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ABSTRACT 

This paper reviews the main concepts and existing literature related to the use of biased randomization of 
classical heuristics and the combination of simulation with meta-heuristics (Simheuristics) in order to 
solve complex combinatorial optimization problems, both of deterministic and stochastic nature, in the 
popular field of Vehicle and Arc Routing Problems. The paper performs a holistic approach to these 
concepts, synthesizes several cases of successful application from the existing literature, and proposes a 
general simulation-based framework for solving richer variants of Vehicle and Arc Routing Problems. 
Also examples of algorithms based on this framework successfully applied to concrete cases of Vehicle 
and Arc Routing Problems are presented. 

1 INTRODUCTION 

There is an emerging interest on introducing randomization into combinatorial optimization problems as a 
way of describing new real problems in which most of the information and data cannot be known 
beforehand.  This tendency can be observed in Van Hentenryck and Bent (2010), which provides an 
interesting review of many traditional combinatorial problems with stochastic parameters.  Thus, those 
authors studied Stochastic Scheduling, Stochastic Reservations and Stochastic Routing in order to make 
decisions on line, i.e., to re-optimize solutions when their initial conditions have changed and, therefore, 
are no longer optimal.  This type of analysis has designed the Online Vehicle Routing Problems, in which 
re-optimization is needed apart from a previous situation.  This set of routing problems seems to be well 
analyzed with the use of stochastic hypothesis in their definitions, thus providing more reality in their 
formulation.  Another routing field in which randomness has also been developed is the resolution of 
inventory routing problems where the product usage is stochastic (Hemmelmayr et al., 2010).  Bianchi et 
al (2009) have written an interesting survey of the appropriate meta-heuristics to solve a wide class of 
combinatorial optimization problems under uncertainty. The aforementioned survey is a good reference 
for obtaining an appropriate list of articles regarding the use of meta-heuristics for solving stochastic 
combinatorial optimization problems (SCOPs) in different application fields. 
 In this paper we discuss how simulation can be combined with heuristics and meta-heuristics in order 
to efficiently solve two family of SCOPs, the Vehicle Routing Problems (VRPs) and the Arc Routing 
Problems (ARPs). The paper is structured as follows: Section 2 offers an overview of both VRPs and 
ARPs; Section 3 presents a savings heuristics which can employ a biased randomization component for 
solving both families of problems; Section 4 shows how this heuristic can be applied in deterministic 
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problem; Section 5 introduces the concept of Simheuristics; Section 6 shows examples on which this 
methodology can be used; Section 7 presents a framework based on Simheuristics for solving non-
deterministic problems; and finally, Section 8 summarizes the main conclusions of this work. 

2 OVERVIEW OF VEHICLE AND ARC ROUTING PROBLEMS 

VRPs is a family of well known problems which has long been tackled by researchers for several decades 
now, not only because its potential applications but also due to the fact that they can be used to test 
efficiency of new algorithms and optimization methods. VRPs are known to be NP-hard problems (Prins 
2004). The most basic example of VRP is the Capacitated Vehicle Routing Problem (CVRP). In the 
CVRP (Juan et al. 2010) a set of customer demands have to be served with a fleet of vehicles from a 
depot. Each vehicle has the same limited capacity and each customer has a certain demand that must be 
satisfied and is known beforehand. Additionally, there is a cost matrix that measures the costs associated 
with moving the vehicle from one node to another. These costs usually represent distances or traveling 
times. Under these circumstances, the goal of the CVRP is to find the set of routes for serving all the 
customer’s demands, considering that: 
 

1. Each route starts and ends in the depot. 
2. Each customer is supplied by a single vehicle. 
3. A vehicle cannot stop twice at the same customer. 
4. The demand served by a vehicle cannot surpass the vehicle capacity. 

 
The objective function of this problem is defined by the sum of the costs between the nodes visited by 
each vehicle, taking all the vehicles into account. 
 ARPs is the counterpart to the VRPs where the customer demands are located in (some) of the edges 
in the graph instead of the nodes. In this case, the most basic example is the Capacitated Arc Routing 
Problem (CARP). Similarly to the CVRP, in the CARP (Golden and Wong 1981) a set of customer 
demands which are located in the edges of a graph need to be served by a homogeneous fleet of vehicles 
with limited capacity. The main difference of the CARP with respect to CVRP is that it is defined over a 
non-complete graph, which means that only some of the nodes have a direct connection. Also, every edge 
in the graph can be traversed as many times as required by any vehicle but it can only be served by a 
single vehicle. 

