
Proceedings of the 2014 Winter Simulation Conference

A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

YARD CRANE DISPATCHING TO MINIMIZE VESSEL TURNAROUND TIMES IN

CONTAINER TERMINALS

Shell Ying Huang

Ya Li

Xi Guo

School of Computer Engineering

Nanyang Technological University

SINGAPORE 639798

ABSTRACT

Yard crane (YC) dispatching in the operational planning of container terminals usually aims to minimize

makespan of YC operations or waiting time of vehicles. We propose that minimizing the maximum

tardiness of vehicle jobs at yard blocks will minimize the operational delay of the longest quay crane

(QC). This will minimize vessel turnaround time which is one of the most important objectives of

container terminals. A provably optimal algorithm, MMT-RBA* to minimize maximum job tardiness, is

presented to sequence the YC jobs. Jobs requiring reshuffling of other containers, often ignored in other

studies, are handled by embedded simulation in our optimization algorithms. Another provably optimal

algorithm, MMS-RBA* to minimize makespan, is also presented. Simulation experiments confirm that

MMT-RBA* significantly outperforms the optimal algorithm RBA* to minimize vehicle waiting time

from earlier studies and MMS-RBA* to minimize makespan in minimizing vessel turnaround time.

1 INTRODUCTION

In container terminal operations, one of the most important objectives is to reduce vessel turnaround time

(Steenken et al. 2004). Li et al. (2009) pointed out that yard crane (YC) operations are of great

importance and likely to be a potential bottleneck to the overall terminal performance. This is because

when vehicles are delayed in the storage yard, they will not be able to reach their quay cranes (QCs) on

time. It follows that QCs’ loading/unloading operations will be delayed and vessel turnaround time

lengthened. In YC operation management there are two main problems: (i) deciding job sequence for an

YC which we refer to as the YC dispatching problem; (ii) allocating YCs to different parts of the yard

which we refer to as the YC deployment problem. We study the YC dispatching problem in this paper.

 The storage yard of a container terminal is organized in a number of yard blocks. Containers are

arranged in a number of rows and slots in a yard block as shown in Figure 1. In many container terminals,

vehicles travel along lanes to load/unload containers at the side of a yard block. When multiple vessels

are loading and unloading at the same time, vehicles serving different quay cranes will arrive at different

slot locations of a yard block for loading and/or unloading jobs. External vehicles may also arrive at any

time at pre-determined slot locations to take import containers or deliver export containers. As a result,

YCs need to move among different slot locations to serve vehicle jobs. When a YC is busy serving other

vehicle(s), a vehicle needs to wait for it. A vehicle may also need to wait for the YC to move to its job

location.

1747978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Huang, Li, and Guo

In many YC dispatching works presented in the past, the objective is to minimize the total (average)

vehicle waiting time (Ng and Mak 2005a and 2005b; Kumar and Omkar 2008; Guo et al. 2011); or to

minimize the makespan (Jung and Kim 2006; Lee et al. 2007), that is, the total time taken to finish a set of

jobs by the YC. Minimizing vehicle waiting times helps vehicles to return to the QCs as soon as possible

after they arrive at the yard blocks. This often reduces the QC waiting time for vehicles thus reduce the

vessel turnaround time. However, minimization of QC waiting time for vehicles is not guaranteed.

Minimizing vehicle waiting times may result in some vehicles getting to the quayside earlier than they are

needed while others are late for the QCs because they arrive at the yard block later. Minimizing

makespan for a YC enables the YC to finish a set of jobs as soon as possible. This optimizes the YC

productivity. However, vehicles coming to a YC may deliver containers to different QCs, possibly for

different vessels. Optimal productivity of a YC is often achieved with minimum gantry movements to

reduce the YC unproductive times. This does not necessarily minimize vehicle delays in reaching the

QCs.

Figure 1: A yard Block with Slots (yard bays) & Rows.

So the question is what objective function a YC dispatching algorithm should have. It is noted that

vessel turnaround time is determined by the longest crane serving the vessel, that is, the crane that

completes its loading/unloading operations last. Under the assumption that the workload of the QCs

serving a vessel is evenly distributed, a QC that experiences the longest delay in its operations due to

waiting time for a vehicle will lengthen the vessel’s turnaround time. Therefore minimizing the

maximum tardiness among YC jobs is an effective way to help reduce vessel delay. We propose that

minimizing the maximum tardiness among a set of jobs is most effective in minimizing the operational

delay of the longest QC.
For a loading job, based on the time a QC needs the vehicle at the quayside, the time this vehicle

should leave the yard block with the container to travel to the quayside (the deadline of this vehicle job)

can be derived assuming no traffic congestions. The deadline of the vehicle job at the YC is the time the

QC needs the vehicle minus the expected travel time from the yard block to the QC. Once a vehicle is

assigned to this loading job, the vehicle’s arrival time at the yard block can be derived or predicted based

on the expected travel time of the vehicle and when the vehicle is expected to move towards this block.

