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ABSTRACT

Forest fires are time evolving disasters that consume environmental and financial resources, endangering the
rescue units that try to mitigate them. As such, a simulator that can predict the fire propagation is essential
to locate control systems, in order to reduce the loss of natural resources without risking the firefighters.
This paper proposes a simulator based on discrete representation of the selected areas where the velocity
of fire propagation between neighbors depends on variables associated with locative or climatological
characteristics. We consider discrete classification based on the spread in each direction. To validate
our simulator we considered two scenarios: a theoretical area to test the algorithm considering complete
information characteristics and a forest area near Bogotá, Colombia. The results show realistic propagation
patterns compared to region real past forest fire events. For a better prediction we need more reliable data
and relate the fire to both location and weather characteristics.

1 INTRODUCTION

Unlike many other natural disasters, forest fires do not happen within a confined time period, but they tend
to evolve through time if not managed properly. Worldwide, there are at least 10,000 large forest fires
annually; and between 2007 and 2009, 17,120 lives were lost in the 20 countries on the top of the list of fire
management expenditures according to the World Fire Statistics Center. Additionally, there is an annual
average of 13 millions burned acres due to wildfires only in North America. Forest fires in countries such
as the United States can result in a cost of USD$17,000 millions per year, taking into account mitigation
and fire control expenses (WFSC 2012).

Bogotá D.C.’s savannah and its surroundings are mixed forests that combine local vegetation with
foreign introduced one. This creates a high-risk type of forest as the ecosystem is not well adapted to some
of the non-native vegetation. The Eastern Forest Reserve of Bogotá has one of the largest urban limits in
the world, causing the formation of many urban invasions in some of its 14,150 acres (CAR 2006). Forest
fires are commonly produced by urban life activities happening in places surrounded by dense vegetation.
On average, there are over 300 forest fires each year, from which at least the 5% are large scale fires of
over 5.000m2 (UAECOBB 2013a). In particular, the Eastern Reserve had at least one large scale fire every
year, over the past 50 years. The latest fire before this text was written occurred in La Calera, Colombia,
a town in the surroundings of Bogotá, which burned over 7 acres. In this case it was determined that the
fire ignited next to a road between the two urban areas (UAECOBB 2013b).
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Efficient fire mitigation policies may reduce both the natural and economic costs of such disasters.
The Official Fire Fighters Department of Bogotá (UAECOBB) could perform more efficient attacks and
have better ignition risk control strategies if they had a simulation tool that could predict the fire spread
from a given point of origin. Such a simulator should consider how the fire spreads according to various
location and weather conditions and show the final shape of the fire in a given time period. Our objective
in this paper is to develop such a simulation model, considering the climate and location characteristics
that affect the spread in the savannah of Bogotá, in order to efficiently predict the fire propagation based
on the specific characteristics.

This paper is presented as follows: Section 2 describes some of the existing fire risk tools; Section 3
describes our proposed methodology and the mechanism of our proposed simulator; Section 4 presents
results of the simulator in different scenarios and Section 5 presents conclusions on the results of the
different simulations and our future work.

2 LITERATURE REVIEW

In this section we discuss the existing fire risk tools that could help design the fire mitigation policies,
namely ignition risk models and prognostic propagation models. The first kind are models that consider the
probability of each point to be the starting ignition point of a fire. The second kind predict the fire spread
through time, from a given ignition area. They tend to relate either the ignition risk or the fire propagation
(according to their objective) to a set of forest characteristics. These characteristics usually are location
related (type of vegetation, height, nearby water bodies, vegetation coverage, etc.) and weather related (sun
radiation, temperature, wind direction, wind speed, precipitation, etc.). In general, models tend to predict
at least one of the three possible features: ignition risk, spread direction and spread speed. In the case of
the ignition risk, Martı́nez et al. (2004) showed that factors as the temperature increase and changes in
the type of vegetation were highly influential in forests near Barcelona, but the type of human activities
near the event have little to no effect. Viegas et al. (2002) concluded that the wind direction and the slope
are the most relevant characteristics to predict the spread direction and other characteristics like vegetation
coverage and solar radiation are relevant depending on the type of forest. Summarizing both literature and
the expert opinion of UAECOBB, in order to capture the fire spread speed, the most relevant factor is the
wind speed (higher wind speed increases the spread rate) and type of vegetation (for example, bushes tend
to need less heat to ignite than pine trees). Some factors like humidity and the amount of rain that falls
during the days prior to the fire incidence are relevant depending on the type of forest for ignition risk,
spread direction and spread rate.