3 BIASED RANDOMIZATION OF THE SAVINGS HEURISTIC 

One of the most cited heuristic to solve the VRPs is the Clarke and Wright’s Savings (CWS) constructive 
algorithm (Juan et al. 2011a). It is an iterative method that starts by considering an initial dummy solution 
in which each customer is served by a dedicated vehicle. Next, it starts an iterative process for merging 
some of the routes in the initial solution. Merging routes can improve the expensive initial solution so that 
a unique vehicle serves customers from the merged routes. The merging criterion is based on the concept 
of savings. Roughly speaking, given a pair of nodes to be served, a savings value can be assigned to the 
edge connecting these. This savings value is given by the reduction in the total cost function due to 
serving both customers with the same vehicle instead of using a dedicated one. This way, the algorithm 
constructs a list of savings, one for each possible edge connecting two customers. 
 The CWS heuristic can be modified to be used for the ARPs, by defining the Savings Heuristic for 
the Arc Routing Problem (SHARP). The adaption of the heuristic for the CARP is not trivial and is 
described in Gonzalez et al. 2012a. It starts by computing the shortest paths for all the pair of nodes in the 
graph, so it can define an equivalent complete graph including the costs of these paths. Having a complete 
graph allows computing the savings associated which each arc where the customers are located, in a 
similar way it is done for the CVRP. The edges are then sorted in a list according to their associated 
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savings, and the initial dummy solution is generated. From this, the iterative procedure is started which 
tries to merge routes in order to obtain a less costly solution. 
 This heuristic can be randomized, in both versions, to construct a powerful algorithm. The 
randomized algorithm benefits from the fact that the CWS has very low execution times, and also with the 
fact that,  a different solution can be generated every time the algorithm is executed with a possibility of 
outperforming the best solution found so far with the use of pseudo-random number generators during the 
construction phase of the base heuristic. The randomization consists of using a skewed random number 
generator (e.g. geometric probability distribution) to guide the constructive process while keeping the 
heuristic criterion. Unlike a uniform randomization of the savings list, which will destroy the greedy 
behavior of the heuristic and therefore the output of the randomized algorithm will unlikely provide a 
good solution, a biased approach constitutes an efficient way to randomize the priority list without losing 
the greedy behavior of the heuristic. In the case of CWS (and SHARP), the constructive phase is based on 
a sorted list of candidates. These candidates have an associated savings value, which are sorted and 
processed starting with the best candidates. In the randomized version, instead of selecting always the 
best candidate available, all the candidates are considered, with items having a better value (according to 
the criterion) having better odds of being selected. By integrating this process inside a multi-start schema, 
many different solutions are obtained, some of them outperforming the solution obtained with the 
deterministic classical heuristic. With this, the algorithm is executed many times through the multi start 
procedure, and the best solution is selected as the solution obtained by the randomized algorithm. The 
described approach is able to considerably improve the results obtained by the classical heuristic. For 
example, in medium-sized instances in which the classical heuristic is able to obtain solutions with a cost 
within a gap of 20% to 40% with respect to the best know solution, the proposed approach is able to find 
solutions with a gap below 1%, being the best known solution in some instance. 

