
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

SIMULATION BASED OPTIMIZATION USING PSO IN MANUFACTURING FLOW
PROBLEMS: A CASE STUDY

Sai Phatak
Jayendran Venkateswaran

Industrial Engineering and Operations Research
Indian Institute of Technology, Bombay

Mumbai, INDIA

Gunjan Pandey
Shirish Sabnis
Amit Pingle

John Deere Technology Centre
John Deere India Pvt. Ltd.

Pune, INDIA

ABSTRACT

This paper presents the use of simulation based optimization in addressing manufacturing flow problems
at a heavy equipments manufacturer. Optimizing the buffer allocation in an assembly line and optimizing
the worker assignment at workstations are two independent problems addressed, with the objective to
maximize throughput rate. The simulation models of the system, built using an in-house tool based on
SLX, is interfaced with a custom designed meta-heuristic based on Particle Swarm Optimization (PSO). Two
versions of the PSO have been developed: one with integer decision variables (for buffer space allocation)
and another with binary variables (for worker assignment). The performance of the proposed simulation
based optimization scheme is illustrated using case studies.

1 INTRODUCTION

Discrete-event simulation is popularly used in modelling and analysing complex manufacturing systems.
Its use and contribution towards decision making is greatly enhanced by interfacing it with an optimum
seeking package, to identify the ‘best’ system configuration that results in the ‘optimum’ performance.
In such simulation-based optimization, the optimum seeking package (viz. meta-heuristic) proposes a
system configuration (solution) to the simulation model. The simulation model then evaluates the given
configuration and returns the corresponding performance measures. The meta-heuristic computes the next
configuration for evaluation, based on the simulation output. This iterative interaction between the meta-
heuristic and simulation continues until the stopping criteria is met, which can be either based on the
number of iterations or time or the percentage improvement in the objective function. The meta-heuristic
uses randomized but ‘intelligent’ schemes to search the solution space and converge to the best possible
solution. Popular meta-heuristics include Scatter Search, Genetic Algorithm, Particle Swarm Optimization,
Tabu Search, Response Surface Methodology and others. Now, most simulation models of manufacturing
system, by themselves, are quite large and need significant time and resources (computing) to evaluate
single configuration. This necessitates the meta-heuristics to not evaluate too many ‘bad’ solutions and to
converge to the best solution within reasonable number of iterations. Typical manufacturing flow problems
include identification of buffer and resource capacities to maximize throughput, schedule/sequence jobs at
machines to minimize make span, design plant layouts and product flows to minimize takt time etc.

In the heavy equipments manufacturer under study, the assembly line operations are vital. Figure 1
depicts a typical assembly line, consisting of a main line and feeder lines. The main product assembly
takes place on the main line while the feeder lines provide supplementary parts to it. The line also consists
of buffers (shown by triangles) in between workstations (shown by rectangles) to facilitate the flow, avoid
blocking of the assembly line and absorb the variations due to stochasticity in the processing times. At each
workstation, one or more workers (shown by circles) are assigned, depending on the work content. The

2136978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

assembly line handles multiple products as well as multiple variants of a product, adding to the complexity
of the operations. Thus, the performance of the line will depend on the mix of products handled in the
given planning horizon.

Figure 1: Typical assembly line with main line and feeder lines.

In this paper, two assembly line problems are modelled and optimized using simulation-based optimiza-
tion. The first problem is the buffer or in-process kanban allocation problem. This involves the identification
of the optimum number and location of buffer in the assembly line (main+feeder lines) subject to space
availability and other layout constraints, to maximize throughput. Given the nature of the product (heavy
equipments), buffer spaces require significant area in the shop floor which may not be always possible, and
hence the need to optimize the same. The second problem is that of worker assignment. This involves the
assignment of workers to specific work content at workstations, subject to utilisation requirements, travel
distance and layout constraints, to maximize throughput. Traditional methods of work content allocation
fared poorly in the face of dynamic demand involving multiple product variants, and in reality, it was
observed that the utilisation among workers varied significantly.