The ignition risk models are usually built from data of past fire events to predict the starting fire risk
in a particular point. This fire ignition risk is estimated by the number of times this point has caught fire in
a given time interval and try to relate it to a set of characteristics. These characteristics consider location
(height, slope, type of vegetation, percentage of vegetation coverage, etc.) and weather conditions (wind
speed and direction, temperature, solar radiation). Kalabokidis et al. (2007) used Linear and Logistic
Regressions to reflect the influence of different features on fire ignition danger in Greek forests. On the
other hand, Li et al. (2009) chose a methodology to measure the fire ignition risk based on Artificial Neural
Networks. Both systems consider a weight for each characteristic, which represents the relevance of each
of the variables in the model. This ignition risk varies according to season conditions or in some cases due
to changes in the vegetation. Therefore, the ignition risk measurement must be recalculated continuously.

Propagation models mimic the fire spread given the initial ignition location. Thompson and Calkin
(2011) presents two approaches for this type of modeling, probabilistic and non-probabilistic algorithms . In
both approaches, the simulator must be trained first, that is necessary to calibrate an algorithm running with
real fire data and determining the spread occurrence and speed. The probabilistic approach is divided into
three types of modeling. The first one considers a pattern detection algorithm such as Logistic Regression
or Continuous Artificial Neural Networks, relating the propagation probability to location and weather
characteristics. With this probability, the event of propagation is simulated stochastically. An example of
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this approach is Preisler and Westerling (2007), who used Logistic Regression to generate large fires of over
400 acres for 1 month ahead, considering weather variables. The second approach uses various scenarios
through a simulation software e.g., FARSITE (Finney 1998) or BEHAVE (Andrews 1986). Some examples
of this type of modeling have been successfully applied in several places like Mt. Carmel, Israel (Carmel
et al. 2009) and Central Brazil (Mistry and Berardi 2005). The third approach consists in simultaneously
applying the first two. For example, Beverly et al. (2009) determined a point’s fire probability considering
multiple ignition locations and weather conditions to determine the Fire Susceptibility Index (FSI). Here
not only the fire spread is considered but also the burn probability of each point according to historical
fires in West Alberta, Canada. Finney et al. (2011) applied an FSI based model in various locations in
the United States that considered burn probability maps. The model’s first output is the Energy Release
Component and through this, the fire spread probability was obtained.

The non-probabilistic approaches use algorithms to determine if a fire is propagated between contiguous
locations and model the spread rate given particular values of independent predictors. This approach ensures
a propagation instead of the probability in which the given case would happen. For example Hessburg et al.
(2007) used a fuzzy logic algorithm to design a multi-criteria simulator which simultaneously determines the
ignition risk and the spread characteristics (rate and length) in Wildfires in Utah, USA. Vakalis et al. (2004a)
and Vakalis et al. (2004b) paired fuzzy logic and neural networks to estimate the fire spread according to
location characteristics, vegetation and weather. The main 3 methodologies in non-probabilistic methods
are Fuzzy Logic, Neural Networks and Support Vector Machines.

For both non-probabilistic and probabilistic models the available information is important and defines
how the simulator works. There are two basic types of available information. In the first case, the model is
trained with the real data characteristics, but does not have a live update of the current situation. Instead,
the simulator considers various scenarios to determine the expected value of the spread taking into account
the variation of the random variables (Denham et al. 2008). In the second case the information platform
has live update of current conditions, which allows the simulator to consider a unique scenario for a limited
time period before doing several scenarios for the stochastic variables (Kalabokidis et al. 2013).

We consider a probabilistic cellular automata model, in which location characteristics are constant
at each point and weather characteristics are simulated accordingly in each of the given time intervals.
Cellular automata modeling was introduced by Neumann and Burks (1966) to represent complex systems
as a grid of cells with a finite state for each cell. The state of the grid evolves through time through the
evolution of the states of each cell. The state of each cell depends on a set of rules and the state of the
neighbor cells. Berjak and Hearne (2002), Ito (2005) and Yassemi et al. (2008) previously used cellular
automata to model fire propagation. These characteristics are set to consider single fire spreads in each
direction.

