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ABSTRACT 

The offshore wind industry in Europe is looking to move further from shore and increase the size of wind 
parks and wind turbines. As of now marine logistics during the operation and maintenance life cycle 
phase is, besides wind turbine reliability, the most important limitation for wind turbine service, repair 
and replacement, and pose a large risk for wind park operators and owners. This paper presents a marine 
logistic simulation model for the O&M life cycle phase based on a combination of the agent-based and 
discrete event modeling paradigms, currently being tested as a decision support tool by European offshore 
wind park developers. The model simulates the O&M lifecycle phase of an offshore wind park with all 
integral components of marine logistic needed. In this paper the simulation model is described together 
with an application example demonstrating how the simulation model can be applied as a decision 
support tool. 

1 INTRODUCTION 

For European renewable energy goals to be met every possible source of renewable energy must be 
exploited, and offshore wind energy make an important contribution. At the end of 2013 the cumulative 
installed capacity of offshore wind in Europe was 6,562 MW covering 0.7% of the European electricity 
consumption (European Wind Energy Association 2014). 

Offshore wind energy production carries high financial risk for investors as profit margins are small 
and dependent on subsidies, production is dependent on uncertain wind speeds, and operation and 
maintenance depend on uncertain weather for marine logistics.  

Marine logistics is necessary to gain access to wind turbines (WT) for service and repairs, and 
operability of vessels, access solutions and lifting equipment are highly dependent on wave height and 
wind speed. And to clarify the use of the term logistics it is only the transportation of technicians and 
equipment that this simulation model is limited to, not warehouse logistics for spare parts for example. In 
order to minimize downtime of the offshore wind park work management is crucial to maximize 
utilization of the time available to access and perform work on WTs. In an average offshore wind park 
with 80 turbines one can expect to have approximately 2-4 failures per day needing marine logistics, 
which is a considerable work load. 

Analytic models have difficulties in incorporating the variability and complexity of a system like this, 
moreover provide an understanding of how it works. Therefore, a multi method simulation model was 
developed to provide offshore wind park developers knowledge on how their offshore wind production 
system will work, incorporating the variability of the marine logistics system beyond statistical 
distributions and numeric formulas. There exist various other simulation and analytic models (see 
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Hofmann 2011 for a thorough review) and the ECN O&M tool (developed by Energy Research Centre 
Netherlands – ECN) is regarded as the industry standard in Europe, which is an Excel-based analytic 
model. 

This paper will first introduce how simulation modeling can be used as a business decision tool, 
followed by an explanation of the simulation model. Finally, an example showing how the simulation 
model can be applied as a decision support tool in the concept study phase for offshore wind park 
development is presented. 

2 SIMULATION MODELING AS A BUSINESS DECISION TOOL 

Notably, the use of modeling as a decision support tool for various applications has gradually grown 
particularly over the last few decades. The technical nature of modeling efforts based on solid 
mathematical foundation has evolved gradually to a status today where the physical reality can be 
replicated in multiple ways for various analytical purposes and inferences (Sawy and Pereira 2012, 
Pasiouras 2013). The very early efforts to describe various physical or non-physical phenomena through 
heavy technical approaches have seemingly taken a turn in more modern settings where modeling has 
become a strategic business tool with a smart combination of simulation capabilities.  

 In very general terms, the two principal attributes that drive the application of simulation modeling 
as a modern business decision tool are the diversity and uncertainty that characterize the nature of 
complexity associated with modern systems, processes, and concepts. This can provide robust decision 
support opportunities where the interplay between logics, choices, and rules can be observed as complex 
behavioral patterns within a simulation domain (Hatfield 2012; van Dam, Nikolic, and Lukszo 2012). 
Perhaps the biggest impact that the ongoing developments have introduced is the very ability to explain a 
phenomenon through sharp and clear communication language in terms of risk and value-added by means 
of visualization processes that are cognitively appealing as almost as real physical events or occurrences.  

