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ABSTRACT

Influenza is a serious public health concern and vaccination is the first line of defense. In a pandemic,
individuals are prioritized based on their risk profiles and transmission rates to ensure effective use of
the available vaccine. We use an agent-based stochastic simulation model, and optimize the age-specific
vaccine distribution strategy. We use black-box optimization techniques to minimize the overall cost of
the outbreak. Our numerical experiments show that the best policy returned by our approach outperforms
alternative policies recommended by the Advisory Committee on Immunization Practices and Centers for
Disease Control and Prevention.

1 INTRODUCTION

Influenza (flu) is a serious public health concern. Seasonal epidemics impact 5-15% of the world’s population,
resulting in 3-5 million cases of severe illness and up to 500,000 deaths annually. In a typical seasonal
epidemic, between 5% and 20% of the US population gets the flu, of whom 200,000 are hospitalized and
36,000 die (CDC 2013). Elderly people, young children, pregnant women, and people with chronic medical
conditions are at high risk for serious complications (Fiore et al. 2009). Influenza has also significant
economic impacts, which include direct medical costs and working days lost. The annual economic burden
of influenza epidemics based on statistical life projections amounts to $87.1 billion (95% CI: $47.2-$149.5)
in the US (Molinari et al. 2007).

Influenza viruses frequently mutate. A pandemic is caused by an emerging influenza virus that spreads
worldwide infecting a large proportion of the human population. Unlike seasonal influenza epidemics,
pandemics reoccur intermittently, and usually cause high levels of mortality. Three influenza pandemics
occurred in each century for the last 300 years. The 1918 Spanish influenza pandemic, the first of the
two pandemics involving H1N1 influenza virus in the 20th century, infected 500 million people across the
world killing approximately 50 million or more (Taubenberger and Morens 2006).

Vaccination is the most effective pandemic response. Social distancing strategies (e.g. school closure,
quarantine, isolation) and public health measures (e.g. improved hygiene, respiratory protection) can
reduce the risk of exposure and infection (Ferguson et al. 2006; Germann et al. 2006), but can not reduce
susceptibility among the population. Prophylaxis with antiviral medications also may prevent infection but
requires large antiviral drug stockpiles and does not provide long-term immunity. By contrast, immunization
with a well-matched pandemic vaccine would provide the most durable pandemic response. However, given
current timeline for the development of a pandemic influenza vaccine and its production capacity, vaccine
is not likely to be available in sufficient quantities before pandemic outbreaks occur, and thus potentially
limited stocks may need to be prioritized.
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The national and global pandemic mitigation plans has been evaluated using compartmental mathematical
models (Longini, Ackerman, and Elveback 1978; Chowell, Miller, and Viboud 2008; Chowell et al. 2009;
Hill and Longini 2003; Tuite et al. 2010) and agent-based simulation models (Ferguson et al. 2005;
Ferguson et al. 2006; Germann et al. 2006; Merler, Ajelli, and Rizzo 2009). In particular, Medlock
and Galvani (2009) developed a compartmental SEIR (susceptible, exposed, infectious, recovered) model
to determine the optimal age-specific vaccine allocations for the US population based on five outcome
measures: deaths, infections, years of life lost, contingent evaluation, and economic costs. They calibrated
the model for both the 1918 A (H1N1) and 1957 A (H2N2) pandemics. The optimal vaccine distribution
in both cases was vaccinating people aged 5 to 19 and 30 to 39. The rationale behind this result is that
children 5 to 19 are responsible for most transmission and for the spread of infection to their parents aged
30 to 39. Thus, both those most responsible for transmission and those most likely to be infected are
prioritized, which in turn protects the rest of the population. Medlock and Galvani (2009) concluded that
disease transmission must be explicitly considered when optimizing vaccine allocation.

However, the homogeneous mixing assumption of compartmental models describes the dynamics of an
epidemic when large numbers of individuals are infected, rather than the initial or final stages of an outbreak,
when stochastic person-to-person transmission among small numbers of individuals are involved (Germann
et al. 2006). Moreover, they generally do not incorporate the granularity that can be modeled in a simulation
such as specific household structures and work environments (Andradóttir et al. 2014). Therefore, agent-
based models may be more suitable to include a complicated natural history of disease or detailed intervention
strategies. Nevertheless, enumerating all-possible vaccine distribution policies with such models is not
possible due computational burden of the process; therefore, novel simulation optimization approaches are
needed to address vaccine distribution for influenza pandemics.