The complex nature of the assembly line operations, stochastic process times, product mix, varied
product flows necessitated the use of simulation model. Now, each of the above problems have a very large
solution space, and hence meta-heuristic based optimum seeking package is interfaced with simulation.
Particle Swarm Optimization (PSO) (Kennedy and Eberhart 1995) is the meta-heuristic used. PSO has been
shown to be quite effective in many areas of application (Eberhart and Shi 2001). However, most of these
applications consider continuous decision variables. In this work, buffer allocation problem involves integer
decision variables and worker assignment problem involves binary decision variables. A modified PSO
algorithm to handle the integer and binary variables separately, are proposed, implemented and evaluated.

Section 2 describes the assembly line problems addressed in this paper. Section 3 describes the basic
PSO algorithm and Section 4 explains the two variants of PSO proposed. Section 5 throws light on the
implementation and evaluation of the two variants of the algorithm, followed by the conclusions.

2 ASSEMBLY LINE PROBLEMS ADDRESSED

2.1 Buffer Space Allocation (BSA)

Buffer space is the empty space between two workstations. An ideal situation is when there are no kanbans
and the products flow one at a time from one workstation to another. This is possible only if tasks at each
workstation take equal time to perform. However, in reality, this is not possible due to the distribution of
work content, stochastic process times, varied work content due to product mix, etc. A buffer space is
required between two consecutive workstations when the process time at the downstream is more than that
in the upstream workstation. This prevents blocking of the upstream workstation when the downstream
workstation is busy (Pingle, Sabnis, and Pandey 2013). Now, in a mixed model line (line with many product

2137

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

variants), the processing time at a workstation varies for each unit. Buffers are useful to absorb such type
of variations too (Pingle, Sabnis, and Pandey 2013). The advantages of using buffers are as follows:

• Buffers control the amount of raw material and work-in-process (WIP).
• Buffers, when placed properly, result in smooth flow of products.

The objective of the buffer space allocation problem is to maximize throughput over the planning
horizon, by locating minimum number of buffers on the assembly line. The decision variables are non-
negative integers, indicating the number of buffers between two workstations. The input to this model is
the planned production sequence over the planning horizon.

2.2 Worker Assignment (WA)

Every skilled or unskilled worker on the line has to complete the set of tasks assigned to him/her compulsorily.
However, a worker may be assigned secondary tasks which can be done when the worker is idle after
completing the primary tasks early. Thus, instead of the worker remaining idle he/she can help other
workers on a nearby workstation, resulting in a higher utilization. Assigning a voluntary set of tasks
increases the utilization of every worker. Utilization is defined as the percentage of the total time a worker
does value added work. Increasing the utilization of every worker automatically increases the throughput.
The utilization of every worker being high is often seen as one of the criterion for an assembly line to
be performing well. The objective of the worker allocation problem is to maximize throughput over the
planning horizon, by assigning secondary work content to each worker. The decision variables are binary,
indicating if particular work content has been assigned as a secondary task to a worker. The input to this
model is the planned production sequence over the planning horizon.

3 OVERVIEW OF PARTICLE SWARM OPTIMIZATION (PSO)

3.1 Background on PSO

Particle swarm optimization is an example of swarm intelligence metaheuristic. PSO was initially introduced
in 1995 by James Kennedy and Russell Ebarhart. It uses the metaphor of the flocking behaviour of birds
to solve optimization problems. PSO does not use the gradient of the problem being optimized, and hence
does not require the problem to be differentiable as is required by classic optimization methods such as
gradient descent and quasi-newton methods. Also, PSO is not largely affected by the size and non-linearity
of the problem and can converge to optimal solution in many problems where most analytical methods fail
to converge (AlRashidi and El-Hawary 2009).

In the PSO algorithm the basic entity is called a particle which is like a bird in a flock. These particles
are generated randomly in the search space. Each particle is a solution to the problem and has a velocity, a
location in the search space and has a parameter which helps it in remembering its best position till then.
The set of particles is analogous to a swarm which consists of N particles flying around in a D-dimensional
search space. Also, every particle swarm has some sort of topology describing the interconnections among
the particles. The set of particles to which a particle i is connected is called i’s neighbourhood. The
neighbourhood maybe entire population or some subset of it. Two common topologies that are used to
identify another particle to influence the individual are known as gbest (global best), and lbest (local best)
or pbest (particle best) (Boussaid, Lepagnot, and Siarry 2013).