It is these very modern features of some of the simulation modeling solutions that have shown great 
potential for application within the offshore wind energy sector. The growth of the wind energy sector 
today has the very key features of diversity and uncertainty. It is diverse in terms of business landscape 
and solutions and at the same time highly uncertain in terms of financial risk exposure and profit margins. 
It is under these circumstances that the ongoing project in Norway was launched to find a suitable 
simulation modeling solution for business decision support. 

3 DETAILS OF THE OFFSHORE WIND ENERGY O&M SIMULATOR 

The simulation model was developed in collaboration with offshore wind park developers to ensure that 
there exist a common understanding of the model’s logic, it’s limitations and it’s application. 
Subsequently a verification and validation following the methods described by Sargent (2013) was carried 
out, using parameter sensitivity analysis, structured walkthrough and testing with extreme values for 
verification, and comparison with other models and face validity tests for validation. Face validity test 
were conducted with the same offshore wind park developers that aided in the model development. 

AnyLogic, the commercial simulation software, was used as simulation modeling software and hence 
the simulation model is coded in the Java programming language. AnyLogic was selected and preferred 
over other simulation modeling software (e.g. NetLogo), and raw coding in Java due to its ease of use for 
novice modelers, the possibility to read and edit the Java code if necessary, and that it is efficient in terms 
of time needed to create a model and run simulation experiments. 

The model combines agent-based and discrete event modeling, as it was important to capture the 
individual behavior of vessels, especially in situations where the vessel agent have to deviate from 
standard procedures. Agent-based modeling is used to model behavior of technicians, managers, vessels, 
vessel owners, WTs, and wind park operators, and to give these individual characteristics (e.g. failure 
rates for WTs and weather criteria for vessels). And to model agent behavior statecharts are used. Discrete 
event modeling is used to model work processes, e.g. planning and diagnosis, mobilization, and 
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maintenance tasks. The discrete event processes are modeled inside every agent that uses them to enable 
the agent’s behavior to be controlled individually by the work process. 

Subsequent subchapters will be used to explain briefly the logic behind the different parts of the 
simulation model, and the theoretical background for this logic where such are applied. 

3.1 Wind Turbine Agent and Failure Generation 

WTs are modeled with 19 components, shown in Figure 1, and component classification is based on the 
RDS PP® (Reference Designation System for Power Plants) (VGB Powertech 2014).  

The number of failures, N(t), in a time interval between 0 and T of a subcomponent are in the case of 
minimal repair commonly modeled as a non homogenous Poisson process (Aven 1992, Tavner 2012), 

 
 

ܲሺܰሺݐሻ ൌ ݅ሻ ൌ
ሺߣሺݐሻ ∙ ሻݐ

݅!
݁ିఒሺ௧ሻ∙௧ , ݅ ൌ 0,1,2, …  

(1) 

 
 with a time dependent failure intensity λ(t) at time t (average number of failures per time unit), which 

for mechanical components can be expressed as a Power Law process following a Weibull-function, 
 

ሻݐሺߣ  ൌ ఉିଵݐߚߣ  (2) 
 
where λ is the annual failure intensity when the wind turbine is new or subcomponent replaced and β 

is the distribution shape factor representing an increasing (β > 0) or decreasing (β < 0) failure intensity. In 
use λ can be determined based on test data from the wind turbine manufacturer or from analysis of wind 
turbine failure data, while β is determined either in a qualitative manner based on the decision maker’s 
believed development of new wind turbine components, or by analyzing wind turbine failure data. In the 
simulation model ߣሺݐሻ is updated for each subcomponent individually whenever the subcomponent is 
replaced. 

The time to failure (TTF) of a subcomponent is assumed to be a random variable following an 
exponential distribution, as it is assumed that the failure intensity is constant between replacements. After 
a repair a new TTF is sampled from the exponential distribution with the old failure intensity, whereas 
after a replacement a new TTF is sampled from the exponential distribution with the updated failure 
intensity from (2). Failures occur in a wind turbine subcomponent or subsystem in the simulation model 
when time since last failure exceeds TTF of the respective subcomponent or subsystem. When a failure 
occurs the wind turbine change to the failed state. Hence, failures are stochastic and wind turbines have 
19 different failure modes. 