Even though an unloading job is less critical to the QCs, longer times needed to store a container in the

storage yard also directly lead to interruptions of QCs’ unloading process (Kemme, 2010). A deadline set

for the vehicle will help it finish the current job and return to the QC on time to get the next container. It

may not matter which vehicle returns to the QC first, but it is still important to have a stream of vehicles

arriving at the QC continuously but with some intervals in between. In this way when a vessel is being

unloaded, quayside will not be crowded with early arriving vehicles but the QC does not need to wait for

vehicles either.

For external vehicles carrying export or import containers, a deadline for a storing or retrieving job at

the yard block will allow the terminal operator to guarantee a quality of service to the external truck

companies.

Given the deadlines of the vehicle jobs and their predicted arrival times at the yard block, the YC

dispatching algorithm computes its serving sequence with the ultimate objective of minimizing the delay

to the longest QC. We propose optimal algorithm MMT-RBA* to minimize maximum job tardiness as

Slot
 1 2 3 4 . . . Yard

Crane

. 36

Vehicle

Row
2

1

…

1748

Huang, Li, and Guo

the most suitable algorithm for YC dispatching. An optimal algorithm MMS-RBA* to minimize

makespan for the YC dispatching problem is also proposed for the purpose of evaluation. In our

performance comparison, we also include the optimal algorithm to minimize total vehicle waiting time

(Guo et al. 2011). We show that MMT-RBA* is most effective in reducing operational delays of the

longest QC of vessels in each planning window.

The rest of the paper is structured as follows. Firstly, we review the related studies in Section 2. A

formal description of the YC dispatching problem and a discussion on the different objective functions for

YC dispatching are presented in Section 3. Then the optimal algorithms are proposed in Section 4. The

experimental evaluations are presented in Section 5. Conclusion is drawn in the last section.

2 RELATED WORK

The YC dispatching problem was studied by Kim and Kim (1999) where they considered the loading

operations only for a single YC with a given load plan and a given bay plan. A Mixed Integer

Programming (MIP) model is proposed to minimize the total gantry time of the YC. The solutions focus

on the sequence of bay visits and the number of containers to be picked up at each bay while the

individual container pick-up sequence within a specific bay is left to the crane operator. Later, Kim and

Kim (2003) and Kim et al. (2004) extended the study of this problem by comparing exact optimization, a

beam search heuristic and a Genetic Algorithm (GA).

Ng and Mak (2005a, 2005b) developed branch-and-bound heuristics to schedule the single YC for a

given set of loading and unloading jobs with different ready times. Their objective is to minimize the

total job waiting time. Kumar and Omkar (2008) used particle swarm optimization with genetic

algorithm operators to handle YC jobs with different ready times to minimize total job waiting time. It is

known that for large problems, the MIP model has limited applicability due to the excessive

computational times. On the other hand, heuristics cannot guarantee optimal solutions. Guo et al. (2011)

applied A* search to compute optimal single YC dispatching sequence based on vehicle arrival times to

minimize vehicle waiting times.

When designing a YC dispatching algorithm, many previous work assumes that the YC service times

for vehicle jobs are constant (Jung and Kim 2006, Lee et al. 2007, Cao et al. 2008, Guo et al. 2011). This

is correct when the container to be retrieved/stored is on the top of the container stack in the yard.

Sometimes the containers to be retrieved/stored are not on top of the stack. The YCs take time to

reshuffle the containers above these containers. For an algorithm computing the optimal job sequence,

ignoring such difference in YC service times will not guarantee a real optimal solution. Huang et al.

(2012) argued that YC service time is sequence dependent and embed the simulation of YC job sequence

in the dispatching algorithms. The issue of reducing the computational costs of embedded simulation in

the algorithms was studied in Huang and Guo (2013).

Several works studied the problem with 2 or more YCs. Due to the problem complexity, MIP models

were commonly employed just to formulate yard related problems while heuristic methods were proposed

to find near-optimal solutions. Jung and Kim (2006) considered 2 YCs working in one shared zone to

support vessels loadings with a GA and a Simulated Annealing (SA) algorithm to minimize the makespan,

i.e. the period between the starting time of the first YC operation and the finishing time of the last YC

operation. Lee et al. (2007) considered 2 YCs working in 2 non-overlapping zones with a SA algorithm

to minimize the makespan. Ng (2005) studied the problem of scheduling multiple YCs to handle jobs

with different ready times within a yard zone with MIP and heuristics. Guo and Huang (2012) proposed

space and time partitioning methods to manage the workload among multiple YCs working in a row of

yard blocks.

Cao et al. (2008) considered Double-Rail-Mounted gantry (DRMG) crane systems where two YCs can

pass through each other along a row of blocks with a combined greedy and SA algorithm to minimize the

loading time of containers.

1749

Huang, Li, and Guo

For automated container terminals, loading and unloading operations are done at the two ends of a

storage block. There are usually two automated rail-mounted gantry cranes in a block. Stahlbock and

Voss (2010) evaluated different online algorithms for sequencing and scheduling of jobs for automated

DRMGs serving a yard block. They showed that under high workload, the SA approach performed better

than the priority rule-based heuristics. Park et al. (2010) studied heuristic methods and local search

methods for scheduling twin rail-mounted-gantry (RMG) cranes in an automated container terminal.

