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ABSTRACT 

Setting up simulation scenarios in the field of Supply Chains (SCs) is a big challenge because complex 
input data must be specified and careful input data management as well as precise model design are 
necessary. SC simulation needs a large amount of input data – especially in times of big data, in which the 
data is often approximated by statistical distributions from real world observations. This paper deals with 
the question how the model itself and its input can be effectively complemented. This takes into account 
the commonly known fact, that the accuracy of a model output depends on the model input. Therefore an 
approach for using techniques of Knowledge Discovery in Databases is introduced to derive logical 
relations from the data. We discuss how Knowledge Discovery would be applied, as a preprocessing step 
for simulation scenario setups, in order to provide benefits for the level of accuracy in simulation models.  

1 INTRODUCTION 

When simulating complex real world Supply Chains (SCs), the modeling of variability is one of the most 
important steps. Many aspects of SCs, e.g. transactions, times for customer orders or order processing 
times are variable.  

Table 1 Classification of data (Robinson 2004). 

Category A Available 
Category B Not available but collectable 
Category C Not available and not collectable 

 
 As shown in Table 1 the underlying data representing the variability can be divided into three 
categories based on availability and collectability (Robinson 2004). Robinson stated that Category A data 
are available e.g., because they have been collected, Category B data need to be collected e.g., arrival 
times, and Category C can only be estimated or treated as experimental parameter. Variability is often 
approximated by probability distributions like Erlang and Gamma (Banks 1998), depending on the object 
behavior being modeled. Despite the possibility to select the correct distributions by analyzing historical 
data and fitting a suitable distribution, it is also possible to analyze the current processes of the system to 
be modeled. Standard input modeling approaches in simulation consist of four steps: Testing input data 
assumptions, selecting possible distributions, estimating the distribution’s parameters and analyzing the 
model adequacy (Merkuryeva and Vecherinska 2010). If we take a look at the standard procedure – fitting 
a distribution to existing raw data – we must carefully consider if we are integrating the existing 
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information of the raw data in an adequate way. Akhavian and Behzaadan (2013) point out that unrealistic 
input data is one of the most important reasons why simulation frameworks fail to provide high quality 
output for complex tasks. Furthermore, they identify that from the simulation perspective most computer 
models fail to provide reliable output if the model input is not an accurate representation of the real world. 
The sufficient representations of the real world is comprised of two aspects, the data and the model, 
where normally the rules for execution logic are defined for the conceptual model. To demonstrate an 
approach for a higher level of accuracy taking additional logical relations into consideration, we first 
examine a specific simulation approach and its input data management. 

2 DISCRETE EVENT SIMULATION, INPUT DATA AND MODEL SPECIES 

The combination of Discrete Event Simulation (DES) and SCs is a well-established field of research. 
Particular difficulties in this field exist with regard to the data base of DES projects. The difficulties are 
characterized by different terminologies, co-existing models and specified adaptions. Therefore, a short 
overview is given about the state of the art of DES and SCs and the terms “input”, “data” and “accuracy” 
are introduced.  

2.1 Supply Chains and Discrete Event Simulation 

There are many approaches for simulating Supply Chains (Tarokh and Golkar 2006). The advantages and 
disadvantages have been extensively studied by different researchers (Terzi and Cavalieri 2004, Lee at al. 
2002, Tako and Robinson 2012). Discrete Event Simulation is used widely within production and 
logistics. Various authors show the suitability of DES to simulate SCs, e.g. Hellström and Johnsson 
(2002) or Preusser et al. (2005). A literature overview for DES and SC can be found in Rabe and 
Deininger (2012). A specific characteristic of SC data is the amount of transactions, where a transaction is 
defined as exchange of material or immaterial objects between the actors. Transactions in the context of 
Supply Chains can have various distinctive attributes as for instance time stamps or details on quantities. 
In DES the success of a simulation project relies heavily on the input data quality (Skoogh and Johansson 
2009). But, in industry the existing raw data quality often doesn’t meet the requirements for simulation 
input (März et al 2010). If raw data are available, the simulation leads to problems like outlier problems, 
noise and missing data. Problem definition and raw data gathering are closely linked because the selection 
of data differs in relation to the problem definitions and associated questions. The definition of problems, 
data gathering and data analysis are a mostly uncovered area in simulation (Lehtonen and Seppala 1997). 
Before introducing the approach for increasing the accuracy of input data by adding logical relations in 
DES projects, clarification of input data is needed. This denotes in particular the exact meaning of input 
data in the related context, the understanding of the term “level of accuracy” and the study of standard 
input modeling of DES focusing on the conceptual model. Due to the necessity of offering a greater 
practical advantage, standard procedures are adapted. For this reason, the following discussions are based 
on selected models and procedures. 