An alternative failure modeling approach is a damage accumulation model applying physics of failure 
models (e.g. fracture mechanics) instead of statistical models, see e.g. Nielsen and Sørensen (2011). 

3.2 Maintenance Planning and Scheduling Process 

The simulation model takes into consideration both preventive maintenance (annual service, certification, 
inspection, etc.) and corrective maintenance (when wind turbines run to failure). Wind turbine failures 
have different severity from false alarms to full replacement. Severity is classified in the failure type 
classification (FTC) scale, which is expressed as an integer between 1 and 20, where 1-16 denotes low to 
high severity and 17-20 denotes service, inspection or certification tasks, which are routine preventive 
maintenance tasks. When a wind turbine enters one of the failure states an alarm is sent to a maintenance 
manager agent who will diagnose the alarm and determine the FTC, which, subsequently, determines the 
resource requirement to resolve the failure causing the alarm. The diagnose and spare part logistic process 
follows the convention from IEC/TS 61400-26-1 (International Electrotechnical Commission 2010), and 
is modeled as a discrete event process where the work order created for the failure is the entity flowing 
through this process, shown in Figure 2. After the alarm is diagnosed there is an average (deterministic) 
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waiting time for spare parts depending on the FTC. When spare parts have arrived the work order created 
to resolve the failure is delegated to a suitable vessel (some vessels need to be chartered, see section 3.3) 
that will carry out the work order as soon as there is enough time and a suitable weather window. 
 
 

 

Figure 1: The statechart representing wind turbine behavior. Subcomponents and subsystems can be seen 
in the red and orange composite states. 
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Figure 2: Work process for diagnosing alarm and waiting for spare parts. 

3.3 Repair and Replacement Process, Vessel and Technician Agents 

Vessels and technicians carry out repairs and replacements. Depending on the FTC the failure requires 
different vessels, number of technicians and amount of time to be resolved. A vessel will, after receiving a 
work order from the maintenance manager, check for available technicians – either on the onshore base or 
service operation vessel (if used) – and tell the required number of technicians to get on board the vessel. 
The Agent API provided in AnyLogic enables agent-to-agent communication, and a message from the 
vessel to a technician will add the technician to a Java collection on the vessel and initiate a transition in 
the technician’s statechart. When there is enough technicians on the vessel, there is a sufficient weather 
window and time left in the work shift the vessel will start sailing towards the wind park. Locations and 
movement of agents occur in a GIS map and the model will calculate the shortest distance between its 
current location and the destination. This distance divided by the vessel’s individual speed gives the 
sailing time to the destination.  

The repair and replacement process is modeled as a discrete event process, whereas the vessels’ and 
technicians’ behavior is modeled by the agent-based method (see Figure 3) as mentioned earlier. In the 
work processes shown in Figure 3 work orders are used as entities, and the vessel agent inserts these. 
When technicians have arrived at a wind turbine a message is sent to the wind turbine agent that fires the 
transition to move the wind turbine into the being repaired-state (ref. Figure 1). When technicians have 
finished the work order and transferred back to the vessel a new message is sent to the wind turbine agent 
in order for it to change to the operating state.  

 

 

Figure 3: The left figure shows an example of a part of a crew transfer vessel’s statechart used to model 
it’s behavior, and the right figure shows the work processes used by the vessel to execute work orders. 
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Another important part of the model is that technicians are modeled to be adaptive in the sense that 
they accumulate experience, which in turn contributes to lowering actual repair times. However, it is 
assumed that there is a diminishing marginal effect of experience on repair times. And furthermore, there 
are only one category of technicians in the simulation model, hence no distinction between electrical and 
mechanical technicians. 

