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ABSTRACT 

Like most countries, Canada faces rising rates of diabetes and diabetic ESRD, which adversely affect 
cost, morbidity/mortality and quality of life.  These trends raise great challenges for financial, human 
resource and facility planning and place a premium on understanding tradeoffs between different 
intervention strategies.  We describe here our hybrid simulation model built to inform such efforts. To 
secure computational economies while supporting upstream intervention investigation, we use System 
Dynamics to characterize evolution of the health, body weight and (pre-diabetes) diagnosis status of non-
diabetics.  Upon developing diabetes, population members are individuated into agents, thereby 
supporting key functionality, including accumulation of longitudinal statistics, and investigation of 
differential treatment regimens based on patient history.  Finally, discrete event modeling is used to 
characterize patient progression through health care processes, so as to capture impact of resource 
availability, enforce queuing discipline, etc.  The paper discusses model findings and tradeoffs associated 
with the architecture. 

1 INTRODUCTION 

Our research in Saskatchewan found that the incidence and prevalence of diabetes mellitus (DM) and 
diabetic end stage renal disease (DM-ESRD) rose significantly between 1980 and 2005. Concerns about 
these rising trends and the associated health and financial burden on individuals and societies, led us to 
project the number and associated costs of DM-ESRD patients in Saskatchewan up to 2025. 

We describe here the development, current status, and example results of our hybrid simulation model 
that simulates the development of DM, DM to ESRD progression, treatments for DM-ESRD patients, and 
the assessments and waiting list processes preparing patients for kidney transplants.  To support this task, 
the model interweaves three popular simulation modeling approaches:  System Dynamics (SD), Agent-
Based (ABM), and Discrete event (DES) modeling. Exploiting the computationally frugal character of 
aggregate models, and the coarser-grained depiction acceptable for the non-diabetic population, we 
adapted the normo- and pre-diabetes sections of our model from our previously developed System 
Dynamics model.  ABM was used to represent diabetic individuals, to allow scalable characterization of 
this population, to capture time-varying competing risks, to permit collecting and calibrating to 
longitudinal information, and to permit expansion to capture social network effects and geographical 
information.  Finally, we used discrete event modeling to capture the pathways of health care progression 
of those with DM-ESRD.  Model parameters were estimated from a wide variety of data sources. 
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The model projects the incident and prevalent case count, cost, and person years lived for the DM-
ESRD population in Saskatchewan 1980 to 2025.  The projections captured the challenges brought on by 
the growing numbers of DM-ESRD patients and associated costs in disease management.  In addition to 
projection results, this research also demonstrates how the model can be used to experiment and evaluate 
different policy/interventions in a safe context.  By capturing both individual level records and population 
level statistics, the model provides extensive data for detailed analysis, which can help policy makers gain 
insights into the current and future DM-ESRD situation in the province, aiding in resources planning for 
the fast-growing DM-ESRD population and the growing need for dialysis services.  

The paper is organized as follows:  Section 2 provides background on DM-ESRD.  Section 3 
describes the model design, rationale for using a hybrid model, and stages of model development.  We 
also briefly note some of the data sources used to parameterize and calibrate the model.  Section 4 
sketches findings from this progression.   

2 BACKGROUND  

2.1 Diabetes 

Diabetes mellitus (DM) is a condition in which blood glucose levels are poorly regulated, leading to 
abnormally high blood sugar.  There are three types of diabetes: Type 1, Type 2, and gestational DM 
(GDM).  While other simulation models by the authors have explored the impact of GDM (Osgood, 
Dyck, and Grassmann 2011)  – a condition occurring during pregnancy – our focus here is on Types 1 and 
2 DM. People with Type 2 DM can usually be managed by medications and healthier life styles. 
However, suboptimal management of DM can result in prolonged hyperglycemia, which can lead to 
chronic complications (heart attacks, strokes, kidney failure, blindness) and to premature death.   
 Diabetes has reached epidemic proportions in Canada and worldwide.  Our research found that rates 
of DM and DM-ESRD are higher in certain sub-populations and by gender.  In our Saskatchewan study 
(Dyck et al. 2010), the prevalence of diabetes increased from 9.5% to 20.3% in First Nations (FN) 
females and from 4.9% to 16.0% in FN males. Among non-FN adults, it increased from 2.0% to 5.5% 
among females and from 2.0% to 6.2% among males.   