2.2 Level of Accuracy 

In this paper the terms “level of detail” and “level of accuracy” are used referring to Acken (1997). We 
define the level of accuracy for input data and model as: “Describes how well an entity reflects reality, 
completes a task or solves a problem by including or excluding relevant elements”. The amount of input 
data strongly depends on the level of detail chosen for a simulation setup. The level of detail is related to 
the level of accuracy but explicitly under the condition that accuracy and detail are not the same (Perera 
and Liyanga 1999). It is important to determine a scale for accuracy because “often, the goal of 
simulation input modeling is to provide a model that is reasonable, given the goals of the simulation; in 
contrast to standard statistical applications, often we are not really interested in determining whether the 
model is perfect” (Banks 1998). 
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Figure 1: Procedure Model of Rabe, Spieckermann and Wenzel (2008). 

 
 Simulation can be divided into data input, model, simulation experiments and output. Level of detail 
and level of accuracy can be both considered for each step of the process with the aim to fulfill particular 
simulation requirements. For the research purposes only, the different input data stages and the model 
phase are considered (Figure 1). The simulation procedure model (Rabe, Spieckermann and Wenzel 
2008) starts with the target description. On the right hand side the results of the corresponding task are 
represented. In the middle it displays the individual simulation tasks in chronological order. On the left 
hand side the divested data tasks are represented. The motivation of splitting is the independent handling 
of the data tasks (in terms of time, content and relevant persons) in relation to simulation modeling. In the 
present research paper only the level of accuracy for a high level of input data and model logic is 
considered. Both terms “input data” and “model logic” are discussed next. 

2.3 Input Data and Input Data Modeling for DES 

The process of information acquisition is divided into different steps. The approach of this paper is 
oriented towards the model of information acquisition of Bernhard and Wenzel (2005). The model starts 
by identifying information. During the following step the collection of this information is prepared by 
selecting information sources and acquisition methods. The next step is collecting information and also 
recording the data. These results are stored within an information system (e.g. database, data warehouse). 
If we take a look at the process of input data management for DES presented by Skoogh and Johansson 
(2008), we can map the storing of data in an information system to the stage before the preparation of 
statistical or empirical representation is conducted. The research approach introduced in this paper utilizes 
this state of data as its input. There is no concrete distinction related to the various kinds of data input. 
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The main idea of simulation input modeling is to create a valid input model that reproduces the input 
process of the real world system. Simulation input modeling for unpredictable variability can be divided 
into different categories, e.g. bootstrapping or distribution (Law 2007).  Subdivision can be made between 
raw data, preprocessed data for standard simulation input modeling or another kind of processed data as a 
result preprocessing adaption. The improvement of the process of data collection is not methodically 
related to data processing which is considered in this paper and therefore has to be regarded 
independently. We stated that our approach is related to the period after data collection, but more 
experiments are needed to make a decision on which of the different data types should serve as input data. 
As a consequence, the term “level of accuracy” only refers to the stages after the collection of data. 
Hence, the method being described in this paper has the objective to extend an already existing solution. 
The starting point of the method is the information system’s current state. In general the system’s current 
state analysis along with the task definition serves as the foundation for the documentation of the 
conceptual model. Hereinafter, we analyze the impact of higher accuracy on the conceptual model.   

2.4 Developing Model Species – The Conceptual Model 

We have clarified the terms data and level of accuracy. In the next step, an explanation is needed which 
model species should be adapted for gaining higher accuracy in DES. In the current research phase no 
concrete distinction is made between the different model species (Figure 1). As the conceptual model is 
the foundation of the execution logic, it is consequentially the first model to adapt. We stated that 
additional knowledge is related to the accuracy. The accuracy itself has two connection objectives, 
namely the input data and simulation modeling. The conceptual model which contains the logical 
relations for simulation execution needs to be affected because execution rules may change. This is an 
adaption of the system’s logical behavior and needs to be reflected in the conceptual modeling phase. The 
reason given for this statement is that a conceptual model should always reflect the knowledge about the 
system (Wand et al. 1995). If other models are affected in the same extend further clarification is 
necessary, because model theory of relationship between conceptual and computation models must be 
taken into account (Juristo and Moreno 2000). We have identified the connection of input and model for 
increasing accuracy. One way to increase accuracy is to take more knowledge into account. But what can 
be the enhanced knowledge and how can we identify it? 