The positions and the velocities of all the particles are generated randomly in the initialization phase
of PSO. In each iteration a particle i changes its position Xi and velocity Vi along each dimension d of
the search space. This change is based on the best position Pi, it has encountered so far in its flight (also
called personal best for the particle) and the best position Pg found by any other particle in its topological
neighbourhood (also called global best). The velocity defines the distance, the direction and the distance
the particle should fly (Boussaid, Lepagnot, and Siarry 2013).

In order to avoid the particles from flowing out of the allowed search space, Kennedy and Ebarhart
defined a clamping scheme to limit the velocity of each particle, so that each component Vi is kept within

2138

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

the range [−Vmax, Vmax] (Kennedy and Eberhart 1995). Since the choice of Vmax affects the balance
between exploration and exploitation, the value of Vmax needs to be carefully chosen (Boussaid, Lepagnot,
and Siarry 2013).

To overcome the premature convergence of the PSO, which was a major drawback of the original PSO,
many strategies have been developed. However, the most popular are inertia and constriction. The inertia
weight ω, plays the role of balancing the global search and local search. It can be a positive constant or
even a positive linear or non-linear function of time. A large inertia weight encourages global exploration
(i.e., diversifies the search in the whole search space) while a smaller inertia weight encourages local
exploitation (i.e., intensifies the search in the current region). Also there are two acceleration constants c1
and c2. They are constant multiplier terms known as acceleration coefficients. c1 is the cognitive coefficient
while c2 is the social coefficient. They represent the attraction that a particle either has towards its own
success (the cognitive part) or towards the success of its neighbours (the social part) respectively (Boussaid,
Lepagnot, and Siarry 2013). The PSO algorithm has proved to be effective in many areas of applications
(Eberhart and Shi 2001). It has been used to evolve artificial neural networks which in turn have been
applied to the analysis of human tremor. It has been used for reactive power and voltage control by a
Japanese electrical utility (Eberhart and Shi 2001). The algorithm has also been used for the optimization
of electric power systems (AlRashidi and El-Hawary 2009). However most of these applications optimize
a continuous objective function. Very few areas have been explored with PSO as far as discrete objective
functions are concerned.

4 PROPOSED PSO ALGORITHMS

4.1 PSO for Integer Decision Variables: Buffer Space Allocation

In case of integer decision variables (for buffer space allocation), the position vector is n dimensional
vector where each element takes only integer values. Also, there can be a separate matrix for denoting
the maximum value each dimension d of the position matrix can take. There can be a limitation on the
summation of the position vector. In this variant of PSO the velocity is updated according to the following
equation (Kennedy and Eberhart 1995):

Vid[t+ 1] = ω ∗ Vid[t] + c1 ∗ r1 ∗ (Pid[t]−Xid[t]) + c2 ∗ r2 ∗ (Gd[t]−Xid[t]) (1)

where
Vid : Velocity of dimension d of particle iat iteration t
ω : Weighting Function/inertia weight
cj : Weighting factor (c1 is cognitive constant and c2 is social constant)
Vid : Velocity of dimension d of particle i at iteration t
r1 : random number between 0 and 1
r2 : random number between 0 and 1
Xid : Current position of dimension d of particle i at iteration t
Pid : Local best position so far of dimension d of particle i
Gd : Best position of dimension d of the all the particles in the swarm
N : number of particles

The inertial weight ω is determined by ω = 0.9− (niter ∗ 0.5/totaliter) where

niter : current iteration
totaliter : total iterations

Equation (1) specifies that the velocity of a particle at iteration t is determined by the previous velocity
of the particle, the cognition part, and the social part. The values ck ∗ rk (k=1, 2) determine the weights
of the two parts, where their sum is usually limited to Vmax. The position of each particle is also updated
in each iteration by adding the velocity vector to the position vector. The position is updated according to

2139

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

the following equation (Kennedy and Eberhart 1995):

Xid[t+ 1] = Vid[t+ 1] +Xid[t] (2)

The general structure of the proposed PSO algorithm for handling integer variables is as follows:

