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ABSTRACT 

This paper examines how setting targets in organizations affects decision making. We assume a division 
acts to maximize the probability of meeting its given target. We use a simulation-based model to quantify 
the value gap that results from this target-based behavior in relation to utility maximizing behavior. We 
define an optimal target as one that minimizes the value gap. We investigate the effects of the 
organization’s risk aversion, the number of potential decision alternatives, and the distribution of the 
alternatives on both the value gap and the optimal target. The distribution of the alternatives is modeled 
with a copula based method. The results show that the optimal target (i) decreases as the risk aversion 
increases; (ii) increases as the number of available alternatives increase; and (iii) decreases as the 
alternatives approach some efficient frontier.  We discuss the rationale and implications for the simulation 
results. 

1 INTRODUCTION 

Targets are used in many business contexts. For example, the popular management approaches of 
management by objectives (Drucker 1954) and balanced scorecards (Kaplan and Norton 1992) both rely 
on the use of targets. Organizations may use targets for multiple reasons. They may use them to define 
goals in an effort to increase employee motivation and persistence (Locke and Latham 2002). Or an 
organization may use targets to communicate company values for distributed decision making. This paper 
focuses specifically on the effects of fixed targets on decision making within an organization.  

We differentiate between fixed targets and uncertain targets. A fixed target is one that is certain. For 
example, a business unit may have a target of 10% increase in profits.  In this case, the manager in charge 
of the business unit knows a specific, unchanging value that defines success versus failure. On the other 
hand, an uncertain target is a random variable. For example, a business unit may have an uncertain target 
that is tied to a market index such as the S&P Index. In this case, the specific value of the target is 
revealed at a later time; the specific value of the target is uncertain. In this paper, we only examine the 
case of fixed targets. We consider an organization that sets a target for a manager. Although the decision 
alternatives are not known prior to setting the target, the organization does know the number of 
alternatives that will be available to the manager and the distribution of those alternatives. In some cases, 
the manager will select the same alternative that would have been chosen by the organization. 

The magnitude of the value gap is defined as the difference between the organization’s preferred 
alternative and the manager’s selected alternative. We determine the fixed target that minimizes the 
expected value gap by simulating decision situations and calculating an expectation over the observed 
value gaps. We consider a base case scenario and also quantify the effects of three factors: (1) the 
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organization’s risk aversion, (2) the number of decision alternatives available to the manager, and (3) the 
distribution of the decision alternatives.  

This work is based on the axioms of normative decision making set forth by von Neumann and 
Morgenstern (1954). The decision maker is assumed to maximize the probability of attaining the target 
(Abbas and Matheson 2005). Although in practice the fixed target may have some form of incentive 
linked to its attainment, we limit our investigation to optimizing the target. We assume that the decision 
maker is motivated to achieve the target and do not consider the different forms of incentives that may be 
linked to the target. 

This work is related to a body of literature that studies how targets affect decision making. Abbas and 
Matheson (2005, 2009) calculate the optimal fixed target if the decision alternatives are known prior to 
setting the target. Abbas, Matheson, and Bordley (2009) derive the effective utility functions induced by 
fixed targets. Specific applications such as targets in the newsvendor problem have also been studied (Shi, 
Zhao, and Xia 2010; Yang, Shi, and Zhao 2011)  

Other work has considered an uncertain target. Castagnoli and LiCalzi (1996) and Bordley and 
LiCalzi (2000) show that an uncertain target optimizes a utility function that is equal to the cumulative 
distribution of the uncertain target. Benchmarks may be treated as uncertain targets and have been 
characterized in this fashion by Castagnoli and LiCalzi (2006). 

The remainder of this paper is organized as follows. Section 2 describes the problem formulation and 
notation. Section 3 presents the simulation results for factors that affect the optimal target. Section 4 
discusses the results, and Section 5 provides concluding remarks. 

2 PROBLEM FORMULATION  

2.1 Basic Notation and Problem Formulation 

We consider the problem of an organization with a known utility function that must determine how to set 
a fixed target for a single manager, or equivalently, a single division. The decision alternatives that will be 
available to the manager have Gaussian distributions characterized by their mean and variance. The 
organization knows the distribution over the potential decision alternatives as represented by a 
distribution over the Gaussian parameters. The organization also knows the number of alternatives that 
will be available to the manager. Given a fixed target and a set of decision alternatives, the manager 
selects the alternative with the greatest probability of exceeding the target. 

The notation is as follows. Each decision alternative is denoted ia  where the mean and variance of 
alternative ia  are i�  and 2 ,i�  respectively. Superscripts denote the preferences of the organization and 
the manager; thus Oa  denotes the alternative preferred by the organization, and Ma  denotes the 
alternative preferred by the manager.  