2.2 Diabetic End Stage Renal Disease (DM-ESRD) 

DM is the leading cause for ESRD in Canada, accounting for more than 35% of new ESRD cases.  
Kidneys are damaged from chronic exposure to high glucose levels, and ESRD (kidney failure) occurs 
when kidneys can no longer remove waste products from the blood. Most people with DM can live with 
earlier stages of chronic kidney disease (CKD) without reaching ESRD. Our previous research 
demonstrated that FN individuals not only suffer a higher risk of DM, but also of DM-ESRD (Jiang et al. 
2014; Dyck, Jiang, and Osgood 2014). 
 There are three types of treatments for people with ESRD: Haemodialysis (HD), Peritoneal Dialysis 
(PD) and Kidney Transplantation. Among all ESRD treatments in Canada in 2008, HD accounted for 
48.5%, PD for 10.9%, and kidney transplantation for 41% of the treatments.  During HD, a dialysis 
machine is connected to the patient to remove waste products, excess minerals and fluid from the blood. 
PD uses a patient’s peritoneal membrane to filter the waste and extra fluid from the blood into a dialysis 
solution instilled into the patient’s abdominal cavity and periodically drained from the body. 
 Kidney transplantation is a surgical operation in which a kidney from a donor is implanted into a 
person with ESRD.  The donor can be a deceased person or a living person (related or unrelated).   Most 
ESRD patients receive dialysis treatments prior to receiving kidney transplants.  Numbers of living donor 
kidney transplants have been growing steadily in recent years while the number of cadaveric kidney 
transplants has remained stable. With more ESRD patients requiring transplants, available organs are not 
meeting the demand.  The transplant operation and immediate follow-up care is expensive, but is less 
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expensive than either PD and HD after the first year of treatment.  All three treatments greatly impacts 
patients and their families, and place a heavy financial burden on the health care system and society.   

 Given the increasing rates of DM and DM-ESRD, we will likely face a substantial increase in related 
health care spending in Saskatchewan.  However, because these trends and intervention effects are 
mediated by delays, non-linearities, feedbacks, path dependence and heterogeneity – classic hallmarks of 
complex systems – it is difficult to obtain a good approximation of the future situation without a suitable 
methodology.  We therefore chose to adopt a simulation modelling approach for our research problem. 

3 MODEL DESIGN 

3.1 Purpose 

The goal of the model is to: A) Project the incident and prevalent case count, cost, and person years lived 
for the DM-ESRD population in Saskatchewan from 1980 to 2025; B)  Examine health and cost impacts 
of upstream and downstream interventions related to DM and ESRD.   