3.1 Examples of applications in deterministic routing 

We can find in the literature several examples of the application of the methodology described in the 
previous section. In Juan et al. 2010 we can find one example of the randomization of the CWS for the 
CVRP with the SR-GCWS algorithm. The algorithm introduces a skewed random behavior within the 
CWS heuristic in order to start an efficient search process inside the space of feasible solutions. Each of 
these feasible solution consists of a set of roundtrip routes from the depot that, altogether, satisfy all the 
demands of the nodes by visiting and serving all of them exactly once. 
 In Gonzalez et al. 2012a  the RandSHARP algorithm is introduced for the CARP. This algorithm is a 
biased randomized version of the SHARP algorithm. The randomized algorithm uses solutions produced 
by the savings-based SHARP heuristic, and then iteratively it generates a new randomized solution by 
introducing a probabilistic criterion when selecting edges from the savings list. The algorithm uses a 
geometric probabilistic criterion. In Dominguez et al. 2014, the authors propose an algorithm to solve the 
2L-HFVRP, which can be seen as a variant of the heterogeneous VRP where two-dimensional loading 
constraints have been incorporated to deal with 'large-size' items – which are usually, assumed to be 
rectangular shaped. The problem represents an important challenge since it combines a heterogeneous 
VRP with vehicle packing problems. The combination of these two classical problems is found in 
practical applications of some real-world transportation activities. Their approach relies on the biased 
randomization of routing and packing heuristics, which are integrated inside a multi-start framework. 

4 SIMHEURISTICS 

As shown in Figure 1, a Simheuristic approach is a particular case of simulation-optimization which 
combines a heuristic/meta-heuristic algorithm with simulation methodologies–e.g. Monte-Carlo, discrete-
event, agent-based, etc.– in order to efficiently deal with the two components in a SCOP instance: the 
optimization nature of the problem and its stochastic nature.  Some examples of Simheuristics 
applications to different fields can be found in the optimization-simulation literature.  Thus, for instance, 
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Juan et al. (2011b) and Gonzalez et al. (2012b) combined Monte Carlo simulation with routing meta-
heuristics in order to solve, respectively, the vehicle routing problem with stochastic demands and the arc 
routing problem with stochastic demands; Peruyero et al. (2011) combined Monte Carlo simulation with a 
scheduling meta-heuristic in order to solve the permutation flow-shop problem with stochastic processing 
times; and Caceres et al. (2012) combined Monte Carlo simulation with a routing meta-heuristic in order 
to solve the inventory routing problem with stock-outs and stochastic demands. Also, as illustrated later in 
this paper, discrete-event simulation can be used in combination with a meta-heuristic to solve other 
SCOPs where the stochastic behavior is conditioned by the time factor.   
 Typically, given a SCOP instance, a heuristic/meta-heuristic algorithm is run in order to perform an 
oriented search inside the solution space.  This iterative search process aims at finding a feasible solution 
with the best possible value, which is expected to be near-optimal as well.  During the iterative search 
process, the algorithm must deal with the stochastic nature of the SCOP instance.  One natural way to do 
this is by taking advantage of the capabilities simulation methods offer to manage randomness.  Of 
course, other approaches can also be used instead of simulation –e.g. dynamic programming, fuzzy logic, 
etc.  However, under the presence of historical data on stochastic behavior, simulation allows the 
development of both accurate and flexible models.  Specifically, randomness can be modeled throughout 
a best-fit probability distribution –including parameterization– without any additional assumptions or 
constraints.  Thus, simulation is usually integrated with the heuristic/meta-heuristic approach and it 
frequently provides dynamic feedback to the searching process in order to improve the final outcome.  In 
some sense, simulation allows to extend already existing and highly efficient meta-heuristics –initially 
designed to cope with deterministic problems– so that they can also be employed to solve SCOPs. 
 
 

 
Figure 1: Overview scheme of a Simheuristics approach. 

Obviously, one major drawback of this approach is that the results are not expected to be optimal 
anymore, since Simheuristics are combining two approximate methodologies.  Nevertheless, real-life 
problems are complex enough and usually NP-hard even in their deterministic versions.  Therefore, sim-
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heuristics constitute a quite interesting alternative for most practical purposes, since they represent 
relatively simple and flexible methods which are able to provide near-optimal solutions to complex real-
life problems in reasonable computing times. 

