micro-simulation traffic model developed at the University of Leeds, is used. This simulator is more 

oriented to vehicular behavior, and it does not contemplate many of the interactions between passengers 

and buses at bus stops. 

In this paper, we define a model that permits a detailed micro-simulation of a bus station reflecting 

the interaction between queues of buses and queues of passengers. It captures all the relevant magnitudes 

that allow the evaluation of crowding at bus stops, as well as the effects of congestion and bus blocking 

and bunching. The model can be expanded to consider other specific passengers’ behavior aspects, such 

as the willingness to wait (patience). The layout of the paper is as follows. In section 2, a description of 

the modeled system in terms of the intervening queuing systems is presented. In section 3, we detail the 

variables and factors that must be considered in the model.  Section 4 introduces the main magnitudes that 

reflect the performance of the queues are described. Section 5 describes the implementation of the model 

using the “Specification and Description Language Parallel Simulator” (SLDPS) system and section 6 de-

scribes the events taken into account in calculating the simulation statistics. Section 7 compares the re-

sults for the passenger queues obtained by simulation with those obtained by using the Powell’s approxi-

mation formula for bulk-arrival bulk-service queues. Finally, section 8 contains conclusions and future 

developments. 

2 THE PHYSICAL SYSTEM  

The sequence of operations carried out at a bus stop and their operational times are fully described, 

amongst many other references, in (Fernández 2010), (Fernández and Tayler 2005), and (Anderson and 

Scalia-Tomba 1981). Conceptually, in terms of queuing models, at a bus stop two systems of queues 

interacting each other can be defined. From the point of view of passengers, one of these systems are 

made up by one or more queues of passengers, according to the number of lines operating on that bus 

stop and the policy that rules how these lines are chosen by passengers. From the point of view of the 

buses entering and exiting to the station, the bus stop behaves as two waiting systems in tandem with 

blocking. These waiting systems will be referred as L0 and L1 respectively.  L0 waiting system re-

ceives input flow of buses from the external traffic flow. The servers of waiting system L0 are the 

berths where passengers may board and alight. Once a bus has completed the boarding/alighting 

operations, it leaves L0 and enters into L1, provided that there is no blocking from L1.  At L1, 

buses may queue waiting for exiting the bus stop and entering in the external traffic flow. L1 

may be considered non-existent in many cases if, after having completed the service, buses experience 

very little or no delay at all in entering to the external traffic flow. The lack of delay may depend on 

several factors, such as the existence of reserved lanes, traffic signals right after the exit of the bus stop 

or simply the intensity of the external traffic flow. 
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The boarding/alighting operations at berths depend on the number of doors for boarding/alighting of pas-

sengers. In the simulation model, bus units may have n+ doors for boarding and n- doors for alighting and 

the boarding/alighting operations can be carried out in serial or parallel. The service times for bus units 

are mainly determined by these boarding/alighting operations, although maneuver times for parking or 

clearing the berths and the time for opening/closing doors are also taken into account. 

3 VARIABLES AND FACTORS TO BE CONSIDERED IN THE MODEL 

Our simulation model considers the main variables and factors to allow a detailed representation of a bus 

stop. The table below enumerates and describes these variables. In case that these variables are random 

with a probability distribution that can be fixed a priori by the user, the table also lists the set of probabil-

ity distributions that are considered in the implementation of the simulation model. 

 

Table 1: Variables and factors to be considered in the model. 

Parameter Description Values/probability distribution to be used 

𝜏𝑝 Time between pas-

senger arrivals 

- Exponential.  1/=][ PE . 
- k-Erlang.  /=][ kE P

, being the average stage time α. 