3.2 Model Evolution 

While this paper focuses on the current stage of model development, this model has meshed components 
originating in several distinct models, and has been transformed by a variety of stages of development and 
cleanup.  Because this evolution sheds light on the promise and potential of the hybrid approach, we 
briefly comment on it here.  The non-diabetic section of the model (including both normo- and pre-
glycemic stages, and diagnosis rates) were originally created as part of our stand-alone SD model of 
diabetic progression for the Saskatoon Health Region (Grassmann et al. 2012). The progression from 
diabetes to ESRD in the context of mortality risk was also the subject of stand-alone SD and 
(subsequently) ABM models parameterized by a formal competing risks analysis (Jiang 2012).   
 Finally, the hybrid integrative DM-ESRD model described here began with a tenuous, manual linkage 
in which data output by manual runs of scenarios within the afore-mentioned SD model of diabetic 
progression (Grassmann et al. 2012) were used as input into a purely ABM of DM-ESRD progression.  
This (manually) downstream ABM characterized each of pre-ESRD diabetic progression (using the agent-
based competing-risks model of Jiang 2012), evolution of individual health states, as well as processes of 
health care delivery.  While this manually linked model served as a hybrid ABM-SD model (e.g., to 
support examine impacts of anti-obesity programs on ESRD outcomes), it lacked flexibility.  Of particular 
concern was the fact that examination of interventions and other scenarios that included upstream 
prevention and screening components would require re-running the System Dynamics model, and 
manually feeding the results into the ABM.  Moreover, the depiction of health care processes within the 
ABM required custom mechanisms (e.g., Java priority queues, AnyLogic events, health-care oriented 
statecharts) to capture resource dependencies and patient flow effects that were capable of crisper and 
more transparent articulation in a discrete event context.  Moreover, the use of ABM to characterize such 
process-centric phenomena failed to reify certain resource dependencies associated with the assessment, 
waiting list and transplant phases.  This complicated prospects for examination of effects of interventions 
involving changes in resource availability (e.g., changing the availability of doctors during the assessment 
phase, of transplant surgeons, transplant nephrologists, etc.).   
 The final stage of work associated with the model described here involved reworking the model – in a 
way that improved design without changing behavior that is just being completed at time of submission – 
to characterize the health care processes using DES (rather than ABM).  The original model was built in 
AnyLogic 6.8.1, and was adapted to AnyLogic 7 (AnyLogic Corporation 2014) in this final phase. 
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3.3 Current Hybrid Architecture 

Within our hybrid model, SD is used to characterize the upstream population – non-diabetic individuals – 
by stratifying by 17 age categories, 2 sexes, 2 ethnicities, 3 weight classes and two diagnosis states with 
respect to pre-diabetes.  ABM is used to capture the population of greatest interest – diagnosed diabetics – 
with respect to the same characteristics, as well as continuous attributes and aspects of individual history.  
DEM is used to characterize an individual’s flow through and status with respect to health care processes.   
 The hybrid architecture of the model leverages two different types of hybrid relationships. There is a 
producer-consumer (upstream-downstream) relationship between SD and ABM components, with 
population members initially being represented as a simple member of a (subscripted) stock within the SD 
model, and then flowing out of that stock and becoming reified as individual within the ABM at the point 
diagnosis with diabetes.  By contrast, the ABM and DES components of the model operate concurrently 
for a given individual, with the use of both approaches speaking to the principle of separation of concerns:  
While an individual incident diabetic starts off in the ABM component, following development of ESRD, 
they are simultaneously present in both the ABM and DES portions of the model.  For flexibility, the 
ABM tracks health, history, and other individual-level information, while DES captures the status and 
evolution of that person via health care delivery processes and resource availability. 

3.4 Empirical Data 

Data for model parameters came from Canadian Organ Replacement Registry (www.cantransplant.ca) 
annual reports, Canadian Institute for Health Information (CIHI; http://www.cihi.ca) data requests, 
Saskatchewan health administrative data, Saskatchewan renal program reports and from experts familiar 
with the system. 

3.5 Model Components 

3.5.1 Non-Diabetic Population Model 

A stock-and-flow model component represents individuals from birth through death or diagnosis with 
diabetes.  The logic of this portion of the model was previously published (Grassmann et al. 2012).  The 
stocks of the model distinguish normo-glycemic individuals according to weight status, and pre-diabetic 
individuals according to whether their pre-diabetic condition is diagnosed.  To capture the disparities 
associated with diabetes incidence across age, gender and ethnicity (Dyck et al. 2010), the model is 
further stratified into 17 age categories, two genders and two ethnicities (FN and non-FN individuals).  
An individual is born into in the “normal weight” stock, and flows into other stocks as their weight and 
dysglycemic status evolve.   

The population of the Saskatoon Diabetes Model includes residents of the Saskatoon Health Region.  
The diabetes incident case counts from the Saskatoon Diabetes Model need to be scaled up to reflect the 
diabetes situation for the province of Saskatchewan.  The Saskatchewan diabetes cases can be estimated 
by applying a scaling ratio to the diabetes case count for the Saskatoon Health Region.  The scaling ratio 
is obtained by comparing the diabetes incident case counts from the Saskatoon Diabetes Model with the 
historical data on diabetic incident cases in Saskatchewan from year 2001 to 2005.  To be more specific, 
for each year between 2001 and 2005, the case count for every sub population group (stratified by gender 
and ethnicity) were compared, and a scaling ratio was calculated.   