3 METHODOLOGY AND DATA PROCESSING

In this section we discuss how the proposed simulator works and detail the steps needed to achieve the
final result of the fire simulation. The model is divided in 2 phases. In the data processing phase, the
information is classified in various numerical attributes, relating each propagation speed (including speed 0
for no propagation) information data point to a set of characteristics. The second phase being the simulation,
consists of using the previously processed data to determine the spread speed. The relation between each
of the characteristics and the fire spread rate is based on expert opinion of the UAECOBB. The model
was designed with the Risk Management department of the Official Fire Department of Bogotá, every
theoretical result was also evaluated by them as a probable behavior of fire. The tool was made in Java
Standard Edition 8, using each of the points of the map as an array of characteristics. Also each of the
time periods is considered as an array corresponding to the weather conditions of each interval.
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3.1 Data Processing

In this phase, the location and weather characteristics are organized accordingly. The simulator takes into
account point to point dispersion. The fire is propagated at a different speed in each direction. The model
does not propagate the fire when the propagation speed in a certain direction is not positive. To be able to
create this simulation, we must have a spread rate obtained during a fire for each location considering both
weather and location characteristics.To facilitate the point to point propagation estimation, we divide the
endangered area into a grid, as shown in Figure 1. In this grid, we consider each location to be a square of
2m×2m and the distance from a location to the adjacent on the North, South, East and West is considered
as 2m also. In the case of the North-West, North-East, South-West and South-East, the distance between
location is

√
(2m)2 +(2m)2, as that would be the distance between the center points of both locations.

Figure 1 shows a graphical example of this grid, using x as the length of the location.

Figure 1: Distance calculation

One of the principal characteristics considered is the wind magnitude and direction. We model the
wind direction by projecting its vector (red arrow) in the plane created from the span of the point simulation
direction of the moment (green arrow), with an angular difference θ . The wind projection vector is v ·cos(θ),
where v is the total wind speed and cos(θ) represents the projection from a given θ angle (purple arrow).
Figure 2 shows a visual example of this rule.

Figure 2: Wind Angle Projection

We consider a set of 5 variables to the model the spread rate function in each direction. The characteristics
considered are: slope change, type of vegetation, percentage of vegetation coverage, projected wind vector
and humidity. The location characteristics could be given in either text exported from GIS or in the image
with a color label to process each point. To obtain the weight of each characteristic and the relations between
them, we used the expert opinion of UAECOBB. All the weights were considered linearly related to the
spread rate. Nevertheless, some additional rules were introduced to these weights considering conditions
that may modify the behavior of the characteristic considering the location. This means, if the fire was
individually evaluated by each characteristic, without considering the special cases, the spread rate v of
characteristic c would be:

v(c) = ωc+b, ω,b ∈ R (1)
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where ω corresponds to the weight and the effect of each characteristic on the fire speed. As the fire
spread is considered in each direction, if the linear Equation 1 results in a negative speed, it is considered
as 0. Therefore, the final spread rate, in the basic form of the formula, considering a set C of different
characteristics would be considered as:

v(c) = max

{
∑
i∈C

ωici +b , 0

}
(2)

The first special case is considering when the fire reaches a barrier, for example, a river, a cliff or a
wide road. In these cases, the absence of vegetation stops the fire spread. In these cases, if there is no
vegetation (or the vegetation value is 0 in the propagation direction), the equation would be:

v(c) = 0 (3)

The second special case considered is when the topology blocks or modifies the wind according to
the direction. When the fire is ignited in a mount or hill, the wind is only considered if it goes uphill
that means, if the mountain climbs to the North in an angle higher than 45o, only winds coming from the
South, South-East or South-West are considered, in the rest, the weight of the wind projection is 0.

Considering these special cases, the final spread rate function, considering the square length as x, is:

v(c) =



0 if cveg = 0

max

{
∑

i∈C\{Wind}
ωici +b , 0

}
cwind · cslope > 0 and cslope >

√
2x

max

{
∑
i∈C

ωici +b , 0

}
other wise

(4)

3.2 Point To Point Simulation

Once the weight of each characteristic is obtained, a new fire can be simulated by giving the simulator
an ignition point, the 8 surrounding points (of the 8 basic directions) and the same characteristics initially
used for training each pair of points (e.g., original and North, original and Northeast, ...). The fire spread
speed is calculated in each direction and a list of points is created, in which the points are ordered by the
time they catch fire. A location or point is not added to this list unless it has already been ignited. When
a point that has previously been ignited is supposed to catch fire from another location, the fire and its
position on the list is the minimum between the two times.