Step 1: Set the parameters N, c1, c2, ω = 0.9− (niter ∗ 0.5/totaliter), Vmax, Vi=0 of PSO.
Step 2: Initialize a population of N particles with random positions, Xid[1] and velocities, Vid[1] in the

problem space.
Step 3: Evaluate the desired optimization fitness function f() for each particle using simulation. Set

Pid[1] = Xid[1], Gd[1] = Xid[1].
Step 4: For each Individual particle, compare the particle’s fitness value with its pbest (f(Pid[t])). If the

current value (f(Xid[t])) is better than the pbest (f(Pid[t])) value, then set Xid[t] as the pbest
(Pid[t]) for particle i.

Step 5: Identify the particle that has the best fitness value. The value of its fitness function is identified
as gbest (f(Gd[t])).

Step 6: Compute the new velocities (Vid[t+ 1]) and positions (Pid[t+ 1]) for each particle according
to equations (1) and (2) respectively.

Step 7: Repeat steps 3-6 until the stopping criterion of maximum generations is met.

This version of PSO algorithm has been implemented for optimizing the buffer space in the assembly
line. The position vector indicates the buffer capacity of the corresponding buffer. For example, X[10] = 4
implies that at buffer position 10 a buffer of capacity 4 is located. There is an upper bound on the maximum
buffer capacity (size) at each buffer position. Also, there is a limitation on the total number of buffers
that can be placed in the entire assembly line. However in the buffer space optimization problem, only
the main line buffers have been considered for optimization. The buffers from feeder lines have not been
considered.

4.2 PSO for Binary Decision Variables: Worker Assignment

In case of binary decision variables (for worker assignment), the position matrix is a d1 x d2 matrix, where
each element takes binary values (0 or 1). If a particular dimension of the row (worker) is associated with
a particular dimension of the column (task) then the corresponding matrix element is 1 and 0 otherwise.

In this variant of PSO, velocity is computed as follows:

Vid1d2[t+ 1] = ω ∗ Vid1d2[t] + c1 ∗ r1 ∗ (Pid1d2[t]−Xid1d2[t]) + c2 ∗ r2 ∗ (Gd1d2[t]−Xid1d2[t]) (3)

where
Vid1d2 : Velocity of dimension d1 and d2 of particle i at iteration t
ω : Weighting Function/inertia weight
cj : Weighting factor (c1 is cognitive constant and c2 is social constant)
Vid1d2 : Velocity of dimension d1 and d2 of particle i at iteration t
r1 : random number between 0 and 1
r2 : random number between 0 and 1
Xid1d2 : Current position of dimension d1 and d2 of particle i at iteration t
Pid1d2 : Local best position so far of dimension d of particle i
Gd1d2 : best position of dimension d1 and d2 of the all the particles in the swarm
N : number of particles

The inertial weight ω is determined by ω = 0.9− (niter ∗ 0.5/totaliter) where

2140

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

niter : current iteration
totaliter : total iterations

Equation (3) specifies that the velocity of a particle at iteration t is determined by the previous velocity
of the particle, the cognition part, and the social part. The values ck ∗ rk (k=1, 2) determine the weights of
the two parts, where their sum is usually limited to Vmax. By (3), each particle moves according to its new
velocity. In this version the particles are represented by binary variables. Hence the velocity trail values
need to be converted from real numbers to the changes of probabilities (Kennedy and Eberhart 1997). For
the velocity value of each bit in a particle, Kennedy and Eberhart claim that higher value is more likely
to choose 1, while lower value favours 0. The velocity value is constrained to the interval [0, 1] by using
the following sigmoid function (Kennedy and Eberhart 1997):

sig(Vid1d2[t]) = 1/(1 + exp(−Vid1d2[t])) (4)

To avoid sig(Vid1d2[t]) approaching 0 or 1, a constant Vmax is used to limit the range of Vid1d2[t]. In
practice, Vmax is often set to 4, i.e., Vid1d2[t] ∈ [−Vmax,Vmax].

Now sig(Vid1d2[t]) represents the probability ofVid1d2[t] taking the value 1. For example, sig(Vid1d2[t])=
0.2 in represents that there is a 20% chance that the position matrix element Xd1d2 will be 1 (Liao, Tseng,
and Luarn 2007).