In this paper, we use numerical optimization techniques to determine the optimal age-specific vaccine
distribution based on a discrete time, stochastic simulation model of influenza outbreak within a community-
structured population. Rather than comparing the efficacy of just a few specific vaccination policies, as it is
often done in simulation modeling, our approach returns one of the best performing vaccine distributions,
essentially searching over all possible age-specific vaccination policies. In the literature, Patel, Jr., and
Halloran (2005) used a genetic algorithm and a random mutation hill climbing heuristic to optimize the
age-specific vaccine distribution to mitigate an influenza pandemic generated by a stochastic simulation
model with 10,000 individuals. We consider a more realistic population, in particular the metropolitan
Seattle where approximately 560,000 residents live (US Census Bureau 2000).

2 METHODS

2.1 Epidemic Simulation Model

Epidemic simulations model the spread of an infectious disease in a population through the contacts between
susceptible, infectious, and immune individuals. Such models help understand the dynamics and patterns
of disease propagation. They also provide useful tools for analyzing the effect of various interventions.

We use a stochastic simulation model of influenza transmission in the metropolitan Seattle where
approximately 560,000 residents live (Chao et al. 2010). The simulation generates a synthetic population
of census tracts, and each tract consists of communities of 500–3000 individuals. Each community is
populated by randomly generated households of size 1–7 based on the US family size distribution (US
Census Bureau 2000). Individuals are categorized into five age groups: preschool (0-4), school (5-18),
young adults (19-29), middle aged adults (30-64), and the elderly (65 and over). Each person is a member
of various social mixing groups including family, household cluster, neighborhood, community, workplace,
playgroup and school, as appropriate. The simulation runs in two time steps per day. At night, everyone
can contact with other individuals in their families, household clusters, home neighborhoods, and home
communities. During the day, most children attend school or a playgroup, where there is a relatively high
probability of transmission. Each community has two elementary schools, one middle school, and one high
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Özaltın, Dalgıç, and Erenay

school. Preschool-age children usually belong to either a playgroup or a neighborhood preschool. The
number of employed working-age adults (aged 19-64 years-old), and tract-to-tract worker flow data are
extracted from the Census 2000. Employed individuals are assigned to neighborhoods within their work
tracts to simulate community contacts during the day, and to a work group of about 20 people to represent
their close contacts at the workplace. The contact probability of two individuals in the same social mixing
group is the probability that they will have sufficient contact for transmission during a time step. Chao
et al. (2010) calibrated contact probabilities so that the final age-specific attack rates are similar to 1957
Asian A (H2N2) influenza pandemic, which is hereafter referred to as Asian-like influenza.

The model randomly infects 10 people at the beginning of the simulation. Once infected, an individual
becomes infectious for six days, and her infectiousness is proportional to the log of the daily viral titers (Chao
et al. 2010). Asymptomatic incubation period lasts for one, two, or three days with 0.3, 0.5, and 0.2
probabilities, respectively. After incubation, 67% of infected individuals become symptomatic (Carrat et al.
2008). Symptomatic individuals are twice as infectious as asymptomatic individuals. Infected individuals
recover six days after infection and become immune. Vaccinated individuals have a reduced likelihood
of becoming infected (40%), of becoming ill given infection (67%), and of transmitting infection (40%)
(Halloran, Longini, and Struchiner 2010).

We use the same vaccine efficacy for each age group except those aged 65 and over for whom the
relative efficacy is reduced by 40%. We assume that each vaccinated person receives one dose of vaccine.
The vaccine effectiveness increases exponentially starting the day after vaccination, and it takes two weeks
to reach maximum efficacy. Because of this delay, vaccines can be administered four weeks before the
pandemic (pre-vaccination) or during the epidemic with a certain response delay (reactive vaccination).

To validate their simulation model, Chao et al. (2010) ensured that 1) simulated final age-specific
attack rates and percentage of transmission attributed to each mixing group match to those of Asian-like
influenza; 2) simulated household secondary attack rates match to those in the literature; 3) the calibrated
contact probabilities and the estimated statistics such as average time between infection and transmission
to susceptible are consistent with the values reported in the literature.