5 EXAMPLES OF APPLICATIONS IN STOCHASTIC ROUTING 

The Vehicle Routing Problem with Stochastic Demands (VRPSD) is a NP-hard problem in which a set of 
customers with random demands must be served by a fleet of homogeneous vehicles departing from a 
depot, which initially holds all available resources (Novoa and Storer, 2009). Obviously, there are some 
tangible costs associated with the distribution of these resources from the depot to the customers. In 
particular, it is usual for the model to explicitly consider costs due to moving a vehicle from one node – 
customer or depot – to another. These costs are often related to the total distance traveled, but they can 
also include other factors such as number of vehicles employed, service times for each customer, etc. The 
classical goal here consists of determining the optimal solution (set of routes) that minimizes those 
tangible costs subject to the following constraints: (i) all routes begin and end at the depot; (ii) each 
vehicle has a maximum load capacity, which is considered to be the same for all vehicles; (iii) all 
(stochastic) customer's demands must be satisfied; (iv) each customer is supplied by a single vehicle; and 
(v) a vehicle cannot stop twice at the same customer without incurring in a penalty cost. 
 
 

  
 

Figure 2: A solution for a vehicle routing problem with stochastic demands. 

Another problem in which Simheuristics can be applied is the Capacitated Arc Routing Problem with 
Stochastic Demands (ARPSD). The ARPSD is the counterpart to the VRPSD in the family of ARPs and 
was introduced by Fleury et al. (2002). The problem is defined over a connected undirected graph and 
considers a fleet of identical vehicles with a maximum capacity. In this graph we have a set of customers 
located on (some) of the arcs, whose demands are not known beforehand (but with a known mean and 
probability distribution). The goal of the problem is to find a set of feasible vehicle routes that minimizes 
the total expected delivery costs, including costs due to route failures, while satisfying: (i) each route 
starts and ends at the depot node, so every route is a roundtrip; (ii) all edges demands are satisfied; (iii) 
each edge with positive demand is served by exactly one vehicle (notice, however, that every edge can be 
traversed as many times as required by the same or different vehicle); and (iv) the total demand to be 
served by any route cannot exceed the vehicle capacity. 
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The random behavior of customers’ demands could cause an expected feasible solution to become an 
unfeasible one if the final demand of any route exceeds the actual vehicle capacity. This situation is 
referred to as route failure, and when it happens some corrective actions must be introduced to obtain a 
new feasible solution. Thus, for example, after a route failure the associated vehicle might be forced to 
return to the depot in order to reload and resume the distribution at the last visited customer. As discussed 
in Juan et al. (2011b), one possible methodology to deal with this problem is to design reliable solutions, 
i.e., solutions with a low probability of suffering route failures. This is basically attained by constructing 
routes in which the associated expected demand will be somewhat lower than the vehicle capacity. 
Particularly, the idea is to keep a certain amount of vehicle capacity surplus (safety stock) while designing 
the routes, so that if final routes’ demands exceed their expected values up to a certain limit, they can be 
satisfied without incurring in a route failure. Using safety stocks not only contributes to reduce variable 
costs due to route failures but, related to that, it also increases the reliability or robustness of the planned 
routes, i.e.: as safety stock levels increase, the probability of suffering a route failure diminishes. Notice, 
however, that employing safety stocks also increases fixed costs associated with aprioristic routing 
design, since more vehicles and more routes are needed when larger buffers are considered. Therefore, 
when minimizing the total expected cost a tradeoff exists between its two components, fixed costs and 
expected variable costs. Thus, the challenge relies on the selection of the appropriate buffer size.  

Given a VRPSD instance, Juan et al. (2011b) consider different levels of this buffer size and then 
solve the resulting scenarios. This is performed by employing Monte Carlo simulation, which allows 
estimating the variable costs associated with each candidate solution. Thus, among the multiple solutions 
generated for each scenario, the ones with lowest total expected costs are stored as the best-found result 
associated with the corresponding safety-stocks level. Once the execution of the different scenarios ends, 
the corresponding solutions are compared to each other and the one with the lowest total expected costs is 
selected as the best-found routing plan. 

In regards of ARPSD, Gonzalez et al. (2012b) proposed and implementation based on the same 
framework for the ARPSD problem. The authors also proposed to solve the problem by solving the 
equivalent deterministic problem where the customer demands were equal to the mean value and the 
vehicle capacity was restricted due to the consideration of a safety stock. Also, Monte Carlo simulation 
was used for simulate realizations of the problem instance and evaluate the total expected cost of the 
obtained solution. Additional details on this simulation-based framework follow in next section. 