To describe the algorithm, first we define notation.

• tmax is the maximum time the fire is going to be simulated to.
• x is the length of each location.
• A is the set of point locations, with A ∈ A.
• B= {b1,b2, · · · ,bn} is the set of climate time periods considered, the climate is considered constant

during each of this periods.
[

tmax·(i−1)
n , tmax·i

n

)
= bi ∈ B

• t(A) =

{
t if t is the minimum moment when point A was ignited
∞ if the point was never ignited before

• P is the organized set of points that have been ignited during the fire. The set is organized according
to the moment of ignition, with (Ai, t(Ai)) ∈ P, i the position that the point has in the array.

• LA is the set of local characteristics of point A
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• Wbi is the set of weather characteristics of time period bi ∈ C.
• A′ is a neighbor of A if there is no point location A′′ (in the grid) between A and A′. For the next

definitions, let A′ ∈ A be a neighbor of A ∈ A.
• CA,A′,t = (LA′ −LA)×Wt is the set of characteristics of both local and weather conditions in a given

set of points A,A′ at moment t. For the local conditions, each coordinate is the difference between
the new ignited point A′ to the original point A. The weather corresponds to that of the t ∈ bi ∈ B.

• v(CA,A′,t) is the spread rate corresponding to the set of characteristics CA,A′,t .
• dA,A′ is the distance between points A and A′, dA,A′ ∈ {x,

√
2x}.

Considering this notation and having an ignition point A0 for the fire at a moment t0, the algorithm for the
simulation is:

Data: Location characteristics LA, A ∈ A, Climate characteristics for time periods Wb, b ∈ B, First
ignition point and moment (A0, t0), the maximum time of observation tmax

Result: Organized list of ignited points according to moment of ignition
Create the organized array P = ((A0, t0))
Let k = 0 ;
while P has points to simulate and the time of simulation does not exceed tmax do

for A′ neighbour of Ak do
Let v = v(CAk,A′,tk) ;
if v > 0 then

Let ∆t = d(Ak,A′)
v ;

if t +∆t < min{tmax, t(A′)} then
Change t(A′)← t +∆t ;
Add (A′, t(A′)) to P ;
Sort P according through time ;

end
end

end
k = k+1

end

4 RESULTS

To demonstrate the performance of our proposed algorithm, we apply it on three scenarios. All simulations
were run on a ASUS R401V with Intel R©CoreTMi7 running at 2.3 GHz and 8 GB of RAM under a Windows
7 Professional x64. The first scenario serves as a theoretical test of the model for validation purposes. For
the second scenario, we took the information characteristics from a forest in Bogotá surrounding savannah to
test the simulator with real inputs. The third scenario compares a real fire from Cota, Cundinamarca, a town
located North-West of Bogotá that occurred on January 2013. In all cases we took the weight information
given by the UAECOBB, according to their experience in Bogotá’s savannah. The Bogotá weather stations
report weather conditions in 10 minute time periods, the conditions reported are the maximum, minimum
and average of each characteristic in this period. Because the original training information is given in this
10 minute intervals, we consider constant conditions during 10 minute time intervals for the simulation.
All scenarios presented a computational time of under 200 milliseconds.

4.1 Theoretical Scenario

The first scenario consists only in a theoretical test of the model and the algorithm in which an information
database was created with 6 characteristics: 3 deterministic and 3 random. The deterministic characteristics
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are related to the location. The location conditions do not change during the fire, but remain constant for each
point. The first deterministic characteristic is related to the height, as positive slopes increase the chances
of fire propagation. The second characteristic is related to the type of vegetation, considering a discrete
classification with 5 possible classes related to combustion capacity (temperature at which the vegetation
ignites) which move from lowest to highest fire temperature that can generate. The third characteristic is
related to the vegetation coverage, which is the proportion of land that has vegetation in the given area.