Different from others, they considered the need to reshuffle containers when a container to be retrieved is

not on top of stack. The reshuffling work was treated as independent jobs. This works for their schemes

but is not suitable for us. We evaluate different job sequences in the search for an optimal solution and

the amount of reshuffling is sequence dependent.

3 THE FORMULATION OF THE YC DISPATCHING PROBLEM

The following assumptions are made in the YC dispatching model:

1) The YC dispatching algorithm is executed to plan the operations within a time window for each

YC.

2) The deadlines of vehicle jobs are given at the beginning of each planning window.

3) The vehicle arrival times can be predicted for a relatively short planning window, e.g. 30 minutes.

These predicted arrival times are given at the beginning of each planning window.

4) YC gantry time between two job positions could be predicted with high accuracy as gantry speed

is usually quite consistent.

5) The slot location (yard bay), the row and tier numbers of the container in each vehicle job are

given.

6) The yard block status (how many containers are stored in each stack) is given.

In our formulation, the following notations are used:

Jy = {1, 2, …, ny}, the set of job IDs in the working zone of YC y for a planning window

ayi the arrival time of job i at the yard block of YC y.

pyi the process time of job i by a YC y.

dyi the deadline of job i at YC y.

myij the time for YC y to move from the position of job i to that of job j.

Syi the time YC y starts processing job i.

Cyi the time YC y completes processing job i.

Jy is the set of jobs to be sequenced for the YC y. For each planning window in the operation control of a

container terminal, there are M sets of Jy (y = 1, 2, ..., M) where M is the number of YCs operating in the

current shift of a day. We assume that there is one YC working in a yard block which has storing or

retrieving jobs. When discussing the solution of the general YC dispatching problem for one YC, we

drop the subscript y in the notation. m0j is the YC gantry time from its position at the start of the time

window to the position of job j. C0 is the time the YC is available to start moving to the position of its

first job in the YC dispatching sequence.

The completion time for job i is equal to its start time + process time, that is, Ci=Si+pi. When vehicle

arrivals can be predicted and the next job is decided, an YC is able to start moving towards the next job

location before the actual vehicle arrival. Therefore job starting time is as shown in (1):

 𝑆𝑗 = 𝑚𝑎𝑥(𝐶𝑖 + 𝑚𝑖𝑗, 𝑎𝑗). (1)

Job process time pi is the YC service time for the job. It is a sequence dependent variable which cannot

be pre-determined. We will embed simulation to compute pi dynamically during the planning of the YC

dispatching sequence.

1750

Huang, Li, and Guo

Consider a set J of n vehicle jobs with predicted job arrival times ai (i = 1, 2, …, n), deadline di (i = 1,

2, …, n) and YC gantry times mij (i = 0, 2, …, n; j = 1, 2, …, n), the tardiness of a job Ji is defined as Ti =

max (0, Ci - di). The waiting time of a job Ji is defined as Wi = Si – ai. The makespan of the sequence is

Clast – C0 where last is the last job in the dispatched job sequence. In many works presented in the past,

the objective of the YC dispatching algorithm is to minimize the total (average) vehicle waiting time:

𝑚𝑖𝑛
𝑗𝑜𝑏 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

(∑ 𝑊𝑖𝑖) (2)

or to minimize the makespan:

𝑚𝑖𝑛
𝑗𝑜𝑏 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

(𝐶𝑙𝑎𝑠𝑡 – 𝐶0) . (3)

We propose that the YC dispatching problem should have the objective function:

𝑚𝑖𝑛
𝑗𝑜𝑏 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

(𝑚𝑎𝑥
𝑖

(𝑇𝑖)). (4)

Consider a sequence of l vehicles scheduled to come to one QC to deliver containers. Each vehicle

has a scheduled time to reach its QC in order to keep the QC continuously working. Let {d1, d2, ..., dl} be

the tardiness of the vehicles in reaching the QC (some tardiness may be zero when a vehicle is not late).

The delay to the QC in completing this sequence of jobs is max(d1, d2, ..., dl). For example, three vehicle

jobs to be served by a YC are scheduled to reach a QC. Suppose vehicles V1, V2 and V3 are delayed 1, 3,

2 time units by the YC respectively. V2 reaches the QC three time units later than scheduled but the QC

will only wait for this vehicle for 2 time units, because the QC finishes V1’s job one time unit later than

scheduled. The QC is not delayed by V3 even though it is late by 2 time units because it finishes V2’s

job 3 time units later than scheduled. The delay to the QC to complete the three vehicles’ jobs is max(1, 3,

2). If V1, V2 and V3 are to reach QC1, QC2 and QC3 of a vessel, the delay to the vessel by these three

jobs is also max(1, 3, 2) where QC2 is the longest crane as far as these three jobs are concerned.

Therefore minimizing the maximum tardiness among the jobs in a sequence will minimize the delay to

vessel operations.

Figure 2: Pseudocode of the RBA* framework.