4.2.1 Constructing a Particle Sequence

Each particle constructs its new sequence based on its changes of probabilities from the velocity trail.
However, the position is not directly determined on the value of the sigmoid function. The values of the
sigmoid function are summed up. It can be represented as follows (Liao, Tseng, and Luarn 2007):

mid1 =
∑
d2∈F

sigid1d2 (5)

where F is the set of all stages on which the worker is allowed to work on the assembly line. This value
is calculated for all the rows. Now a random number is generated for each element in the matrix which is
compared with (sigid1d2)/mid1. If this random number is greater than the compared value then the corre-
sponding position i.e. Xid1d2 is assigned 1. The general structure of the changed PSO algorithm is as follows:

Step 1: Set the parameters N, c1, c2, ω = 0.9− (niter ∗ 0.5/totaliter), Vmax, Vi=0 of PSO.
Step 2: Initialize a population of N particles with random positions (Xid1d2[1]) and velocities (Vid1d2[1])

in the problem space.
Step 3: Evaluate the desired optimization fitness function (f()) for each particle and set Pid1d2[1] =

Xid1d2[1], Gd1d2[1] = Xid1d2[1].
Step 4: For each individual particle, compare the particles fitness value with its pbest (f(Pid1d2[t])).

If f(Xid1d2[t]) is better than the pbest (f(Xid1d2[t])), then set Xid1d2[t] as the pbest (Pid1d2[t])
for particle i.

Step 5: Identify the particle that has the best fitness value. The value of its fitness function is identified
as gbest (Gd1d2[t]).

Step 6: Compute the new velocities according to equation (3).
Step 7: Convert the velocities to sigmoid function (sig(Vid1d2[t])).
Step 8: Sum up all the sigmoid function values of the matrix elements on which the worker is allowed

to work on the assembly line.i.e. calculate mid1.
Step 9: Generate a random number for every element of the matrix and compare it with (sigid1d2)/mid1

where if the random number is greater then assign 1 to the corresponding position.
Step 10: Repeat steps 8 and 9 till all positions are covered for all particles.
Step 11: Repeat steps 3-10 until the stopping criterion of maximum generations is met.

2141

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

This version of PSO algorithm has been implemented for optimizing the worker assignment on an
assembly line. The rows of the position matrix represent the workers while the columns represent the
workstations. If a worker works on a particular workstation then the corresponding matrix element is 1
else 0. However the primary workstation of every worker always remains 1. A matrix with workers and
their corresponding primary workstations is provided as an input.

5 EXPERIMENTAL RESULTS

The simulation models of the assembly lines (testcases) have been built in using an in-house tool based on
the simulation package SLX (Henriksen 1996). The complexity of the testcases ranges from medium to
high in terms of number of stations (main and sub assemblies) and workers. The algorithms (both variants)
have been separately implemented and interfaced with simulation using SLX.

The optimization algorithm PSO has been written in SLX. However, it is interfaced with the in-house
developed toolset since SLX doesn’t have graphical user interface. Simulation analysis is performed using
the in-house developed toolset. The basic structure of this simulation toolset consists of: Microsoft Access
Database to store the user input and to write outputs in predefined tables; Graphical User Interface (GUI) is
developed using Microsoft Visual Studio and the simulation engine is developed in SLX (Simulation Language
with eXtendability) from Wolverine Software CorporationTM (Henriksen 2011). When the simulation toolset
is launched for the first time, it establishes a relationship between the GUI and the database tables. During
the simulation run the simulation engine reads the data from the database tables and executes the input
model (Pingle, Sabnis, and Pandey 2013). At the end of one simulation run, the results are given to the
algorithm. The algorithm then evaluates new positions, velocities, global best and individual best of each
of the particles. A simulation run based on the new values is again carried out. This continues for the
given number of iterations and the global best value obtained is displayed. The flow of the program is
described in Figure 2.

Figure 2: Flow of program.

The system hardware configurations used are a 64 bit with Intel Core i5 processor with 48 GB RAM.
The parameters of PSO used for these test functions (for both variants) is as follows: Number of particles
= 10; Number of iterations = 50; c1 = 2; and c2 = 2.