τ𝐵 Time between bus 

arrivals 

- Exponential; average inter-arrival time 
B1/  

- Hypoexponencial; k = number of stages and average time for each 
stage kii

B 1,1/  

- Hyperexponencial; k = number of stages and average time for each 

stage kii

B 1,1/ ; weight 
i  of the stages. (

=1
= 1, > 0

i i

k

i
  ) 

- Degenerate distribution; constant time T . 

tp Time to park a bus 

in  the berth 

 

Normal ( = [ ], = )
p t

p

N E t    truncated to >0. It is assumed that

< 0.3 [ ]
p

p
t E t  

eN   Number of passen-

gers in the bus on 

arrival to the bus 

stop 

- Normally distributed ( , )N   , truncated within the interval [0, 

cap_bus]. 

- Uniformly distributed on [0, cap_bus] 

- Hypoexponential with two stages 
1t  i 

2t  truncated within the inter-

val [0, cap_bus].= -( β - cap_bus); where β may distribute as stated 

previously. 

- Degenerate: all buses arrive with a constant number of passengers. 

vN
 

Number of  alight-

ing passengers.  
-

vN  uniformly distributed in the interval [0, eN ]. 

-
vN  degenerate 

Bx  Bus service time. The service time for buses depends on other specific parameters, such 

as ,n n  and the type of operation for boarding/alighting (see section 

3.1 below) 

n+, n- Bus doors n+ doors for boarding and n- doors for alighting. 

 

3.1  Modeling of Boarding and Alighting Operations 

The amount pN

, np 1,2,...= , ( pN


, =1,2,...p n  ) of passengers boarding (alighting) through door p 

are generated as multinomial distributed numbers summing up the total number of boardings P (alight-

ing vN  ), i.e.: 
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=1 =1

= , =
n n

p p v

p p

N P N N

 

 
 

  
 
 

                                                                    (1) 

By default and unless otherwise specified, all doors have the same probability to be chosen by the board-

ing (alighting) passengers. 

4 PERFORMANCE EVALUATION OF THE BUS STOP  

As in any queuing system, the intensity factor plays a major role in the performance. It is one of the mag-

nitudes that must be estimated from the simulation, regardless that a prior estimation could be made from 

the basic inputs that set the probability distributions for the arrival processes of passengers and buses. 

4.1 Intensity Factor for the Passenger’s Queue 

Let   be the number of passengers that may board on the bus when it arrives at the bus stop. It will be as-
sumed that it is a random variable that may take values between 0 (bus full) and c (empty bus), where c is 
the bus capacity of passengers. Being 

B  be the time between arrivals of two consecutive buses to the 
bus stop (or headway), and let 

P  be the time between consecutive arrivals of passengers to the bus stop. 

B  and 
P  are also random variables with known probability distribution. The intensity factor 0  for the 

queue of passengers at the bus stop is defined as: 

][][

][
=

][]/[

])[(
=

1
0










EE

E

EE

E

P

B

B

P



                 (2) 

Obviously any simulation must be developed in a finite temporal interval, because a) it is previously de-

fined, or b) the maximum number of involved agents can be fixed a priori, or c) maybe a specified termi-

nating condition becomes true. In any of these cases let H be the simulation length. 

4.2 Evaluating the Intensity Factor from Simulation 

We assume the simulation ends when the boarding/alighting operation of the last bus finishes. In this 

case, the intensity factor for the passenger queue given in (2) can be estimated by:  

( (

=10 =1

( ( ( (

=1 =1 =1 =1

/ ( ) / ( )

= =

( ) / ( ) ( ) / ( )

Nn P
j i

P B Bn P P
j Pi

n n n n
i j i j

B B

j j j j

N x N
N

n

 




   





 

   
       (3) 

where 
PN  is the number of passengers that have been generated in the simulation with inter-arrival times 

(i

P , 1,2,..., Pi N to the bus stop; ( j

B  and ( j are the inter-arrival times and available passenger capacity 

respectively for the buses, 1,2,...,j n and 
Bnx is the service time of the last bus.    is the mean capaci-

ty of the buses that arriving at the stop. Since the simulation covers a finite time horizon, then
i