3.6 Agent-Based Model 

The Agent-Based model depicts progression of diabetes to develop ESRD and receipt of ESRD 
treatments. Figure 1 presents the overview of a person’s statechart in the model, which illustrates the life 
cycle of a patient in the model.   The two blue boxes enclose the state charts and transitions for the two 
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critical processes in a patient’s life.  The left one corresponds to “DM to ESRD progression”.  The right 
one represents to “ESRD treatment options.” 

 

Figure 1: Overview of agent-based model structure. 

3.6.1 DM to ESRD Progression 

This study focused on the subset of DM patients who eventually developed ESRD, and the treatments 
provided to them.  The diabetes progression process is also represented in this model because it 
determines much of a person’s ESRD risk, and is a key area on which to focus prevention efforts. We 
adopted the representation of progression of diabetes from our competing risks analysis of the diabetic to 
ESRD transition (Jiang et al. 2014; Jiang 2012).  The statecharts and transitions used to simulate a 
patient’s DM to ESRD progression is discussed in this section.  The DM incident patients and the DM 
prevalent patients at 1980 require different model structures.  DM incident patients start their journey in 
the model at the time they receive DM diagnosis.   As diabetes progresses, simulated patients either die or 
develop ESRD as a complication.  Only a small portion of DM patients will develop ESRD.  The majority 
will continue living without ESRD or die from causes other than ESRD.  While the model includes an 
“End of Coverage” state, transitions to that state are not supported by for DM incident patients.  To 
exploit available individual-level information when possible and to secure maximal resolution when 
calibrating parameters for the population of greatest interest (DM incident patients), patients who were 
DM prevalent cases at the time of model start and whose fates were known were required to transition in 
a way dictated by the historically recorded data.  At the point when no previous data are available, such 
cases transition according to the rates applying to the DM Incident cases.  Upon receiving an ESRD 
diagnosis, patients move from a DM state into the “ESRD” state.  Such patients then initiate Renal 
Replacement Therapy (RRT), the details of which will be discussed in the following section. 

3.7 ESRD Treatment Options and Death  

Depending on an ESRD patient’s medical condition and treatment availability, therapy options include 
HD, PD, or kidney transplantation.  Very few ESRD patients receive a pre-emptive transplant – a kidney 
transplant before being dialyzed.  Most patients begin with either PD or HD as their initial treatment, 
followed by kidney transplantation.  Such health progression is depicted in the right blue box in Figure 1. 
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3.7.1 Selection Between PD and HD 

For patients with ESRD, the choice between PD and HD is based on several factors including patient 
attributes and availability of treatment. However, in the model, the selection of treatments was simplified 
as a draw from a Bernoulli distribution.  The probability of receiving PD (as an initial treatment in 
Saskatchewan) used for that Bernoulli draw was obtained from CIHI through a special data request.  The 
details about probability distribution and data source can be found in the section “Model Data Source”. 
 As shown in Figure 2, if PD is selected as the initial treatment, the patient will move out of the 
“ESRD” state and branch into the “Peritonealdialysis” state inside of the “DialysisModalities” composite 
state.  By contrast, if PD is not selected, then the patient will move to the “Hemodialysis” state. 

3.7.2 Switching Between PD and HD 

Patients will sometimes switch between PD and HD for medical and personal reasons.  As shown in 
Figure 2, transitions were set up between the PD and HD states, allowing patients to change from one 
type of dialysis to another.  Rates (hazards) calculations used in those transitions were based on dialysis 
treatments received between Jan 1st, 2006 and Dec 31, 2010 by Saskatchewan DM-ESRD patients.  
Details on the rates and the data source used here can be found in Gao (2013). 