YCDispatching (J) // J = {J1, J2, … , Jn}

 {

1 newJ = ; optimalJ = ; CurSmallest = ∞;

2 sort J into a certain order where this sequence will give a good solution;

3 RBAframe(J, newJ);

}

RBAframe(J, newJ)

{

1 FOR each job JJ i  // Select Ji as the job to serve after jobs in newJ;

2 Remove Ji from J and append Ji to newJ;

3 Simulation to get the value of g(Ji) from start to this job Ji;

4 Estimate lower bound cost h(Ji) from this job ;

5 IF f(Ji) based on g(Ji) and h(Ji) is smaller than CurSmallest

6 IF J is not empty

7 RBAframe(J, newJ);

8 ELSE // f(Ji) is the real cost and is smaller than CurSmallest

9 Update CurSmallest as f(Ji) ;

10 Update optimalJ = newJ; //Store Optimal List

 }

1751

Huang, Li, and Guo

4 RECURSIVE BACKTRACKING ALGORITHMS WITH AN A* HEURISTIC

Given an YC dispatching problem of n jobs, there are n! possible dispatching solutions in total. As the

dispatching problem is strongly NP-hard (Narasimhan and Palekar 2002), exhaustive search that

guarantees optimality would be time-consuming to perform. We propose our optimal algorithms using

the recursive backtracking with an A* heuristic approach as in (Guo et al. 2011). Figure 2 presents the

framework of this approach. The optimal algorithms for different objective functions (for (2), (3) and (4))

will have different evaluation function f(x).

4.1 MMT-RBA*- Dispatching Yard Crane to Minimize Maximum Tardiness

The algorithm takes as input the predicted vehicle job arrival times and their deadlines for jobs expected

in the YC’s working zone in the planning window. It also takes in the time the YC is available to start the

first job in the planning window and its initial location. This will be the time and position of the YC

when this YC finishes its last job in the previous planning window.

The objective of our tree search is to find a path from the start node to a leaf node (a dispatching

sequence of n jobs) with minimum f(x) (i.e. f(x) is the maximum job tardiness). The edge weight from

node i to node j in the tree is the tardiness of job j if the YC is to do job j immediately after finishing job i.

This edge weight is given by

 𝑊𝑖𝑗 = 𝑚𝑎𝑥(0, 𝑚𝑎𝑥(𝐶𝑖 + 𝑚𝑖𝑗, 𝑎𝑗) + 𝑝𝑗 − 𝑑𝑗). (5)

The evaluation function f(x) in line 5 of RBAframe() in Figure 2 for MMT-RBA* will be

 f(x) = max(g(x), h(x)). (6)

g(x) will be the maximum job tardiness among the jobs already planned in the partial sequence from start

node to node x (line 3 of RBAframe() in Figure 2). So

 g(x) = max(W12 , W23, ..., Wx-1, x) (7)

where edge weight Wij is defined by (5). The way to compute pj in Wij dynamically by simulation is

presented in Section 4.3. h(x) will be the estimated lower bound of the maximum job tardiness among the

jobs not planned yet. For these jobs, the minimum tardiness will be the job tardiness if the job is done

immediately after the current job x. In addition, the lower bound of pj is the minimum processing time Tp

which happens when the container is on the top of the stack. In other words, we assume that containers to

be retrieved from the yard during loading are on top of the storage yard, and containers to be stored in the

yard during unloading are just placed on top of the proper slot. In this case, process time pj is the time

YC makes one container move, Tp. So the lower bound of maximum tardiness (line 4 of RBAframe() in

Figure 2) will be computed by

LBWj = max(0, max (Cx + mxj, aj) + Tp - dj), Jj set of jobs not planned yet, (8)

h(x) = max(LBWj), Jj set of jobs not planned yet. (9)

Proof: h(x) is admissible

The tardiness LBWj as expressed by (8) is the very minimum for each job that is not planned yet. It is

the job tardiness if it were the first job to be served after job x and the minimum job processing time by

the YC is incurred. It follows that h(x) as computed by (9) will be the lower bound of the maximum job

tardiness among the jobs not planned yet.

Thus h(x) can never overestimate the cost from node x to the leaf node and is hence admissible. This

guarantees that MMT-RBA* will find the job sequence that minimizes the maximum tardiness of jobs

among all sequences of the n jobs.

To accelerate the search process of the MMT-RBA* algorithm, we propose a prioritized search order

which is the ascending order of the job deadlines. Intuitively, if the YC serves a job with an earlier

1752

Huang, Li, and Guo

deadline first, it will contribute to the minimization of the tardiness of this job. Therefore in line 2 of

YCDispatching() in Figure 2 we sort the job list J into ascending order of deadlines in MMT-RBA*.

4.2 MMS-RBA*- Dispatching Yard Crane to Minimize Makespan

The input to this algorithm is the same as those for MMT-RBA* except that the algorithm will not

consider the deadlines of the jobs. The objective of our tree search is to find a path from the start node to

a leaf node (a dispatching sequence of n jobs) which minimizes the completion time of the last job in the

dispatched sequence. Therefore f(x) will be the completion time of job x. The edge weight from node i to

node j in the tree is the completion time of job j if the YC is to do job j immediately after finishing job i.