P
P

N

iBn

j

B

n

j
xH (

1=

(

1=
==     and it is needed to consider, from the Np generated passengers, those who 

effectively can board in a bus, NB, and those who cannot board, NQ, at the end of the simulation, i.e.: 

  =
P B Q

N N N            (4) 

If 1<0 then it must be expected that <<
Q B

N N . When a lot of “residual passengers” are present at 

the end of the simulation, then it is very likely that 0 1  . Thus, from the simulator perspective, it is 

needed to report:  a) the absolute value of the residual queue, 
Q

N ,  and b) the ratio /
Q

N  . 
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4.3 Intensity Factor for the Queue of Buses 

The queue of buses works as a simple ''single server'' queue /1/GGI   with FIFO discipline. Its intensity 

factor is defined by: 

  
][

][
=

B

B
B

E

xE


                                                                (5) 

 

If the j-th bus has a service time of 
B j

x , ,1 nj   then it is possible to evaluate the mean service time and 

estimate
B  by: 

  
H

xn B
B                                                                   (6) 

5 IMPLEMENTATION OF THE SIMULATION MODEL USING SLDPS 

The model is represented using Specification and Description Language (SDL) to simplify the definition 

and the understanding of the structure and the behavior of the different components. In this paper, we fol-

low the convention that all SDL elements are capitalized (for example a BLOCK or a PROCESS) which 

simplifies the understanding when we explain that an SDL PROCESS defines certain process of the mod-

el. In this section, the complete model is not detailed, but only some key diagrams that permit to under-

stand why this language allows to perform a formal validation of the model by personnel that are not fa-

miliar with the theoretical queuing models or simulation models. 

 

 

Figure 1: Main blocks of the structure for the bus stop simulation model. 

=1
= ( ) /

n

B Bjj
x x n
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Figure 2: SDL PROCESS for the behavior of P_SEP process that models the arrivals of new passengers 

to the system. On the diagram is detailed the waiting state, two SIGNALS (i.e. events) can be received: 

NewPax and NewBus. Report procedure allows to obtain statistical information from the model. The DCL 

block configures the model according the hypotheses used. 

Figure 1 depicts the bus stop main structure. P_SEP PROCESS defines the process of passenger 
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arrivals to the system. P_SEB_L0 defines the process of entering a new bus to the bus stop. P_SEB_L1 

defines the process of leaving the bus stop. Finally, P_EXIT PROCESS defines the process of leaving the 

system. In this process, we obtain all needed information for the simulation trace (see section 6). 

An SDL PROCESS represents the behavior of the model. As an example, Figure 2 depicts P_SEP 

PROCESS that defined the arrivals to the system of new passengers. 

6 THE MODEL OUTPUT 

The model implementation was performed using SDLPS (Fonseca i Casas 2008), (Fonseca i Casas 

and Casanovas 2011). All results showed in the diagrams were obtained using the REPORT task,  an 

element that belongs to the SDLPS API to simplify obtaining statistical information from simulation 

models. The information is stored in the simulation trace and a final report. The simulation trace can 

identify or reconstruct the events listed below (see Table 2 and Figure 5). With this information it should 

be possible to give the statistics that are required for evaluating the performance of: 

• Passenger queues. Average delay and average passenger queue length depending on the bus stop in-

tensity factor in (3).  

• Bus queues. Average delay and average queue length depending on the bus stop intensity factor (6). 

Table 2: Model output main variables. 

Event Attributes 

Arrival of the i-th 

passenger 
Time instant 

is  of the arrival  

iM  = number of passengers in the queue  
Time instant 'is  for the i-th passenger’s boarding.  

Arrival of the j-th 

bus to the bus stop 

 

Time instant 
j

S  for the arrival of the j-th bus to the stop. 
(0

j
B = number of buses present on the system L0 on arrival of the j-th bus.  

(1

j
B = number of present buses on the system L1 on arrival of the j-th bus. 