An interesting aspect of marine logistics for offshore wind parks is the chartering strategy for vessels. 
It is possible to choose various strategies for vessel chartering, as the strategy varies among wind park 
operators. In the simulation model it is possible to chose contract type (spot or long term), contract 
duration and if the charter rate is fixed or variable. Vessel classes available in the model are i) heavy lift 
vessels (HLV), ii) crew transfer vessels (CTV) and iii) service operation vessels (SOV), illustrated in 
Figure 4. 

 

 

Figure 4: The left image shows a HLV, the middle image show a CTV and the right image show two 
SOVs. 

4 SIMULATION AND DECISION MAKING METHODOLOGY 

The methodology for decision making, illustrated in Figure 5, consist of the following steps:  1) define the 
decision alternatives and scenarios together with the decision maker that are tested on each decision 
alternative, 2) define output metrics that will be used to objectively evaluate the different decision 
alternatives, 3) run n simulation runs, and lastly 4) determine based on hypothesis testing if the 
alternatives differ and based on the output metrics which decision alternative is the most advantageous 
one. The advantage of using a simulation experiment approach for decision-making is that it enables the 
analysis of time dependent and stochastic systems. The intended use of the simulation model explained in 
this paper is in medium to long-term decisions, e.g. in the initial design phase of an offshore wind park 
development (long-term) or when reassessing vessel charter contracts or maintenance intervals in the 
exploitation phase (medium-term).  

The preceding subsections briefly describe the input data required in step 1) and the output metrics in 
step 2). 

 

Figure 5: The simulation and decision making process. 

4.1 Input Data Defining Decision Alternatives and Scenarios 

The simulation model requires the decision maker to specify several categories of input data; or design 
basis using engineering jargon. These are 1) weather data, 2) WT and WT park data, 3) vessel data, 4) 
repair and replacement data, 5) cost and price data, and 6) marine logistic and maintenance strategy data. 
These input data are used to define decision alternatives and scenarios. Decision alternatives are defined 
by 2) WT and WT park data and 6) marine logistics and maintenance strategy data, while scenarios are 
defined by the remaining input data categories. 

Define decision alternatives and 
scenarios

Define output metrics Run n simulation runs
Determine based on hypothesis 
testing the best alternative
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4.1.1 Weather Data 

Significant wave height (Hs) and mean wind speed at hub height (Vw) are the two weather parameters used 
in the simulation model, and are the main limiting factors for WT access and crane operations. One can 
either choose to use historic or hind cast weather data, or synthetic time series of weather data can be 
generated in Matlab e.g. by using a Markov-chain Monte Carlo approach (see e.g. Hagen et al. 2013) for 
details). Weather data time series must be in hourly resolution. In the application example in this article a 
historic weather data time series were used. 

4.1.2 Wind Turbine and Wind Turbine Park Data 

The decision maker needs to specify the wind turbine power curve with cut-in and cut-out speeds, 
reliability data for the wind turbine, and wind park layout. The power curve determines power production 
at various wind speeds, and is the basis for calculating actual and lost production. Reliability data in the 
form of average annual failure rates must be specified for all of the 19 components that are present in the 
wind turbine model used in the analysis. There exist very little reliability data for offshore wind turbines 
but some analyses have been done by Tavner, Xiang, and Spinato (2007); Faulstich, Hahn, and Tavner 
(2011); and Faulstich, Lyding, and Tavner (2011). 

Wind park layout is defined by specifying the geographical location of each wind turbine in longitude 
and latitude. This information is important to enable calculation of travel distance and time for vessels. 
The wind park developer should provide this information. 

4.1.3 Vessel Data 

Vessel data required as input are operational limits (Hs and Vw), transit speed and speed with dynamic 
positioning (DP), DP activation time, connection and disconnection time, transfer time for technicians and 
equipment, technician capacity, and vessel failure rate. 

There are some differences between vessel classes, and HLVs require input on jacking speed (if it is a 
jack-up vessel) and operational limitations for jacking. 