This edge weight is given by

 Wij = max (Ci + mij, aj) + pj . (10)

g(x) (line 3 of RBAframe() in Figure 2) is the makespan of the partially dispatched job sequence up

to job x so it is the completion time of job x. It can be computed by (10) where Ci is the completion time

of the previous job in the sequence. The way to compute pj in Wij dynamically by simulation is presented

in Section 4.3.

h(x) (line 4 of RBAframe() in Figure 2) is the lower bound of the completion of the last job among

all possible job sequences where the partially dispatched sequence is the prefix. We estimate h(x) by

 h(x) = max(h1(x), h2(x)), (11)

 h1(x) = Cx + r * Tp + r * min
𝑗𝑘

(𝑚𝑗𝑘),

 h2(x) = max(al) + Tp

where j, k  {x}  set of unplanned jobs and l  set of unplanned jobs. So al is the last arrival time

among the unplanned jobs. r is the number of jobs not planned yet and Tp is the minimum job processing

time.

So h1(x) is the minimum total job processing time plus the minimum total gantry time after the

completion of job x. h2(x) is the time of the last arrival plus the minimum job processing time. Obviously

the makespan of the complete job sequence cannot be smaller than both h1(x) and h2(x). That is, h(x) can

never overestimate.

The evaluation function f(x) in line 5 of RBAframe() in Figure 2 will be

 f(x) = max(g(x), h(x)). (12)

To accelerate the search process of the MMS-RBA* algorithm, in line 2 of YCDispatching() in

Figure 2 we arrange the job list J into an order by SCJF (Smallest Completion time Job First). Intuitively,

if the YC serves the job with the smallest completion time first, it is likely to help in completing all the

jobs in the shortest time.

If optimizing YC productivity is the main concern of a terminal, MMS-RBA* will be able to find the

job sequence for the optimal productivity of individual cranes.

4.3 Computing Job Processing Times pj for a Partial Sequence by Simulation

Whether a wanted container in a retrieval operation is at the top or not is sequence dependent. It cannot

be pre-determined in the search for the optimal job sequence. Simulation is employed to manage the

reshuffling and compute each job’s processing time dynamically according to the current job sequence.

Based on the processing time of each job, its completion time Cx and tardiness Cx - dx can be decided.

Embedding simulation into a YC dispatching algorithm is proposed in Huang et al. (2012) and Figure 3

shows the outline of the method.

1753

Huang, Li, and Guo

sequenceTardiness(JobList)
// compute completion time Cx and tardiness Cx - dx for each job x in JobList

{ ReInititalizeYardBlock; //start simulation with initial yard block status

 FOR each job j in JobList

 serveJob(JobList, j);

}

serveJob(JobList, k) // called from sequenceTardiness()

{ YC moves to JobList[k].slot; // YC gantry move

 IF container for JobList[k] is not at top tier

 Move the blocking container(s) to suitable neighbouring stacks and update yard block status

Job service time pk = number of containers moved * Tp; // pk in (5)

Calculate job_tardiness according to (5);

}

Figure 3: Outline of pseudocode for simulation to compute Cx and Cx - dx for each job in a Job List.

5 PERFORMANCE EVALUATION

5.1 Design of Simulation Experiments

To evaluate the performance of the proposed YC dispatching algorithms, simulation experiments were

carried out. The YC dispatching models are programmed in C++ language under Microsoft Visual Studio

2010 using Dell Precision T3500, Windows 7 64-bit OS, Intel(R) Xeon(R) CPU with 3.2GHz and 6GB

RAM. Parameter settings in the experiments were obtained from real world terminal models as in past

projects (Guo et al. 2007). The linear gantry speed of an YC is 7.8km/hour. A yard block has a size of 36

slots.

We simulate the yard crane operations in a terminal with high volumes for transhipment containers.

Since the import containers are usually delivered to a yard block designated specifically to import

containers, the majority of the vehicles coming to a non-import block are serving vessel

loading/unloading operations. We will consider such vehicle jobs only. We approximate real operation

environment where q QCs are loading/unloading containers from/to b yard blocks. We consider the cases

where the q QCs are serving one vessel to investigate how minimizing maximum job tardiness help in

minimizing this vessel’s turnaround time. In each planning window there are n jobs from various QCs to

each of the q yard block. Each yard block has one YC to serve the vehicles. In all our experiments, we

set n to be 10. In other words, each planning window will plan for a job sequence of 10 jobs for each YC.

We do not experiment with a job sequence longer than 10 jobs. This is because it is impractical to

assume the availability of accurate information about job arrival times for long job sequences in the

dynamic operating conditions. A sequence of 10 job arrivals covers a time period of 20-30 minutes.

We reproduce the following operation characteristics in transhipment-intensive terminals when

generating the arrival patterns of vehicle jobs to the yard blocks in the simulation experiments.