2.2 Optimization Problem

The outcome measure used to quantify the success of a vaccination program is fundamental when evaluating
different strategies. Example outcome measures frequently used in the literature include number of infections,
number of deaths, years of life lost and economic cost, which is also used in our study. We consider costs
associated with vaccination and infection of unvaccinated and vaccinated individuals (see Table 1).

Table 1: Costs in 1995 US dollars. Cost of vaccination includes cost of the vaccine, cost of time lost

to work, and weighted cost of side effects. Cost of infection includes weighted costs of illness without

medical care, outpatient visits, and hospitalization (Medlock and Galvani 2009).

Cost Age Group Value ($)

Vaccination all 37.26

Infection of unvaccinated

0-18 275.30

19-64 328.98

65+ 492.56

Infection of vaccinated

0-18 231.58

19-64 264.71

65+ 404.54

Given a limited supply of influenza vaccine, a particular population, and parameters for a single wave
influenza pandemic, the optimization problem decides the portion of each age group that should be allowed
for vaccination to minimize the overall cost of the pandemic.
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Let pi and ni be the portion allowed for vaccination and the total number of individuals in age group
i = 1, . . . ,5, respectively. To evaluate the optimal distribution of available vaccine doses V , we find the
optimal pi so that the cost of the pandemic is minimized, subject to the constraints 0 ≤ pi ≤ 1. We do not
explicitly enforce ∑5

i=1 ni pi ≤V in the optimization model, because the number of individuals allowed for
vaccination might exceed the amount of available vaccine. Note that the actual number of people vaccinated
in each age group is determined in the simulation model based on random arrival patterns of individuals.
However, the simulation model guarantees that no more than pi portion of age group i is vaccinated.

Influenza transmission from person to person is a complex process. In addition, given an introduction
of influenza into a population, there is high variation in the probability of an epidemic outbreak as well
as its size and duration. Thus, the mathematical models for influenza epidemics should capture a detailed
contact structure and be stochastic (Patel, Jr., and Halloran 2005). The epidemic process is non-linear since
the incidence of new infections depends on the current number of both infected and susceptible people
in the population at a particular time. All of these factors render traditional gradient-based optimization
methods, such as the Newton–Raphson method, inapplicable.

We solve the optimization problem numerically using mesh adaptive direct search (MADS) algo-
rithm (Abramson et al. 2014). Starting with an initial solution MADS iteratively tries to improve the
current best solution by generating a trial point on the mesh. If the trial point cannot improve the best
solution, a finer mesh is generated in the next iteration. The MADS algorithm is suitable for our problem,
because it is a derivative-free technique (Audet and Dennis 2006).

3 RESULTS AND DISCUSSION

3.1 Optimal Vaccine Distributions

In our numerical experiments, we consider ten configurations with three different vaccine coverage levels

∑5
i=1 ni/V = 0.2,0.3,0.4, three different response delay times: prevaccinate, vaccinate on the first day of the

epidemic, and vaccinate after 10 days from the onset of the epidemic, and six different basic reproductive
ratio R0 = 1.4,1.6,1.8,2.0,2.2,2.4, defined as the expected number of secondary infections caused by a
single infectious individual in a completely susceptible population (Anderson and May 1991). If R0 < 1,
then each infected individual produces, on average, less than one new infected individual, and we therefore
predict that the infection will not spread. On the other hand, if R0 > 1, the infection is able to invade
the susceptible population. The mesh adaptive direct search is started from the initial solution pi = 0.5,
i = 1, . . . ,5. For each solution, the simulation model is run 8 times with different random number seeds,
and the average cost is calculated. Table 2 presents the settings of each configuration and the associated
optimal solution. Replications are performed in parallel on a computer with 3.40 GHZ CPU with 8 cores
and 12 GB memory. Each replication is performed on single core. Small stochastic variability across the
replications because of the large population size (i.e. 560,000 residents) indicates that 8 runs are adequate.