3 KNOWLEDGE DISCOVERY IN DATABASES: WHAT IS A PATTERN? 

In the past, some techniques of Knowledge Discovery in Databases (KDD) were successfully applied to 
the field of logistics (Rahman, Desa and Wibowo 2011). Recent projects combine KDD and simulation in 
a successful manner by focusing on certain data aspects (Bogon et al. 2012). Therefore, knowledge 
discovery in SCs by using KDD techniques is much encouraged. When talking about finding knowledge 
in data, we refer to KDD, meaning the overall process of discovering useful knowledge from data as it is 
defined by Fayyad, Piatetsky-Shapiro and Smyth (1996).  

The process starts with the selection of data, data preprocessing, for instance cleansing, followed by 
the transformation of data. Transformation is necessary because data mining algorithms require 
specialized input, e.g. a target attribute needs to be labeled or nominal values of attributes need to be 
mapped to numeric values. The process uses data mining algorithms as an essential step and ends with the 
interpretation of the results (Figure 2).  

The step in the KDD process called data mining is the extraction of implicit, previously unknown and 
potentially useful information from data (Witten, Eibe and Hall 2011). This information, extracted from 
data, can be represented in various forms and can be distinguished according to the limit of their validity. 
Information derived from data can be any kind of structure, logical relation between attributes or in 
general a description. This description, extracted from the data, is called pattern (Hand 2002). Patterns 
can be specified by many different categories in relation to the focus of the KDD run. As an example, a 
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pattern can be distinguished between local and global coverage or the different ways in which a pattern 
can be expressed. 

 
Figure 2: Knowledge Discovery in Databases – Process View (reflecting the work of Fayyad, Piatetsky-
Shapiro and Smyth 1996). 

Typical ways of expressions are rules, trees or functional relations (Klösgen and Zytgow 1996). A 
pattern itself is generic, which means it contains placeholders. An instance is created by replacing the 
placeholders with specific values or by quantifying the variables. A generic pattern can have more than 
one instance, however the difference between a generic pattern, no matter to which category it belongs, 
and an instance is important because a particular simulation activity is connected to an instance. A special 
kind of pattern is the association rule, which describes a relation between two or more features and is well 
suited for transactions (Agrawel et al. 1993).  If we take a look at the SC industry we will find a lot of 
transactions in the related information systems. For example the transport of a good from supplier to 
vendor and its possible intermediate stops are often part of the SCs data structure. This transaction 
consists of different features, such as time stamps or quantities (Moody und Kortink 2000). An example 
of such a rule can be: If Supplier “Big Producer” delivers good “Premium” with a quantity of more than 
500 and supplier “Commodity producer” delivers good “Top-Quality” with a quantity of more than 
1000, the consignments of supplier “Small Producer” are delayed. In this rule the object’s supplier, 
quantity, consignment and delay are features. Within simulation, these features or their excerpts and 
aggregations represent the simulation input. But, it is not possible to simply replace the standard input 
modeling by association rules. The principal reasons for this are the need of a complete input data set for 
simulation scenarios. A rule just contains a subset of parameters, depending on thresholds and 
probabilities and might not cover the simulation requirements. Thus, a rule does not automatically lead to 
a probability distribution. 
 It should be noted that a rule should not be confused with correlation but they are closely linked, e.g. 
correlation analyses can be used to find out how useful a rule might be (for more information on rules and 
correlation see Brin, Motwani and Silverstein 1997). In any way, the knowledge generated through KDD 
processes seems promising for increasing simulation accuracy. This knowledge may describe a logical 
relation of parameters which is not covered by the standard input modeling of parameters. We have 
pointed out that we cannot substitute one for the other, therefore a possible combination should be further 
examined. 

4 COMBINATION – SIMULATION AND KNOWLEDGE DISCOVERY 

Combining DES and KDD to support a higher accuracy of simulation input seems to be a promising 
opportunity. We have identified two possible connections for increasing accuracy, the model and the 

Patterns

Selection, 
Preprocessing, 
Transformation Data Mining

Transformed Data

Interpretation/
Evaluation

KnowledgeData

1901



Rabe and Scheidler 
 
input data. As a consequence, the acquired knowledge of the KDD process can be connected to both, the 
data input and the simulation model.  
 
 

 
Figure 3: From KDD to simulation experiments. 