(1) In a transhipment-intensive terminal, the majority of containers unloaded from one vessel to the

yard will be loaded onto a number of second carriers. The containers it will load from the yard

are from a number of first carriers. Containers for the same second carrier will be stored in a

number of clusters in the yard depending on their destination port, weight, class and type.

Therefore within a planning window, each QC will load/unload from a small number of yard

blocks (YCs) when serving a vessel. Based on this, we decide where the jobs from a QC will go

in the storage yard. We set q = 4 and b = 8. Each QC has its containers to/from 2 yard blocks.

(2) In the continuous operation of a QC, it is common to see a QC rate of 20-35 containers per hour.

This is not the peak rate that a QC can work but it is a realistic rate. Based on this, we decide the

job deadlines for a sequence of jobs from a QC, with a small amount of randomness.

1754

Huang, Li, and Guo

(3) Vehicles are assigned to transport containers to meet the QC’s deadlines for jobs. With

randomness, most vehicles will arrive at the yard block with enough time to spend at the yard

block and meet QC’s deadline. But a small number of vehicles may be late. So the vehicles

arrival times at the yard blocks are set to the job deadline minus a random variable from a

uniform distribution U(x, y).

Based on the above, The distribution of jobs in the yard, the job deadlines and arrival time

information in our experiments are as given in Table 1. Two job deadline patterns are used in experiment

sets 1 and 2 respectively to simulate two QC operating rates.

Table 1: Setting of experiment set C.

QC Working with Vehicle job deadlines Job arrival

time

QC1 Yard blocks 1, 2, 3, 4 First job: 360 + a random variable from uniform

distribution in [0, 60] from planning time; The other 19

job's due time in Set 1 is a random variable from uniform

distribution U(108, 132) seconds after the due time of its

previous job. It is U(90, 110) for Set 2.

Each job’s

arrival time

will be a

random value

from a uniform

distribution

U(due time –

360, due time

– 240).

QC2 Yard blocks 5, 6, 7, 8 As QC1’s

QC3 Yard blocks 3, 4, 1, 2 As QC1’s

QC4 Yard blocks 7, 8, 5, 6 As QC1’s

The jobs that come to a yard block will have a randomly generated slot and row number. Other

recent studies using randomized container locations include, for example, Zeng and Yang (2009). The tier

numbers of the jobs are distributed according to Table 2. When a container is not at the top tier,

reshuffling may be needed depending on the job sequence as discussed in Section 4.3.

We compare three YC dispatching algorithms: (1) RBA*: the algorithm (Guo et al. 2011) minimizes

total job waiting time; (2) MMT-RBA*: the algorithm minimizes maximum job tardiness; (3) MMS-

RBA*: the algorithm minimizes makespan of jobs. QCs generate jobs according to the setup in the

respective tables for a planning window. The generated jobs are distributed into the job list for each yard

block (YC). In each yard block, the YC dispatching algorithm plans the job sequence for the job list of

the planning window. We compare the maximum tardiness of the jobs for each QC between RBA* and

MMT-RBA* and between MMS-RBA* and MMT-RBA* respectively at the end of the planning window.

We also compare the maximum tardiness for the vessel at the end of the planning window between RBA*

and MMT-RBA* and between MMS-RBA* and MMT-RBA* respectively. The maximum tardiness for

the vessel is the maximum tardiness of the longest QC serving the vessel. For each experimental setting,

50 independent runs are conducted and the results of the paired-t comparisons are reported.

Table 2: Distribution of job tier numbers.

Tier number of job Percentage

Top tier 75%

2nd top tier 15%

3rd top tier 10%

5.2 Results and Discussions

A QC that experiences the longest delay in its operations due to waiting time for a vehicle will lengthen

the vessel’s turnaround time. Therefore the performance of various algorithms in YC dispatching is

1755

Huang, Li, and Guo

measured by the maximum delay among the QCs serving the vessel. The delay for a QC i under

algorithm x from simulation run r is the maximum tardiness of the jobs for the QC,

 Dx,r,i = max(d1, d2, ..., dl) (13)

where d1, d2, ..., dl are the tardiness of the sequence of jobs of this QC in the planning window.
The delay to a vessel under algorithm x from simulation run r is defined by the tardiness of the vessel:

𝑉𝑇𝑥,𝑟 = max
𝑖𝜖𝑄𝐶𝑠 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑒𝑠𝑠𝑒𝑙

(𝐷𝑥,𝑟,𝑖). (14)

We have explained in Section 3.2 that MMT-RBA* produces the minimum vessel delay. Therefore

we conduct the paired-t comparison between RBA* and MMT-RBA* and between MMS-RBA* and

MMT-RBA*. The comparison is done for both QC delays and vessel delays. The result of the paired-t

comparison of QC delay between algorithm x and MMT-RBA* is presented by

1

50
∑ (𝐷𝑥,𝑟,𝑖 − 𝐷𝑀𝑀𝑇−𝑅𝐵𝐴∗,𝑟,𝑖)50

𝑟=1 ± 𝑡49,0.95
𝑄𝑆𝑥−𝑀𝑀𝑇−𝑅𝐵𝐴∗

√50
. (15)

QSx-MMT-RBA* is the standard deviation of the differences of QC delay between x and MMT-RBA*. This

gives the individual 95% confidence interval of the difference in the delay of QC i as shown in the

columns under QC1 – QC4 in Tables 3 and 4.