As seen in Table 2, vaccinating school children is the main focus in each configuration. This result
is due to the fact that Asian-like influenza had the highest illness attack rate in school children, followed
by preschool children with adults having a lower attack rate (Longini et al. 1978). The model does not
allocate any vaccine to young adults if the coverage is 20% (Configuration 1). However, a small portion
of young adults get vaccinated when the coverage reaches 30% (Configurations 2 and 3). Note that when
the epidemic spread is relatively slow in Configuration 5, the optimal solution is to vaccinate only 75%
of the school children. On the other hand, when R0 = 1.8 in Configuration 6, the vaccine is allocated to
both preschool children and young adults in addition to school children to slow down the fast spreading
epidemic. In general, the priority of the young adults increases as R0 increases in Configurations 7, 8 and
9. Surprisingly, the optimal solution does not differ much between Configuration 4 with 10-day response
delay and Configuration 10 with prevaccination. Preschool children are not vaccinated in both of those
configurations, and young adults are given higher emphasis than they are given in Configuration 2.
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Table 2: Ten configurations considered in the numerical experiments.

Optimal Solution

Configuration Coverage R0 Response Delay 0-4 5-18 19-29 30-64 65+

1 0.2 1.6 no delay 0.048 0.946 0.000 0.001 0.000

2 0.3 1.6 no delay 0.050 1.000 0.055 0.000 0.000

3 0.4 1.6 no delay 0.050 1.000 0.055 0.000 0.000

4 0.3 1.6 10-day delay 0.000 1.000 0.305 0.000 0.000

5 0.3 1.4 no delay 0.000 0.750 0.000 0.000 0.000

6 0.3 1.8 no delay 0.850 0.994 0.200 0.000 0.000

7 0.3 2.0 no delay 0.666 0.992 0 0.290 0.000

8 0.3 2.2 no delay 0.584 0.999 0.291 0.287 0.000

9 0.3 2.4 no delay 0.760 0.999 0.999 0.000 0.001

10 0.3 1.6 prevaccinate 0.000 1.000 0.500 0.000 0.000

Table 3: The portion of each age group that is allowed for vaccination under alternative policies.

Strategy 0-4 5-18 19-29 30-64 65+

ACIP 1.000 1.000 0.167 0.000 0.000

FCDC 1.000 0.000 0.000 0.429 1.000

NCDC 1.000 1.000 0.000 0.429 1.000

Uniform 1.000 1.000 1.000 1.000 1.000

No vaccination 0.000 0.000 0.000 0.000 0.000

3.2 Comparison with Alternative Strategies

The current US pandemic vaccine prioritization strategy is based on the severity of the disease (Schwartz
and Orenstein 2009). Pandemic Severity Index identifies five categories based on the case fatality rate (CDC
2007). The mortality as a result of a Category 1 pandemic, defined by a case fatality rate of < 0.1%,
would be slightly greater than a severe seasonal influenza epidemic. Therefore, the proposed US vaccine
prioritization strategy for less severe pandemics (Categories 1 and 2) is similar to recommendations for
annual influenza vaccination. The US Centers for Disease Control and Prevention (CDC) recommended the
vaccination of children aged 6 months to 5 years old and of adults aged 50 and over for seasonal influenza.
These recommendations were expanded in 2008 to include children through age 18 (CDC 2008). Moreover,
the CDC’s Advisory Committee on Immunization Practices (ACIP) proposed guidelines for vaccinating
against the novel swine-origin influenza that prioritize young people aged 6 months to 25 years, excluding
the elderly due to their reduced susceptibility (CDC 2009).

We compare our optimal vaccine distribution policies with five alternative vaccination policies: ACIP
guidelines, former CDC (FCDC), new CDC (NCDC), uniform (i.e. distribute the vaccine on first-come-
first-served basis), and no vaccination. In our numerical experiments, we set the portion of each age group
that is allowed for vaccination under those policies as in Table 3.

Figures 1 and 2 depict the attack rate in Configuration 2 and percentage of vaccinated people from each
age group under different policies, respectively. Our optimal policy and ACIP guidelines both emphasize
vaccinating school children, and they clearly outperform other policies with respect to attack rate. However,
in Figure 2, ACIP guidelines vaccinate significantly more preschool children and young adult than our
optimal policy. As a result, implementing our optimal policy is less costly than implementing ACIP
guidelines. Note that attack rates under our optimal policy are below the attack rates under the ACIP
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Figure 1: The percentage of infected people from each age group in Configuration 2.

guidelines in all age groups except the preschool children, where the ACIP guidelines perform slightly
better.