3.7.3 Pre-Emptive Kidney Transplantation 

In Saskatchewan, very few ESRD patients receive pre-emptive kidney transplants.  Most patients receive 
dialysis first and then some are transplanted.  Occasionally, a patient may receive a pre-emptive 
transplant, most likely from a living donor.  With few exceptions, a deceased donor kidney would almost 
always be given to a dialysis patient on the transplant waiting list. Despite being uncommon, the pre-
emptive transplant process was included in the model for the purpose of facilitating policy experiments.   

3.7.4 Post Kidney Transplantation 

Some patients on dialysis will be assessed as suitable for a transplant and be placed on a transplant 
waiting list.  The transplant assessment and waiting list process is represented using the discrete event 
modeling discussed in Section 3.9.  The inclusion of those processes in a separate statechart reflects the 
fact that patients waiting for a kidney transplant remain on dialysis. In the model, a message is sent to 
patients (agents) when they are to be transplanted. Upon receiving the “getting transplant” message, a 
patient moves from the dialysis state to the transplant state via the “receiveTransplant” transition.  As 
shown in Figure 1, the time after kidney transplantation is divided into three temporally delineated states: 
“TxFirst90days”, “Tx91daysToYearEnd”, and “FunctionalTx”.  While a time-specific hazard rate is used 
to capture mortality risk (see below), the use of three post-transplant states reflects the cost differential 
associated with them. 

3.8 Return to Dialysis After Graft Failure 

If a kidney transplant fails, the patient needs to restart dialysis.  In the “DiabetesESRD” statechart, the 
patient moves from the transplant state back to the dialysis state via the transition “reEnterDialysis”, and 
uses the same modality distribution.  The hazard of returning from transplant to dialysis was calculated 
from graft survival rates for all ESRD patients published by the Canadian Organ Replacement Registry.  
The graft failure rates were computed for eight sub-population groups stratified by transplant donor type 
(living and deceased) and four age groups (age 18-44, age 45-54, age 55-64 and age 65+).    

3.8.1 Mortality Risks on ESRD Treatments 

ESRD patients may die despite being treated.  An ESRD patient’s daily mortality risk was calculated by a 
hazard function, which was based on gender, ethnicity, age when initiating treatment, type of treatment, 
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and length of time on treatment.  The model’s hazard function was derived from a risk adjusted survival 
analysis conducted by CIHI.  Since the mortality hazard changes significantly over time since transplant, 
The model used a mortality hazard varying on a day-by-day basis.  When patients die while receiving 
ESRD treatment, they transition to the “DeathAfterESRD” state in the “DiabetesESRD” statechart.   

3.9 Discrete Event Modeling 

The discrete event model operates in parallel with the ABM and includes representation of two primary 
resource-constrained processes: Assessment for a kidney transplant, and queuing for a transplant on a 
waiting list after an approved assessment.  We describe the components of this area of the model below.  

3.9.1 Transplant Assessment 

Transplant assessment for dialysis patients consists of three processes: deciding who will undergo 
transplant assessment, determining the type of kidney transplant, and assessing the patient’s eligibility for 
a transplant. The first of these is primarily an age-related decision.  The transplant type (living donor or 
deceased donor transplantation) determines on what waiting list the person is placed and impacts cost – 
both recipients and donors for living donor transplantation need extensive evaluations, which means the 
cost for assessment is higher than for deceased donor transplants.  In the model, therefore, the selection of 
transplant type is made at an early stage of  assessment, and the choice between living and deceased 
donor transplants is based on the historical proportion of each among provincial kidney transplants.    
 The final transplant assessment evaluates a patient’s health and other factors to determine if a patient 
is a suitable candidate for a kidney transplant.  In the model, there are two considerations: assessment 
duration, and patient eligibility for a transplant.  The assessment duration determines how long the patient 
is in the “Workup Stage” state in the “AssessmentStages” statechart.  In reality, 
appointments/examinations vary in number and length of time, and assessment duration varies for 
different individuals.  In the model, we used an Erlang distribution function to estimate assessment 
duration for patients who had never received a transplant, or whose last transplant had failed more than a 
year ago.  The Erlang distribution considered the number of appointments/examinations required to 
complete the assessment (itself drawn from a geometric distribution), and the mean time to complete each 
appointment.  For patients whose transplant had failed within one year, we assumed the time of the re-
assessment would be minimal. We based the number of examinations and time required for examinations 
on discussions with a transplant nephrologist.  We calibrated those values so that the time patients spent 
on assessment plus the time spent on the waiting list would match the historical data.  
 In reality, transplant eligibility is determined at the end of the assessment.  In the model, however, we 
used an abstract “health coefficient” to represent a patient’s overall health level, and used a calibrated cut 
off value of the health coefficient to determine a patient’s eligibility for a kidney transplant. In reality,  
suitable kidney transplant candidates are placed on a health-prioritized waiting list for the appropriate 
type of transplant.  Correspondingly, in the model, patients move into the “AwaitingTx” state. Those who 
are not eligible to have a transplant would be moved to the “NotSuitableForTx” state.  