The result of the paired-t comparison of vessel delay between algorithm x and MMT-RBA* is

presented by

1

50
∑ (𝑉𝑇𝑥,𝑟 − 𝑉𝑇𝑀𝑀𝑇−𝑅𝐵𝐴∗,𝑟)50

𝑟=1 ± 𝑡49,0.975
𝑉𝑆𝑥−𝑀𝑀𝑇−𝑅𝐵𝐴∗

√50
. (16)

VSx-MMT-RBA* is the standard deviation of the differences of vessel delay between x and MMT-RBA*. This

gives the individual 97.5% confidence interval of the difference in the vessel delay as shown in the last

column of Tables 3 and 4. The confidence level of the conclusions about vessel delays of the two

algorithms, RBA* and MMS-RBA*, against MMT-RBA* is 95%.

From tables 3-4, we can see that MMT-RBA* produces lower average delays for all the QCs when

compared with RBA* and when compared with MMS-RBA*. MMT-RBA* also produces minimum

average delays for the vessel when compared with RBA* and when compared with MMS-RBA*.

Table 3: Set 1: Paired-t comparison of QC delay and vessel delay (seconds).

QC1 QC2 QC3 QC4 Vessel

RBA*- MMT-BA* 37.86±27.32 61.79±40.32 56.27±35.74 51.20±46.32 148.58±67.63

MMS-RBA* - MMT-RBA* 222.08±75.75 224.48±63.30 149.62±66.66 289.89±85.10 523.89±93.85

Table 4: Set 2: Paired-t comparison of QC delay and vessel delay (seconds).

QC1 QC2 QC3 QC4 Vessel

RBA*- MMT-BA* 329.81±91.39 347.22±95.17 346.11±88.76 309.22±95.83 660.21±137.21

MMS-RBA* - MMT-RBA* 331.50±82.58 322.79±78.87 275.01±65.35 302.48±69.14 562.66±114.76

If we take the lower boundary of the confidence interval of the difference between RBA* and

MMT-RBA* (e.g. 148.58-67.63 in row 2 of Table 3) and divide by the upper boundary of the

confidence interval of the vessel delay by MMT-RBA*, we get the lower bound of the

percentage improvement of MMT-RBA* over RBA*. Similarly, the upper boundary of the

confidence interval of the difference between RBA* and MMT-RBA* (e.g. 148.58+67.63 in row

2 of Table 3) divided by the lower boundary of the confidence interval of the vessel delay by

MMT-RBA* returns the upper bound of the percentage improvement of MMT-RBA* over

RBA*. The same can be calculated for the percentage improvement of MMT-RBA* over MMS-

1756

Huang, Li, and Guo

RBA*. Table 5 shows the results. For example, MMT-RBA* produces 36.79% - 126.93% less

vessel delay than RBA* in experiment Set 1. All the improvements are significant.

Table 5: percentage improvement of vessel delay by MMT-RBA* over RBA* and MMS-RBA*.

Over RBA* Over MMS-RBA*

Lower boundary Upper boundary Lower boundary Upper boundary

% improvement (Set 1) 36.79% 126.93% 195.44% 362.68%

% improvement (Set 2) 348.95% 655.57% 298.84% 556.91%

6. CONCLUSIONS

We propose to minimize the maximum tardiness among the vehicle jobs for solving the YC dispatching

problem. We present optimal algorithm MMT-RBA* to minimize maximum job tardiness for the YC

dispatching problem. We also present optimal algorithm MMS-RBA* to minimize makespan in order to

evaluate MMT-RBA*.

In real operations, containers involved in a YC job may not be on top of the stack. To handle such

jobs, some containers have to be moved first. Such scenarios are very often ignored in some other studies.

In order to consider such jobs in the planning of YC dispatching sequence, simulation methods in Huang

et al. (2012) and Huang and Guo (2013) are used in our optimization algorithms to help provide accurate

YC service times. This results in a more accurate evaluation of job tardiness.

Simulation experiments are conducted to evaluate the algorithms proposed, together with the optimal

algorithm RBA* for minimizing total job waiting time. Our results show that MMT-RBA* is the best

algorithm to minimize vessel tardiness in completing its loading and unloading operations.

Future work includes investigations into dynamic optimization algorithms that are effective under

uncertainty: when predicted vehicle arrival times have noise.

REFERENCES

Cao Z., D-H Lee and Q. Meng. 2008. “Deployment strategies of double-rail-mounted gantry crane

systems for loading outbound containers in container terminals.” International Journal of Production

Economics 115: 221–228.