The random characteristics are related mostly to weather conditions: factors like wind speed, wind
direction, solar radiation and temperature tend to change even in short time periods, and as such they are
not constant during the duration of the fire. The first characteristic would be related to the wind angle,
considering the most common angle during the simulation period, as fire tends to move in the same direction
of the wind. The second random characteristic is related to the wind speed, as it tends to give a close
approximate to the spread speed in most cases. Through the combination of the first two characteristics,
we find a projected wind speed according to each pair of points to simulate, as explained in the Section 3.1.
The last weather condition considered is related to the solar radiation, as higher radiation tends to dry the
vegetation and slightly modify the spread speed and in extreme cases of dryness, also the direction. In
the validation, we consider 3 different cases regarding the input information, the first one considering only
the location information (altitude), the second one using only weather random variables and the third one
combining both sets. The location information set was planned in order to spread the fire to the lower
left direction. On the other hand, the weather information was set in order to spread the fire to the left
direction. In all 3 cases, the simulation ran through 310 minutes, color coded as in 10 minute periods as
shown in Figure 3. Both the length between locations and time intervals are given in generalized units,
considering the proportions. In all three cases, the ignition point is marked by the tip of the black arrow
and was the same for all cases.

(a) Theoretically created fire with
location characteristics

(b) Theoretically created fire with
weather characteristics

(c) Theoretically created fire with
both location and weather charac-
teristics

Figure 3: Simulation of the theoretical scenarios

For the first case, Figure 3a shows the resulting spread which ignited almost through the whole
image, showing a slow spread rate. Figure 3b shows the results of this simulation using only the weather
characteristics (i.e. wind direction), in this case the fire spread only to the left, at a fast spread rate, with
some not common dispersion as the one given in the minute 250 (red) in which the course was modified
downwards unlike the rest of the simulation, due to a significant instant speed in that period which was
strictly downward. The third case, presented in the Figure 3c presents the combination of both weather and
location characteristics. The spread rate is given in a speed that is in between the two previous cases and
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the spread direction tends to move diagonally, to the lower left direction, giving most of the predilection
weight to the weather characteristics, but still considering the location as relevant information.

4.2 Realistic Scenario - Savannah of Bogota

The second case consisted of the simulation of fires in a location nearby Bogotá D.C., Colombia taking
into account real Bogotá weather conditions from the September 21 of 2013 at 13:00. For the simulation,
we restricted the fire to 310 minutes, with each class representing a 10 minute period. The wind speed
was between 0.1 and 5 m/s, the lowest point was at 1000m and the highest at 3800m above sea level.
There were two different fires generated as shown in Figures 4a and 4b. The ignition point in Figure 4 is
represented as the tip of the black arrow.

(a) Bogotá D.C. Simulation 1 (b) Bogotá D.C. Simulation 2

Figure 4: Bogotá D.C. Case Simulation

Both Figures 4a and 4b show that the fire tends to move according to topography instead of the weather
characteristics, as both fires had the same weather conditions and the spread direction had a considerable
variance between both cases. Figure 4a presents a fire that spread in all directions but east during the first
120 minutes, then it spread to the northwest direction and Figure 4b shows a fire that spread southwest
during the duration of the simulation. In both case the fire spread almost exclusively uphill, giving most of
the predilection weight to the slope characteristics, but still considering the weather as relevant information.
The computational time presented a similar time of calculation between the fire spread made from each
ignition point. Both scenarios took under 1 second to simulate.

4.3 Real Scenario - Cota, Cundinamarca

On this simulation, we compared our simulator with a real fire that occurred on January 11 of 2013. This
fire propagated during 9 hours to be contained and took over 15 days to be extinguished in a joint effort
of several fire departments of the region. Due to the propagation duration, our simulator considered a 16
hour length. The considered altitude in area had a minimum of 2560 m and a maximum of 4020 m, the
topography of the specific mount in which the fire started climbed to the North-West direction. The wind
speed varied from 2m/s to 20m/s and focused mostly on the North, North-East and North-West direction.

On our results presented on Figure 5b the fire propagated only in one of the directions in which the
original fire moved presented on Figure 5a and continued until the 12th hour completed. In this case all
the climate information was randomly generated instead of using the real weather of the moment, this in
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(a) Cota, Cundinamarca Real Fire (b) Cota, Cundinamarca Simulation

Figure 5: Cota, Cundinamarca Case Simulation

order to test the simulator compared to the real purpose, which is to simulate live fires in which we do not
have life update.