Following the axioms of decision analysis, for any uncertain outcome, a certain equivalent exists that 
defines the certain deal that the organization would be indifferent to exchanging for the uncertain 
outcome. The organization’s certain equivalent for alternative ia  is denoted � �.iCE a  We assume the 
organization has an exponential utility function. Note that the certain equivalent for a decision maker with 
an exponential utility function and a Gaussian distributed outcome is  

 

 
2

2
CE ���� �   (1) 

 
where �  is the organization’s risk aversion (Howard 1971). 

The organization loses value if the manager’s selection is inconsistent with the organization’s 
preferences. The value gap measures this lost value and is denoted VG . It is defined as the difference 
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between the organization’s certain equivalent for its preference and its certain equivalent for the 
manager’s selected alternative,  

 
 � � � �.O MVG CE a CE a�� �� �O �CE a� �O �   (2) 
 
When the manager’s selection matches the organization’s preferences, the value gap is zero.  

The value gap is a random variable whose magnitude depends on both the fixed target and the 
particular set of alternatives available to the manager. We shall quantify the expected value gap, [ ]E VG , 
and its variance, ( )V VG , where [ ]E ]  and ( )V )  denote the expectation and variance of the value gap. 
Note that the units of the expected value gap are the same units that the outcomes are measured in. Thus, 
if the decision alternatives are characterized by a Gaussian distribution over profit, then the expected 
value gap is a measure of money. 

2.2 Simulation Method 

We use simulation to calculate the expected value gap and the variance of the value gap as a function of 
the fixed target. To do this, we use a simulation method described by the following steps. 

 
1. Set the fixed target level.  
2. Generate a set of projects by simulating the Gaussian parameters of each project following 

the known distribution of decision alternatives. 
3. Calculate the organization’s best decision alternative as the alternative that maximizes the 

certain equivalent for the organization given by (1). 
4. Calculate the manager’s best decision alternative as the alternative that maximizes the 

manager’s probability of attaining the target. 
5. Calculate the value gap according to (2). 
6. Repeat for 10,000 simulated decisions, and calculate the expectation and variance of the 

value gap. 
7. Repeat for different values of the fixed target. 

 
 In this paper, we consider several different cases of varying system elements and how the value gap is 
influenced in each case.  The elements we examine include the company’s risk aversion, the number of 
decision alternatives, and the distribution of the decision alternatives. For the different cases, some of the 
simulation steps change. For example, when considering the effect of the organization’s risk aversion, the 
calculation of the organization’s preference (step 3) is affected; the specified risk aversion must be used. 

It is insightful to begin with a simple case in order to provide a benchmark for comparison. We will 
refer to this simple example as the base case and refer to it throughout the discussion of the simulation 
results.  The base case is described by the following conditions.  

 
	 The organization is risk neutral.  
	 The division selects between two decision alternatives.  
	 The Gaussian parameters of the alternatives � �2,i i� �  are independent and uniformly 

distributed from 0 to 1.  
 

 
Due to the scaling of the Gaussian parameters from 0 to 1, the magnitudes of [ ]E VG  and ( )V VG  are 

also scaled. For example, suppose an organization has a uniform distribution over the potential 
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alternatives’ means and variances that ranges from $0 to $50 million dollars. Then an expected value gap 
of 0.05 would, in units of dollars, be $2.5 million.  

The results show that in this case, a minimum expected value gap exists as illustrated in Figure 1.  
The optimal target is the midpoint of the distribution over the decision alternatives’ means. The variance 
of the value gap also has a minimum that coincides with the minimum of the expected value gap. The 
next sections consider deviations from the base case.  

 

 
Figure 1: The simulation results for the simple base case.  

3 SIMULATION RESULTS 

3.1 Effect of the Organization’s Risk Aversion on the Optimal Target 

Because the value gap is a random variable, organizations with different attitudes towards risk will likely 
have different optimal fixed targets; organizations with different risk attitudes will have different 
evaluations of the same random variable.  In this paper, we use risk aversion as defined by Arrow (1965) 
and Pratt (1964) to measure the organization’s risk attitude. Risk aversion is denoted �  and defined as 

''( ) '( )u x u x� � ''( )u ''( )�  where ( )u x  is a utility function and '( )u x  and ''( )u x  are its first and second 
derivatives, respectively.  
   

 
Figure 2: The optimal fixed target decreases with increasing organization risk aversion. 