3.9.1.1 Transplant Waiting List 

Following transplant assessment, eligible transplant candidates are placed on a waiting list from which 
they are withdrawn by receiving a transplant, becoming transplant ineligible, or by dying.  A number of 
factors determine who will receive a transplant, and when.  The following sections discuss each of these. 

3.9.1.2 Priority on Transplant Waiting List 

There are effectively two transplant waiting lists: one for living donor and one for deceased donor 
transplants (a candidate could be eligible for both).  Living donor transplants may involve a shorter wait 
(e.g., for surgeon and operating room availability) than for a deceased donor transplant (e.g., patients wait 
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for organ availability). The wait time is also determined by a candidate’s priority on the waiting list which 
is based on a number of health and other factors.  In Canada, each province has its own waiting lists and 
methods for  prioritizing kidney transplants. In the model, priority is randomly generated for each patient 
on the waiting list; this priority determines the transplant order for patients deemed to be “active” (see 
below).  A patient selected for a kidney transplant must have the highest priority and an “active” status. 

3.9.1.3 On hold and Active Status on Waiting List 

The “On hold” and “Active” status designate a patient’s immediate suitability for transplantation.  Some 
suitable transplant candidates are temporarily withdrawn from the transplant waiting list due to a new 
medical condition (e.g., an infection). In the model, the patient will move to the “OnHold” state; when the 
patient recovers, their status is restored to “Active”. Patients on the waiting list were randomly marked as 
“On Hold” according to the probabilities of being on hold based on historic data. 

3.9.1.4 Kidney Transplantation  

Kidney transplant numbers are restricted by essential resources which are somewhat different for living 
and deceased donor transplants. Deceased donor transplants depend on available kidneys while living 
donor transplants also depend on surgical scheduling.  In the model, living and deceased donor kidneys 
arrive periodically. The agent representing the waiting list patient with the highest priority and an active 
status will move from one of the dialysis states to the “Transplant” state in the appropriate statechart.   

4 RESULTS 

Within this discussion, we present example model results.  These results were generated from the model, 
although prior to refactoring.  Space constraints rule out showing anything more than a few outcomes; 
readers seeking additional results are referred to (Gao 2013).   

4.1 Baseline 

Figure 2 depicts HD and PD incident case counts, and shows Transplant case counts, and Figure 3 
illustrates how the individual-based nature of the model supports statistics based on individual history. 

 

Figure 2: HD (Left) and PD (Right) incident case counts. 
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Figure 3:  Examples of longitudinal statistics results: mean days on dialysis prior to living donor (left) and 
deceased donor (right) transplant. 

4.2 Alternative Scenarios and Sensitivity Analysis 

We present output from 3 scenarios with different parameters and model assumptions.  The models run 
each scenario with 30 realizations as a parameter variation experiment in AnyLogic 6.8.1; each scenario 
took 2.5 to 3 hours to complete under Windows 7 on an Intel Quad Core with 8GB of RAM. 