Guo, X., S. Y. Huang, W,J. Hsu, M.Y.H. Low, T.H. Chan and J.H. Liu. 2007. “Vehicle Dispatching with

real time location information in container terminals.” In Proceedings of the European Modeling and

Simulation Symposium 2007, edited by A. G. Bruzzone, F. Longo, Y. Merkuryev and M. A. Piera,

346-352. Bergeggi, Italy: Curran Associates, Inc.
Guo X., S.Y. Huang, W.J. Hsu and M.L.H. Low. 2011. “Dynamic yard crane dispatching in container

terminals with predicted vehicle arrival information.” Advanced Engineering Informatics 25(3): 472–

484.
Guo X. and S.Y. Huang. 2012. “Dynamic space and time partitioning for yard crane workload

management in container terminals.” Transportation Science 46(1): 134-148.

Huang, S.Y. and X. Guo. 2013. “Reducing Simulation Costs of Embedded Simulation in Yard Crane

Dispatching in Container Terminals.” In Proceedings of the 2013 ACM SIGSIM Principles of

Advanced Discrete Simulation, edited by M. L. Loper and G. A. Wainer, 305-314. Montréal, Québec,

Canada: ACM.

Huang, S.Y., X. Guo, W.J. Hsu and W.L. Lim. 2012. “Embedding simulation in yard crane dispatching to

minimize job tardiness in container terminals.” In Proceedings of the 2012 Winter Simulation

Conference, edited by C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher,

1646-1656. Berlin, Germany: Institute of Electrical and Electronics Engineers, Inc.

1757

Huang, Li, and Guo

Jung S.H. and K.H. Kim. 2006. “Load Scheduling for Multiple Quay Cranes in Port Container

Terminals.” Journal of Intelligent Manufacturing 17: 479–492.

Kim K.Y. and K.H. Kim. 2003. “Heuristic Algorithms for Routing Yard-Side Equipment for Minimizing

Loading Times in Container Terminals.” Naval Research Logistics 50: 498–514.

Kim K.H., J.S. Kang and K.R. Ryu. 2004. “A Beam Search Algorithm for the Load Sequencing of

Outbound Containers in Port Container Terminals.” OR Spectrum 26(1): 93–116.
Kim, K. M. and K. Y. Kim. 1999. “An optimal routing algorithm for a transfer crane in port container

terminals.” Transportation Science 33(1): 17–33.

Kumar, M. M. and S.N. Omkar. (2008), “Optimization of yard crane scheduling using particle swarm

optimizartion with genetic algorithm operators (psogao).” Journal of scientific & industrial research

67: 335-339.

Lee D-H., Z. Cao and Q. Meng. 2007. “Scheduling of Two-Transtainer Systems for Loading Outbound

Containers in Port Container Terminals with Simulated Annealing Algorithm.” International Journal

of Production Economics 107: 115–124.

Li W., Y. Wu, M. Petering, M. Goh and R. d. Souza. 2009. “Discrete time model and algorithms for

container yard crane scheduling.” European Journal of Operational Research 198: 165–172.

Narasimhan A. and U.S. Palekar. 2002. “Analysis and Algorithm for the Transtainer Routing Problem in

Container Port Operation.” Transportation Science 36(1): 63–78.

Ng W.C. 2005. “Crane Scheduling in Container Yards with Intercrane Interference.” European Journal of

Operational Research 164: 64–78.

Ng W.C. and K.L. Mak. 2005a. “Yard crane scheduling in port container terminals.” Applied

Mathematical Modelling 29: 263-276.

Ng W.C. and K.L. Mak. 2005b. “An effective heuristic for scheduling a yard crane to handle jobs with

different ready times.” Engineering optimization 37(8): 867-877.

Park, T., R. Choe. S.M. Ok and K.R. Ryu. 2010. “Real-time scheduling for twin RMGs in an automated

container yard.” OR Spectrum 32: 593-615.

Stahlbock, R. and S. Voss. 2010. “Efficiency consideration for sequencing and scheduling of double-rail-

mounted gantry cranes at maritime container terminals.” International Journal of Shipping and

Transport Logistics 2(1): 95-123.

Steenken, D., S. Voβ and R. Stahlbock. 2004. “Container terminal operation and operations research – a

classification and literature review.” OR Spectrum 26: 3-49.

Zeng, Q. and Z. Yang. 2009. “Integrating simulation and optimization to schedule loading operations in

container terminals.” Computers & Operations Research 36(6): 1935–1944.

AUTHOR BIOGRAPHIES

SHELLYING HUANG is a senior lecturer in School of Computer Engineering at Nanyang

Technological University (NTU), Singapore. Her research interests are in intelligent decision support

systems, simulation optimization, heuristics and logistic systems. Her email address is

ASSYHUANG@ntu.edu.sg.

YA LI is a research associate in School of Computer Engineering at Nanyang Technological University

(NTU), Singapore. She obtained her Master of Science from School of Computer Engineering, NTU,

Singapore. Her research interests include simulation-based optimization, dispatching and scheduling

problems. Her email address is LIYA@ntu.edu.sg.

XI GUO obtained her Ph.D. from School of Computer Engineering, NTU, Singapore. Her research

interests include real time control, artificial intelligence, and efficiency enhancement techniques for

simulation-based optimization. She is now with Murex (Singapore). Her email address is

guox0006@ntu.edu.sg.

1758