Finally, Figure 3 shows the reduction in total cost of infection and vaccination relative to no vaccination
for all configurations. The cost reduction achieved by our optimal policy is around 90% for all configurations.
Cost reductions under the ACIP guidelines are close to those achieved under our optimal policy except
configurations 1 , 6, 7, 8 and 9. Since R0 value gets higher in configurations 6-9, usage of our optimal
policy becomes even more important when the disease propagation is aggressive. Note that the coverage
level is as low as 20% in configuration 1. As a result, we conclude that our optimal policy distributes the
available vaccine supply more efficiently than the ACIP guidelines.

4 CONCLUSION

We developed a simulation-optimization approach to determine the optimal age-specific distribution of
limited vaccine supply to mitigate an influenza pandemic outbreak. Our results indicate that targeted
vaccination of school children has the benefit of reducing the burden of disease in this age group and the
also reduces the attack rate in the entire population. Despite various modeling approaches and assumptions,
several studies have found that vaccinating schoolchildren could reduce the overall incidence of influenza in
the population and the overall number of deaths expected (Basta et al. 2009; Mylius et al. 2008; Patel, Jr.,
and Halloran 2005). Our optimal policies under different coverage, epidemic spread, and response delay
configurations outperform CDC and ACIP recommendations, although ACIP guidelines for swine-origin
H1N1 performs substantially better than other CDC guidelines.
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Figure 2: The percentage of vaccinated people from each age group in Configuration 2.

There are many limitations to our model with respect to choice of parameter estimates and the
incorporation of biological, environmental, operational, political, and economic features. We illustrate an
age-specific distribution scheme but do not further consider other sub-groups such as those people with
chronic medical conditions and pregnant women. Disease-related mortality was also neglected, under the
assumption that deaths would occur at the latter stages of the infectious period and thus not significantly
affect the spread of disease.

When the next pandemic strain of influenza is identified, vaccine development and production should
proceed as quickly as possible. Once the age-specific illness attack rate patterns are identified, the epidemic
simulation can be calibrated with the current US population structure. Then the optimization model can
be used to investigate the best vaccine distribution given the available supply. The proposed simulation
optimization approach is generally applicable to other infectious diseases and population structures. In
addition, it provides a benchmark for analytic models to measure the potential optimality gap caused by
simplifying assumptions such as homogenous population mixing.
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Figure 3: The cost reduction percentage of policies for each configuration.

Andradóttir, S., W. Chiu, D. Goldsman, and M.-L. Lee. 2014. “Simulation of influenza propagation: Model
development, parameter estimation, and mitigation strategies”. IIE Transactions on Healthcare Systems
Engineering 4 (1): 27–48.

Audet, C., and J. Dennis. 2006. “Mesh Adaptive Direct Search Algorithms for Constrained Optimization”.
SIAM Journal on Optimization 17 (1): 188–217.

Basta, N. E., D. L. Chao, M. E. Halloran, L. Matrajt, and I. M. Longini. 2009. “Strategies for Pandemic
and Seasonal Influenza Vaccination of Schoolchildren in the United States”. American Journal of
Epidemiology 70 (6): 679–686.

Carrat, F., E. Vergu, N. M. Ferguson, M. Lemaitre, S. Cauchemez, S. Leach, and A. J. Valleron. 2008.
“Time lines of infection and disease in human influenza: a review of volunteer challenge studies”.
American Journal of Epidemiology 167 (7): 775–785.

CDC 2007. “Community strategy for pandemic influenza mitigation”. Available via http://www.pandemicflu.
gov/plan/community/commitigation.html [accessed May 5, 2014].

CDC 2008. “Prevention and Control of Influenza: Recommendations of the Advisory Committee on
Immunization Practices (ACIP)”. Available via www.cdc.gov/mmwr/preview/mmwrhtml/rr57e717a1.
htm [accessed May 15, 2014].

CDC 2009. “Novel H1N1 Vaccination Recommendations”. Available via www.cdc.gov/h1n1flu/vaccination/
acip.htm [accessed May 15, 2014].

1418
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