4.1.4 Repair and Replacement Data 

Detailed data on cost of spare parts, time required to carry out the work order, number of technicians 
needed and vessel type required. Generic data are provided as default input, but it is recommended that 
the decision maker provide more accurate data. For generic data on spare part costs see e.g. the NREL 
Wind Pact project (Malcolm and Hansen 2006). 

4.1.5 Cost and Price Data 

In order to compare operation and maintenance cost items (marine logistics cost, spare part cost, etc.) it is 
necessary to specify day rates for the different vessels, salary costs, warehousing costs, overhead costs, 
insurance, land rent and tax. Generic numbers are provided as default, but it is recommended that the 
decision maker provide such cost data. 

Some sort of support mechanism often supports offshore wind parks in Europe financially. For 
example in the UK there are the Renewable Obligation Contract (ROC) and Contract for Difference 
(CfD) support mechanisms. In order to compare revenue it is important to specify the correct support 
mechanism. In the simulation model it is assumed that the electricity price is constant, and should be 
interpreted as the average electricity price over the simulation period. 
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4.1.6 Marine Logistic Strategy Data 

The decision maker will need to decide on the marine logistic strategy by providing input on the desired 
number of technicians and vessels, and the desired type of vessels. It is also necessary to state how 
different maintenance tasks should be handled; e.g. shall a CTV be spot chartered for service tasks (i.e. 
FTC 17-20) or shall the SOV prioritize corrective tasks over preventive tasks. An onshore supply base 
also needs to be defined, and the input is the base’s geographical location in longitude and latitude. These 
are normally the input data defining the decision maker’s decision alternatives. 

4.2 Output Data 

A set of standard key performance indicators is used as output metrics, and the decision maker for a 
specific simulation experiment can choose a subset of these. The mean, standard deviation, min and max 
are all collected for statistical analysis and hypothesis testing after all n simulation runs are completed. 
The standard output metrics are: 

 
1. Time-based availability (available time/total time) 
2. Energy-based availability (actual production/theoretical possible production) 
3. Technical availability (available time/theoretical available time) 
4. Lost production 
5. Marine logistics cost 
6. Vessel utilization (days used/days chartered) 

5 DECISION MAKING EXAMPLE 

The decision-making example is inspired by a real case where the simulation model is currently being 
applied. The scenario consists of a generic wind park with 67 wind turbines with a rated capacity of 6 
MW at a distance of approximately 40 kilometers from shore and a pool of 30 technicians. The question 
at hand is whether an SOV is more suitable than two CTVs for marine logistic in the operation and 
maintenance life cycle phase of this offshore wind park. Hence, there are two decision alternatives: 2 
CTVs or 1 SOV. 

The output metrics that will be compared are time and energy based availability, lost production, 
marine logistics cost, and vessel utilization, and the results are presented in Table 1. A total of 5 
simulation runs were carried out for each of the two decision alternatives with the one scenario defined 
above, and the simulation length was two years (typical charter length). The number of simulation runs is 
defined as the minimum required number of simulation runs needed for the standard deviation of the 
output metric sample to be less than 3-5% of the sample average (for all output metrics). In the hypothesis 
testing comparison a confidence level of 95% was chosen, and the Student’s t-distribution was chosen as 
test statistics. This confidence level gives a critical t-value of 2.7764, from which the confidence interval 
in Table 2 is created. 

Table 1: Simulation results (mean μ, standard deviation σ and standard error S) for decision alternatives. 

 2 CTV  1 SOV 
 μ σ S μ σ S 

Time based availability [%] 97.03 0.21 0.09 93.51 0.62 0.28 
Energy based availability [%] 94.27 0.22 0.10 90.95 0.60 0.27 
Lost production [kWh] 8.99E7 8.45E6 3.78E6 16.6E7 9.81E6 4.29E6
Marine logistics cost [mill £] 8.395 2.06 0.92 19.08 1.32 0.59 
Vessel utilization [%] 32.74 0.76 0.34 46.88 0.80 0.36 
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Table 2: Hypothesis test with the CTV-alternative as base case to determine if the results are statistically 
significant from each other. Confidence intervals are created from the base case. 