 
 For this connection, one necessary preprocessing step has been identified (Figure 3), which is 
connected to a term called “interestingness”. This term evaluates how well a particular rule meets a 
specified KDD goal. For pattern evaluation often objective measures such as interest factors or entropy 
are used (Tan, Kumar and Srivastava 2004). In KDD processes, interpretation and evaluation of patterns 
are important for taking the most interesting (Silberschatz and Tuzhilin 1995) rules into account. 
Furthermore, the DES focus must be taken into account. Because of this reason, it must be clarified what 
could be an appropriate measurement for interestingness. The combined interestingness feature that 
covers simulation focus may differ from single KDD processes. Finally, a rule which fits an 
interestingness measure may need special post processing, e.g. mapping of feature names to make useful 
additions for input data or simulation modeling. In Figure 3 this area is represented by the cloudy term 
“Knowledge Parameters”, where cloudy implies the previously unknown transformation step from 
knowledge representation to proper input format for subsequent steps 
 The appropriate method for these parameters with the related DES areas depends on various 
influencing factors. As an example, the data mining algorithm itself determines the resulting knowledge 
and the knowledge can be represented in different ways. Another important factor of influence is the 
connection object, which will affect the requirements for extension itself. For sure, if the connecting 
object is the simulation model the requirements will differ from the requirements needed if the connecting 
object is located at the input data level. 

5 FIRST EXPERIMENTS 

The data sets supplied at hand consist of aggregated multi-level SC data of a company manufacturing 
motorcycles. In total the existing database extract is composed of six tables and more than 120 attributes 
in total. The data contain SC transactions in relation to time, suppliers and products. In the beginning of 
the examination it immediately became clear that two out of six tables did not have any logical relation to 
the four remaining tables and after further review it became obvious that these two tables were not going 
to contribute to the intended experiments. Consequently these tables were dropped. The remaining four 
tables were comprised of 107 attributes. Several of these attributes were redundant because of the same 
reason: They had the exact same value in each row. So the total number of attributes was reduced to 67 
after dropping the redundant attributes. Looking at maximum and minimum values it became apparent 
that there were illogical values in some columns. In one column for example we were able to find 52 rows 
with a timestamp of the year 2201. These values were removed from the database tables as part of the 
outlier detection. Nine of the 67 attributes were timestamps. However, the exact date and time was not 
necessary for the examinations so we were able to save a lot of memory space by mapping the timestamps 
to integer values:  The original date was mapped to an integer value representing the difference in days 
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from January 1st 2000 to the day of the timestamp. In further examinations only the difference between 
certain dates in days was significant so this seems to be an appropriate approach. 

 

 
Figure 4: Data model. 

The transaction table is the largest table and consists of nearly 1,600,000 rows. Join 1 maps an 
attribute of this table to the same attribute of the state table (Figure 4). The database table State only 
contains 180 rows. This leads to the fact that the resulting table consists of the same amount of nearly 
1,600,000 rows after this inner join. Join number two connects the tables Order_line (about 300,000 rows) 
and Order_header (9,000 rows) by an inner join using Order_header’s primary key. The resulting table 
contains over 303,000 rows. These resulting tables of the first joins are joined again using attribute b. The 
n:1 relationship between Order_line and Order_header leads to an n:n relationship during this inner join. 
Therefore, the resulting table is expanded to include about 201,000,000 rows. After Join 3 the resulting 
table contains the previous number of rows and 64 attributes. 
 The required amount of memory is almost 100 GB. The resulting table can definitely be considered as 
big data because “Big Data is a loosely defined term used to describe data sets so large and complex that 
they become awkward to work with using standard statistical software” (Snijders, Matzat and Reips 
2012). 

 

 
Figure 5: Experiment setup for the first phase. 

Figure 5 shows the generic setup for experiment studies in the first phase of the upcoming scientific 
work. After reading and joining the tables, attributes are selected: By focusing on the relevant attributes 
for research, it is possible to reduce computation time and memory usage. The next process step is used to 
create aggregated attributes which represent new features, e.g. the distance between two dates. This step 
and the next step “Discretize” are used for preparing and transforming the data into an appropriate format. 
The appropriate format is needed for the main step of the experiment, the data mining algorithm itself. In 
the experiment setup introduced here, a rule learner is used. 
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6 CONCLUSION 

In this paper, we discuss why simulation needs to take all available knowledge into the account. For this 
purpose, a new approach for increasing accuracy of DES input has been introduced. This approach is 
based on data mining which is merged with standard simulation input modeling with the aim to extend the 
data input or the conceptual model. We motivated why neither distribution fitting nor data mining as 
isolated step in simulation setup is generally advantageous. We demonstrated the two possible 
connections for merging KDD and simulation techniques with the aim to generate more realistic input for 
DES. With that in mind we gave an insight into the first experiment setups in the concluding section. Our 
next steps will be the extension of the experiment phase, in particular the testing of different hypothesis 
and data mining methods apart from rule learning. A comprehensive experiment circle will deal with the 
questions what is the best level in simulation processes for integrating the learned rules -  input data or the 
simulation model itself. A further object of this research will be process automation; in particular for data 
preprocessing. But, this must be a subsequent step because automation differs in relation to the used data 
mining input and therefore the target function cannot be defined in this early stage.  
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