4.2.1 All DM-ESRD Patients Receive Pre-Emptive Transplant as Initial Treatment  

Our first scenario examined the impact of providing all patients with pre-emptive transplants and having 
transplant patients with graft failure spend minimal time (90 days) on dialysis prior to re-transplantation.  
This scenario investigates how an unrealistic level of pre-emptive transplantations (versus dialysis) effects 
outcomes such as prevalent case count, costs and person years lived.  With all DM-ESRD incident 
patients receiving pre-emptive transplants, there is a significant increase in the number of prevalent ESRD 
patients (Figure 4) because of lower mortality experienced by transplant patients.  As more DM-ESRD 
patients live longer, both the ESRD prevalent case count and the accumulated values (person-years lived) 
are also much higher in the current scenario, when  compared with baseline.  Despite a larger count of 
patients living longer, the cost of caring for those patients is actually lower than in the baseline scenario, 
as shown in Figure 5. This reflects the significantly lower cost of caring for  transplant patients compared 
with those on dialysis, especially following the first year post-transplant. Although unrealistic, this 
extreme scenario does highlight the pronounced benefits of having more pre-emptive transplants.  

 

 
Figure 4: DM-ESRD prevalent case count, baseline vs. preemptive transplants. 
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Figure 5: Cost, accumulated and per year, baseline vs. preemptive transplants. 

4.2.2 No DM Incident Patients from Year 2006 to 2025 

At baseline, the DM-ESRD incident case count is driven by the diabetes incident cases fed into the model 
as input.  In this scenario, no new diabetes cases entered the model between Jan 1st, 2006 and Dec 31st, 
2025.  We expect the prevention of diabetes mellitus after Jan 1st, 2006 to significantly reduce numbers of 
new DM-ESRD patients because only DM patients from before 2006 would be at risk of developing 
ESRD. While extreme in its design, this shows the impact of reducing DM incident cases on future 
outcomes. Thus, the ESRD prevalent case count does not begin to decline until year 2019 or 13 years 
after diabetes incidence has ceased. (Figure 6). Similar trends were also observed in the plots for cost and 
person years lived in Figure 7.  Even in the extreme case depicted here, where the DM incident case are 
cut down to zero at the beginning of year 2006, tremendous inertia remains in the system.  For many 
years after 2006, the resource demands associated with caring for the existing patients remain at an 
elevated level and continue at rise. 

 
Figure 6: DM-ESRD prevalent case count, comparing baseline with situation with incident cases of 
diabetes from 2006 onwards. 

  
Figure 7: Cost, accumulated and per year, comparing baseline with situation with incident cases of 
diabetes from 2006 onwards. 
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4.3 Shorter Transplant Assessment Time as 90 Days, and Eliminate Waiting List by Increased 

Transplant Rates 

In this scenario, patients take only 90 days to transplant assessment, and transplant rates are set at 365 
cases of living donor transplant and 365 case of deceased donor in a year. This basically  eliminates the 
waiting list for transplants. Figure 8 shows that the differences in prevalent case count and person years 
lived between baseline and the current scenario is minimal. However, Figure 9 shows that cost has 
declined, likely due to patients remaining on dialysis for a shorter time and being transplanted more 
quickly.  Since renal transplantation costs much less than HD, the difference in cost is clear. 

 
Figure 8: DM-ESRD prevalent case count, baseline vs. faster assessment and increased transplant rates. 

 
Figure 9: Cost, accumulated and per year, baseline vs. faster assessment and increased transplant rate. 

5 CONCLUSIONS 

We introduce here a tripartite model to project the cost and health impacts of DM-ESRD in 
Saskatchewan.  In addition to providing the first locally grounded, simulation-based projections for DM-
ESRD in Saskatchewan, the model presented here advances a generalizable, insightful but economical 
architecture.  This scheme involves securing the capacity to examine upstream interventions while 
capturing computational economies by simulating the health status of a broader population (e.g., to 
investigate upstream interventions) in an aggregate fashion using SD, using ABM to represent key 
populations of focus on which detailed information (e.g., individual history, social network structure or 
spatial location) is required, and using DES in parallel with the ABM for that population of focus to 
capture additional patterns of involvement with the health care system.  Beyond the simulation model 
results reported here, we believe that this architecture offers potential across diverse health applications. 
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