Arrival of the j-th 

bus to the berth 
Time instant 

j
s  of arrival of the bus to the berth.  

e

j
N



 = number of passengers present on the bus (n board) when the bus arrives.  

vjN  = number of passengers that leave the bus j-th and effective capacity of the 

j-th bus =
e

j j vjCapacity N N


   

j
P  = Number of passengers in the queue at time instant Sj (variable pax_count)  

j
 = number of passenger that arrive at the bus stop during the operation of 

boarding/alighting (depends on the service time for the passengers).  

j
P = Number of passengers boarding the j-th bus  = { , }

j j j j
P min P     

p j
t  = Time of park/un-park of the j-th bus  (maneuver time).  

b j
x = Service time for the passengers of the j-th bus (time needed to boar/alight). 
The time needed to open or close the doors, is not included here.  

/
=

B j p j b j o c
x t x t   = Service time for the j-th bus  

0

b j
y = blocking time for the bus on the platform; is defined by 

0
= ( )

b j j j B j
y s s x     

(
j

s  is the instant of time where the j-th bus  leaves the platform; the bus enters in 

the instant js  in the system L1)  

j
Q  = number of passengers present on the queue in time instant 

j bj
s x  (when the 

boarding/alighting operation ends). 

Exit of the j-th bus 

of the platform 

(entering in the L1 

subsystem) 

Exit time 
j

s  of the j-th bus from the platform, entering then in the L1 subsystem.  
(2

j
B = number of buses present in system L1 when j-th bus enters in system L1. 

 

610



Fonseca, Codina, Montero, Linares, and Montañola 

 

 

We implemented a post process algorithm in order to display all the expected results in a convenient way. 

7 RESULTS 

We compare simulation results for the queue of passengers with the formulae of the Powell’s 

approximation (Powell 1986) for bulk arrival-bulk service queues, M[X]/Ek
[V]/1. Assuming bulk-arrivals of 

size 1, Powell’s approximation for average waiting time in system W is: 

0

1
= 1

Q
W W

v 

 
  

 
                                                          (7) 

The term 
2

0
= (1 ) / 2

s
W C   is the average time until the next bus arrival to the bus station experienced by 

a random passenger, whereas W  is the average time until  boarding a bus. Q' is the  average  maximum 

queue length (i.e., the number of passengers waiting when a new bus arrives) which is approximately 

given by: 

  

2 2 2
1 ( 1) 1

= ( , )
2 1 1 2(1 ) 2

v s
C Cv

Q K v
 

 
  

 
    

  

 
 
 

                                   (8) 

In previous formulas (7), (8), v is the average effective bus capacity on arrival to the bus stop and Cv 

is the coefficient of variation for the effective bus capacity, 1/µ is the average value for bus inter-arrival 

times and  Cs is its corresponding coefficient of variation. K is the maximum bus capacity and ρ=λ/(µv)   

is the traffic’s intensity for the passenger’s queue. The correction term ),(  v  must be taken into 

account for low values of   and is given by: 

  3

1

2

1

2 )()(=),( YdeKvcvgbfav


                              (9) 

where a= 0.4358 , b= 0.6804 , c= 0.8862 , d= 0.4155 , e= 0.9925 , f= 0.4775 , g= 0.1892 . Y  is the third 

moment for the number of passengers arrived to the bus stop between bus arrivals. When applying this 

approximation it must be taken into account that: 0 =im Q v    and thus, 0W W  for 0 . Figures 3 

and 4 show values for the passenger’s delay W in minutes, the average queue length L=λW and given by 

Powell’s approximation. 

In order to validate the simulation model, the results of simulations are compared to the values given 

by the Powell’s approximation.  Simulations are for a bus stop with bus interarrival times following a 2-

Erlang distribution and an average value of 10 minutes. Maximum bus capacity is 100 passengers. We 

assume that buses arrive at the bus station with a random effective capacity of 75 passengers on average 

and standard deviation of 15 passengers. (A) simulation corresponds to a  poissonian input flow of 

passengers with λ=4 pax/min or an expected inter-arrival time of ][ PE  =0.25min. For this flow the 

intensity factor is ρ=0.5. 
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Figure 3: Normalized delay as a function of the intensity factor calculated using Powell’s approximation. 