   
To characterize the effect of risk aversion, we follow the general simulation procedure previously 
described. In step 3, however, the organization’s preference is calculated using the appropriate risk 
aversion. The simulation is repeated across different values of risk aversion .  
 The results show a negative relationship between the optimal fixed target and the organization’s risk 
aversion. The optimal target decreases as the organization’s risk aversion increases. Figure 2 illustrates 
the results for organization risk aversion that ranges from 0 (risk neutral) to 1.5 in increments of 0.5.  
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 The negative relationship between the organization’s risk aversion and the optimal target is directly 
illustrated in Figure 3 which show the optimal target as a function of the organization’s risk aversion. The 
optimal target decreases steadily with increases in the risk aversion. Above � �
�� , the optimal target 
becomes zero.  
 The results are important because they show significant differences in the optimal strategies between 
risk neutral and risk averse organizations. The implication is that organizations must understand their own 
risk attitude prior to setting targets for their managers as a first step towards optimality.  The underlying 
reason for the observed trend in organization risk aversion is discussed in Section 4.   
 

 
Figure 3: The optimal target decreases with increasing organization risk aversion.  

3.2 Effect of the Number of Alternatives on the Optimal Target 

Another factor that affects the value gap is the number of decision alternatives available to the manager. 
We again follow the general simulation procedure. In step 2, however, the number of decision alternatives 
in the set of alternatives is varied; the simulation is repeated for different numbers of alternatives.   
 The results show a positive relationship between the number of decision alternatives and the optimal 
fixed target. As the number of alternatives increases, the optimal target also increases. The optimal target, 
however, never exceeds the upper bound of the distribution over the Gaussian mean values.  Additionally, 
the magnitude of the expected value gap increases considerably for suboptimal, low fixed targets. At a 
target equal to zero, the expected value gap for two alternatives is approximately 0.05 for the scaled 
outcome values. For 20 alternatives, the expected value gap increases to over 0.25 for the same target. 
These results are illustrated in Figures 4 and 5 which show the expected value gap for a range of fixed 
targets and show the optimal target for two to twenty-five alternatives.    
 

 
Figure 4: The expected value gap changes with the number of decision alternatives. 
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 These results have important implications for how organizations set targets. Consider a small 
company that operates in a niche market versus a large corporation operating across several markets. On 
average, the small company likely will have fewer decision alternatives available for a given decision 
than the larger company. As a result, the small company should set lower targets than the large 
corporation in order to minimize the expected value gap.  
 

 
Figure 5: The optimal fixed target increases as the number of decision alternatives increases. 

3.3 Effect of Distribution of Alternatives on the Optimal Target 

We have thus far only considered a uniform distribution across the Gaussian parameters. In practice, 
however, this may not be the case. The efficient frontier, for example, shows that for investment 
decisions, a relationship exists between the expected return and the risk, or the variance, of the optimal 
investment alternatives (Markowitz 1991). In the problem formulation of this work, the implication would 
be that the decision alternatives’ means and variances were positively correlated.  
 To model this phenomena, we use a Gaussian copula. The parameter of the copula governs the 
correlation between the two variables. As the parameter approaches zero, the two parameters approach 
independence. As the parameter approaches 1, the two variables approach perfect positive correlation.  
Figure 6 illustrates the correlation for parameters equal to 0.001, 0.9, and 0.999.  
 

 
Figure 6: The two variables of the Gaussian copula are increasingly positively correlated as the copula 
parameter increases towards 1. Shown here are samples with parameters equal to 0.001, 0.9, and 0.999. 
 
 We follow the general simulation procedure. In this case, however, the Gaussian copula is used in 
step 2 to simulate the decision alternatives’ parameters. The simulation is repeated for different values of 
the copula correlation parameter.   
 The results are illustrated in Figure 7. When the alternatives’ mean and variance are independent, the 
expected value gap is symmetric for fixed targets from zero to one. As the correlation between the mean 
and variance increases, however, the expected value gap is no longer symmetric. For high correlation, the 
value gap for greater for low targets and smaller for high targets. The optimal target is observed to 
decrease.   
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Figure 7: The shape of the expected value gap as a function of the fixed target changes as the correlation 
between the decision alternatives’ mean an variance changes.  

4 DISCUSSION 

The simulations underscore the importance of understanding both the organization’s preferences and the 
environment in which it operates in order to appropriately set fixed targets for its managers. We now 
examine the underlying rationale behind the results observed in the simulations. 