6 AN INTEGRATED SIMULATION-BASED FRAMEWORK 

The solutions proposed for the VRPSD in Juan et al. (2011b) and to the ARPSD in Gonzalez et al. 
(2012b) were based on the same framework, which will be described in this section. This methodology is 
based in two facts: (a) the stochastic problem can be seen as a generalization of the deterministic problem 
where the random value has zero variance; and (b) efficient meta-heuristics already exist for the 
deterministic problems while the stochastic problems are an emerging field. Accordingly, the key idea 
behind this framework is to transform the stochastic instance into a new problem which consists of 
solving several conservative instances of the deterministic problem, each of the characterized by a 
specific risk of showing routing failures. The term conservative refers to the fact that only a certain 
percentage of the vehicle capacity is considered during the route design phase, so the rest of capacity is 
considered as safety stock. So, this remaining capacity of the vehicle will be available in case the actual 
demand of the route is greater than expected.  
 The methodology consists on the following steps (see Figure 3): 
 

1. Consider a problem instance with a set of customers. Each customer has associated a stochastic 
demand, Di, characterized by its mean and probability distribution. 
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2. Select a value for the risk level percentage (k) and compute the value of the vehicle usable 
capacity (VMC*) given by a percentage of the vehicle capacity (VMC). This percentage will be a 
parameter defined for the algorithm. 

3. Consider the deterministic instance of the problem, consisting on the same problem instance than 
the stochastic version, but where the demands are deterministic and their value equal to the mean 
of the stochastic demand (di* = E[Di]), and the vehicle capacity is restricted to the value 
computed on step 2 (VMC*). 

 

 

Figure 3: Flow diagram for the proposed methodology applied for the VRPSD. 
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4. Solve previous instance using a biased randomized algorithm: e.g. the Simulation in Routing 
Generalized Clarke and Wright Savings (SG-GCWS) for CVRP or Randomized Savings 
Heuristic for Arc Routing Problem (RandSHARP) for CARP. This solution will be an aprioristic 
solution for the original problem instance. Furthermore, it will be a feasible solution as long as 
there are not any route failures. 

5. Using the previous solution, estimate the expected cost due to possible failures on any route 
(CRF(k)). This is done by using Monte Carlo simulation. To this end, random demands are 
generated and, whenever a route occurs a repair action is applied, registering the associated cost 
of this action in the total cost of the solution. The repair action consists of a round-trip from the 
depot to the failing customer so the vehicle capacity is reloaded. After iterating this process some 
thousands of times, a random sample of costs is obtained, and an estimate for its expected value 
can be calculated. Then, the expected total costs due to possible route failures can be computed 
by addition of these variable costs and the costs of the deterministic solution obtained during the 
design phase. 

6. Using the deterministic solution, obtain an estimate for the reliability of each route of the 
solution. In such context, the reliability index is defined as the probability that a route will not 
fail. This route reliability index is computed by direct Monte Carlo simulation using the 
probability distributions that model customer demands in each route. Remark that in each route, 
over-estimated demands could sometimes be compensated by under-estimated demands. 

7. The reliability index for the total solution is computed as the multiplication of the value for each 
route in the solution. This value can be considered as a measure for the feasibility for the solution 
in the context of the stochastic problem. 

8. Depending on the total costs and the reliability indices associated with the solutions already 
obtained, repeat the process from Step 1 with a different value of the value used for the safety 
stock. 

9. Finally, the best solution found so far is returned as solution to the problem, as well as its 
corresponding properties such cost or reliability index. 

7 CONCLUSIONS 

In this paper we have discussed how biased randomization and Simheuristics can be used for solving 
problems in the family of Vehicle Routing Problems and Arc Routing Problems. We have shown how, for 
deterministic problems, classical heuristics like the CWS can be combined with biased randomization to 
obtain state of the art solutions for the problems. Also, for stochastic problems (SCOPs), we have shown 
how Simheuristics can be used for solving the problem. The basic idea of Simheuristics is to combine the 
biased randomized algorithm for the deterministic version of the problem with Monte Carlo simulation in 
order make the algorithm be able to react to greater values than expected during the phase of resolution of 
the deterministic problem. As the described methodology is quite flexible, it can be easily adapted for 
other families of problems in the field or routing or scheduling. 
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