 

Figure 4: Average queue length (L) and average maximum queue length (Q´) as a function of the intensity 

factor ρ calculated using Powell’s approximation. 

 

Figure 5: SDLPS showing the number of the passengers at the bus stop obtained with the REPORT pro-

cedure. On the horizontal axis is represented the time and on the vertical axis the instantaneous number of 

passengers at the bus stop. 
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When applying Powell’s formulae for the evaluation of the queue of passengers, then arrivals to the bus 

berth will follow a different pattern than bus arrivals to the station due to the presence of the queue of 

buses. Thus, for a 2-Erlang pattern of arrivals for buses, its coefficient of variation would be 0.707. Using 

the previous formulae and, without considering the queue of buses, W0 would be then 7.5 minutes. Notice 

that Powell’s formula does not take into account the bus service time. An example of the magnitudes pro-

vided after simulations appears in Table 3 and Table 4 below. 

Table 3: Summary of the main variables considered on the model. In parenthesis, the reference values 

given to the simulator for the main input magnitudes. 

Variable Mean(A) Dev(A) Cdev(A) 

P = inter-arrival 

time of passengers 

0.253 

(0.25) 

0.254 

(0.25) 

1.003 

(1.0) 

B = inter-arrival 

time of buses 

9.402 

(10.0) 

5.625 

(7.07) 

0.598 

(0.707) 

Passengers on the 

bus stop when a 

new bus arrives 

31.96 25.076 0.784 

Passengers that 

leave the bus 
21.90 14.852 0.678 

capacity of a bus 72.88 

(75) 

16.421 

(15) 

0.225 

(0.2) 

 

Table 4: The table shows the values obtained with simulations compared to those calculated using  

Powell’s formula (P). 

Variable Value(A) (P) 

Number of buses 100 -- 

Time horizon length H 992.17 -- 

Number of served passengers 3907 -- 

Total capacity in passengers 7288 -- 

Intensity factor ρ 0.54 0.5 

Mean flow of passenger arrivals 3.94 4 

Average maximum number of passengers that 

can be alighted  

7.34 -- 

Residual queue at the end of the simulation 0 -- 

Quotient NQ /͞γ  0 -- 

Q’Average/Std Dev. maximum number of 

passengers in bus stop 

31.96 / 

25.08 

36.54 

Pointwise (max/ min) number of passengers in 

bus stop during simulation 
137.0/2.0 

-- 

Average/Std. Dev. maximum number of pas-

senger after bus service operation 
2.40/9.14 

-- 

Pointwise (max/ min) number of passengers af-

ter bus service operation 
 64.0/ 0.0 

-- 

Mean time experienced by a random passenger 

until next bus arrival  W0 (minutes) 
7.90 7.50 

Ratio W/W0  1.02 1.22 
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8 CONCLUSIONS AND FURTHER DEVELOPMENTS  

The model behaves as expected and represents a detailed micro-simulation of a bus stop. This model rep-

resents a good starting point to define several alternatives to perform a detailed micro-simulation of a 

berth configuration. Since the model is represented using a graphical and modular formalism, it is easy to 

extend it in order to represent more complex behaviors. The use of SDL to represent the model simplifies 

the Validation and Verification of the simulation model. Using a formal language like SDL simplifies the 

use of knowledge of personnel with different formation, but specialist on the systems we analyze. 

Currently, further developments are focused in the combination of several berths at a single bus stop 

and the combination of several bus stops in line. Due to its complexity, these models must be solved us-

ing a simulation approach. Also since the model is defined using SDL the inherent modularity of the lan-

guage allows to extend the behavior of the model to include other specific passengers’ behavior aspects, 

such as the willingness to wait (patience) following the approach presented on (Fonseca i Casas 2014). 
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