 Time based 
availability 

Energy based 
availability 

Lost 
production 

Marine 
logistics 

Vessel 
utilization 

Lower limit 96.77% 93.99% 7.94E7 £5 838 981 31.80% 
Upper limit 97.29% 94.55% 10.0E7 £10 951 019 33.68% 
t-value 39.111 33.997 8.476 41.718 92.217 
p-value ~ 0% ~0% ~0% ~0% ~0% 
Reject with ~100% ~100% ~100% ~100% ~100% 
 

From the results in Table 1 one can see that the two decision alternatives differ quite a lot, with the 
SOV being the least efficient vessel in terms of availability and lost production. However, the SOV is the 
most utilized vessel of the two alternatives. Another interesting aspect of the results is that the CTV is a 
smaller vessel with lower weather limitations and longer distance to travel between shore and wind park, 
but still – by far – outperforms the SOV in cost-benefit ratio (marine logistics cost over lost production). 

To verify that the results above is not due merely to chance a hypothesis test is conducted. And from 
the results from the hypothesis test in Table 2 one can arrive at the conclusion that the two decision 
alternatives are statistically significant from each other, with a confidence of approximately 100%. What 
it means is that the differences are due to other factors than chance; in other words, there is a statistically 
significant difference in using the two types of vessels. It is therefore safe to say that the preferred 
decision alternative is to charter two CTVs, and discard the SOV-alternative for now. Alternatively, 
neither of these alternatives is satisfactory and a new or modified solution has to be found. 

6 CONCLUSION AND FURTHER WORK 

Current status of offshore wind energy sector calls for innovative solutions to manage its principal 
business influence factors and cost drivers. Marine logistics plays a critical role in this context, and thus is 
crucial for wind park operators to operate their assets successfully with high availability and positive 
returns. This paper focused on marine logistics as a domain that bear major risks for offshore wind park 
operators and owners under the current business conditions, and hence made an effort to improve the 
underlying decision making process with respect to the configuration and operation of this dynamic 
system. The principal contribution of this paper is a novel simulation model that can be used as a decision 
support tool by wind park developers to make decisions on vessel fleet configuration, supply base 
location, wind turbine technology (e.g. direct drive versus gearbox driven based on wind turbine 
reliability), staffing and work processes.  

This simulation model is based on a combination of agent based and discrete event modeling. Wind 
turbines, technicians, vessels, maintenance managers and other living agents were modeled in the agent 
based paradigm with individual decision making and attributes, while work processes such as repair and 
replacement are modeled in the process oriented discrete event paradigm. Discrete event work processes 
were modeled directly inside the agent that uses it so that the agent can be controlled individually by the 
work process. This approach helped largely in limiting the set of assumptions and add-ons needed to 
represent the marine logistics system in such a detailed manner. The model was validated with domain 
experts through face validity and comparison with other models. 

Finally, the use of the simulation model for decision making was shown through an application 
example where there was a decision to be made regarding the vessel type to be used for maintenance for a 
large offshore wind park, a “what if” analysis of two decision alternatives under one scenario. The 
analysis showed, through hypothesis testing, that it is possible to say that the two alternatives are 
statistically significant from each other, and therefore confidently select the vessel with the most desired 
output metrics. 

1720



Endrerud, Liyanage, and Keseric 
 

The work presented in this paper is part of an ongoing project on simulation modeling applied on 
offshore-unmanned production assets. In the next phase the model will be extended to be able to 
investigate the effect of condition based maintenance on wind park performance. And of special interest is 
how work processes and the maintenance organization should be configured to take full advantage of the 
information one gets from machine prognostics. In addition, the model still lacks a robust weather data 
module for creating weather time series of future weather and this will be investigated together with the 
project partners. It is highly unlikely that future weather will be identical to historic measurements, 
especially due to climate change. 
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