5 CONCLUSIONS AND FUTURE WORK

We proposed a discrete event simulation model to reproduce the fire propagation given an ignition point
and other locative and weather characteristics. To determine the relevance of these characteristics we
interviewed various firefighters from the UAECOBB. Then we demonstrated the performance of our model
on three scenarios, a theoretical one to validate the proposed model, another based on real data from
savannah of Bogotá and a third one to repeat a real fire occurring in Cota, Cundinamarca, North of Bogotá
in January of 2013.

In our theoretical scenario, we found that considering only location or weather characteristics is not
enough for an exact simulation, therefore both sets of characteristics must be considered. The fire cannot
be related to only one variable, even when it is one of the most relevant factors such as wind direction or
height. In order to create an accurate simulation, the user must feed at least 3 variables that would affect
the fire spread most, considering both climate and location: vegetation coverage, altitude (which can be
translated into slope) and wind direction.

In our particular interest case of Bogotá, the combination of a mountain topography and slow wind
activity produces fires that depend much more on the slope between locations than the weather characteristics,
therefore the higher the precision of the height curves data bases, the more accurate the simulation can be.

In our case of Cota, Cundinamarca, the precision of the height curves data bases helped us in a better
estimation of the slope. Even though the fire did not propagated in the two directions the original fire went,
the direction which followed considered the same time progress as the real fire that occurred in January
2013.

Our future work can be separated in two different phases. The first one consists on the tracking of
real fires to be able to produce a mixed model that considers not only the experts opinion, but a pattern
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detection according to historical data. This historical data can be obtained through thermal imaging. The
second phase consists of a multiple scenario simulation, in which the random variables adopt different
values in order to obtain an exact real time simulation, instead of a unique scenario of just one of the
possible propagation cases that can occur.
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Orientales de Bogotá D.C.”. Technical report, Corporación Autónoma Regional de Cundinamarca.

Carmel, Y., S. Paz, F. Jahashan, and M. Shoshany. 2009. “Assessing fire risk using Monte Carlo simulations
of fire spread”. Forest Ecology and Management 257 (1): 370 – 377.

Denham, M., A. Cortés, T. Margalef, and E. Luque. 2008. “Applying a Dynamic Data Driven Genetic
Algorithm to Improve Forest Fire Spread Prediction”. In Computational Science – ICCS 2008, edited by
M. Bubak, G. Albada, J. Dongarra, and P. Sloot, Volume 5103 of Lecture Notes in Computer Science,
36–45. Springer Berlin Heidelberg.

Finney, M., C. McHugh, I. Grenfell, K. Riley, and K. Short. 2011. “A simulation of probabilistic wildfire
risk components for the continental United States”. Stochastic Environmental Research and Risk
Assessment 25 (7): 973–1000.

Finney, M. A. 1998. “FARSITE: Fire Area Simulator—Model Development and Evaluation”. Evaluation.
Hessburg, P. F., K. M. Reynolds, R. E. Keane, K. M. James, and R. B. Salter. 2007. “Evaluating wildland

fire danger and prioritizing vegetation and fuels treatments”. Forest Ecology and Management 247
(1–3): 1 – 17.

Ito, A. 2005. “Modelling of carbon cycle and fire regime in an east Siberian larch forest”. Ecological
modelling 187 (2): 121–139.

Kalabokidis, K., N. Athanasis, F. Gagliardi, F. Karayiannis, P. Palaiologou, S. Parastatidis, and C. Vasilakos.
2013. “Virtual Fire: A web-based GIS platform for forest fire control”. Ecological Informatics 16 (0):
62 – 69.

Kalabokidis, K. D., N. Koutsias, P. Konstantinidis, and C. Vasilakos. 2007. “Multivariate analysis of
landscape wildfire dynamics in a Mediterranean ecosystem of Greece”. Area 39 (3): 392–402.

Li, L.-M., W.-G. Song, J. Ma, and K. Satoh. 2009. “Artificial neural network approach for modeling the
impact of population density and weather parameters on forest fire risk”. International Journal of
Wildland Fire 18 (6): 640–647.

Martı́nez, J., J. Martı́nez, and P. Martı́n. 2004. “El factor humano en los incendios forestales: Análisis
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