As the organization’s risk aversion increases, the optimal target decreases. This result may be 
explained in terms of tradeoffs in the decision making between the expected value of an outcome and the 
variance of that outcome. For a fixed target, this tradeoff is determined by how the probability of 
achieving the target is affected. To calculate this tradeoff, we solve for the curve of points in the mean-
variance domain that have the same probability of achieving the target as a reference alternative, 
 

 
2

0

2
0

( )T � �
�

�

�
� 
�    (3) 

 
where 0�  and 2

0�  are the mean and variance of the reference project. The tradeoff between the mean and 
variance is the derivative,  
 

 0
2 2 2
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2

Td
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�
�    (4) 

 
As the target increases, the tradeoff becomes smaller. A smaller tradeoff means that the manager requires 
a smaller increase in the expected payoff to accept additional variance. Smaller mean-variance tradeoffs 
are consistent with lower risk aversion. As the target decreases, however, the manager requires a greater 
increase in the expected payoff to accept additional variance, consistent with greater risk aversion. Thus, 
we see that the fixed target and the risk attitude of the organization are related. The simulation results 
provide a valuable quantification of this relationship.  
 The number of decision alternatives available to the manager also affects how the optimal target is 
set. As the number of alternatives increases, the optimal target increases. To understand this trend, 
consider how the location of the most organization’s most preferred alternative in the mean-variance 
domain is affected as the number of uniformly distributed alternatives increases. A greater number of 
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alternatives increases the likelihood of a high mean, low variance alternative. For example, Figure 8 
illustrates how the distribution of the most preferred alternative changes when two versus four alternatives 
are available.  In order to ensure that the manager selects an attractive high mean-low variance alternative, 
a high target is required. Thus, we observe an increase in the optimal target as the number of uniformly 
distributed decision alternatives increases.  
 
 

  

 
Figure 8. A “high mean-low variance” alternative is more likely when more alternatives are available. 

 
 The results also show that the distribution of decision alternatives affects the  expected value gap. As 
the correlation between the alternatives’ mean and variance increases, the curve of the expected value gap 
becomes asymmetrical. At targets above a critical value, the expected value gap remains close to zero. 
This critical value decreases as the correlation between the mean and variance increases. This result 
follows from two observations. First, at lower target values, the manager is more sensitive to small 
changes in the variance of alternatives due to (4). Thus, for the risk neutral organization, the results show 
larger expected value gaps for lower fixed targets than for higher fixed targets. Second, as the correlation 
between the mean and the variance increases, the tradeoff between the mean and the variance is 
determined largely by the distribution, not by decisions made by the manager.  
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5 CONCLUSION 

We formulate the problem of an organization that wishes to optimize a fixed target for a manager when 
the decision alternatives are unknown. We define a value gap as the difference in value between the 
manager’s selection and the organization’s preference. Simulations are used to quantify the expected 
value gap and identify the fixed target that minimizes the expected value gap. The contributions of this 
work include the formulation of a generalizable, simulation-based approach to analyze the effects of fixed 
targets in an organization and also the identification and characterization of factors that affect the optimal 
target. 
 The effects of the organization’s risk aversion, the number of available alternatives, and the 
distribution of the alternatives are characterized. The results show that increases in the organization’s risk 
aversion decrease the optimal target. Increasing the number of available alternatives increases the optimal 
target. Increasing the correlation between the mean and variance of the decision alternatives leads to an 
asymmetrical expected value gap that approximates zero above a critical target level. The rationale for 
these results in terms of tradeoffs between alternatives’ means and variances and in terms of the 
distribution of alternatives is discussed. 

This work shows that suboptimal targets may lead to expected value gaps that are greater than 
necessary. Thus, organizations should carefully consider both their own risk attitude and the environment 
in which they operate prior to setting fixed targets. In particular, organizations should consider what types 
of decisions are being made by the managers and characterize its belief of the distribution of those 
alternatives.  The methods used to characterize this uncertainty may vary by industry. For example, in 
finance, a body of work exists that studies uncertainties associated with the stock market (Connolly, 
Stivers and Sun 2005). In other industries, however, such resources for characterizing uncertainty may not 
exist. An important implication of this paper is the need for methods to characterize uncertainties that 
describe future decision situations.  

The simulation-based approach presented in this paper is a useful tool for improving the performance 
of target based decision making. The method may be tailored to derive insights for a variety of 
organizational settings. It is generalizable to both the distribution of decision alternatives and the utility 
function of the organization. Further generalizations are also possible. For example, if the organization 
does not know the number of alternatives that will be available to the manager but can specify its belief 
about the probability of each number of alternatives, then the expected value gap may be calculated by 
conditioning on each possible number of alternatives.  

The approach does have limitations, however. We have assumed that the decision alternatives have 
outcomes that follow Gaussian distributions and that the organization has an exponential utility function. 
These assumptions reduce the computational demands of the simulation. Although these assumptions may 
be reasonable in many settings, there may be industries in which uncertain prospects are known to follow 
non-Gaussian distributions or in which the organization follows a non-exponential utility function. In 
these cases, the simulation based method would increase in computational complexity but could still be 
used to derive insights.  

The flexibility and insightfulness of the simulation-based method for optimizing fixed targets enables 
organizations to apply it to their own operations and maximize the value captured by their managers.  
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