In all the test scenarios described, the demand file (demand for the entire simulation period) was read
by SLX before the simulation run began. Raw material is always available before the 1st workstation
and also infinite sink for the accommodation of finished products is assumed to be present at the end of

2142

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

the assembly line. Though work content variation is considered in the assembly line, there is not much
stochasticity in the process times of work stations. This eliminates the need of multiple runs for one
combination. However, machine breakdowns are not considered in this simulation. In BSA only the main
line buffer spaces have been considered for optimization. In every assembly line, a specific set of work
is assigned to each worker. With worker allocation, a different combination of work is assigned to every
worker so that the average utilization improves along with throughput. Because of the nature of products,
high optionality (different variants of the same product) is observed resulting in varied work content. In
addition to this, different products assembled on the same assembly line also results in varied work content.
In each of the testcases, the work content (total time a product takes on the assembly line for completion),
description of buffers, sub-assemblies, worker assignments, product mix is mentioned. This gives a basic
idea about the assembly line.

In BSA the demand file has been generated randomly for the given simulation period. However, for
WA a predefined sequence is determined using a scheduling algorithm and that has been used as the demand
file for WA. This demand file sequence has been used for running WA base case.

5.1 Buffer Space Allocation

Description of Testcase 1. The test case consists of an assembly line with 13 workstations on the main
line, 1 subassembly with 1 workstation on it, 8 workers, with a planning horizon of 5 days. There is no
warm up period for this test scenario. The target throughput is 200 per day. The critical point for buffers
is between the 6th and 7th workstation, because the base model consists of 20 buffer spaces in between
these two workstations. Also, the capacity of buffer size between 11th and 12th workstation is 4. For all
the remaining stations the buffer capacity is either 1 or 2. The total number of buffers in the base model
is 39. 1 subassembly merges with the main line at station 12.

In the base model, number of parts produced are 811. This is the last complete part that comes out of
the assembly line on the last day (Day 5) at 11:48 pm. The work content variation varies in the range of
43.18 to 81.11 minutes. The variation in finished products is none. Thus, the end product of this assembly
line is only 1 finished product. The cycle time on the workstation varies from 0.02 minutes to 1.5 minutes.

After optimizing the assembly line for buffer space, number of parts produced in 5 days are 880. This
is the last complete part that came out of the assembly line on the last day (Day 5) at 11:35 pm. The
optimum result is obtained in iteration 4 for 6th particle. Hence the time required to actually reach the
optimum is around 9 minutes. Though the target throughput is not met, the average output as well as the
average worker utilization increased. Also, two buffer spaces are saved. The details of the base model and
optimized model are mentioned in Table 1.

Table 1: BSA Real time Testcase 1 results.

Base Model output
Average Minimum Maximum

Worker utilization 60.34 28.54 95.63
Average output(unit) per day 162.2 137 197
Number of buffers 39

Buffer Optimization output
Average Minimum Maximum

Worker utilization 62.8 31.76 99.8
Average output(unit) per day 176 169 180
No of buffers 37
Optimization run time 90 mins

Description of Testcase 2. The test case consists of an assembly line with 6 workstations on the main
line, 2 parallel subassemblies each with 1 workstation merging the main line at 1st workstation, 7 workers,

2143

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

with a planning horizon of 20 days. The warm up period for this test scenario is 1 day. The target throughput
is 16 per day. The buffer capacities vary from 2 to 8 with the highest buffer capacity between 4th and
5th station. The buffer capacity between 1st and 2nd station is 6. The total number of buffers in the base
model is 22.

In the base model number of parts produced are 237. This is the last complete part that comes out of
the assembly line on the last day (Day 20) at 1:56 pm. The work content variation varies in the range of
215.5786 to 247.76 minutes. The number of products produced by this assembly line is 23 with the product
percentages varying from 0.03% to 8%. The cycle time on the workstation varies from 0.07 minutes to
2.5 minutes.

After optimizing the assembly line for buffer space, number of parts produced in 5 days are 242. This
is the last complete part that came out of the assembly line on the last day (Day 20) at 2:08 pm. Also,
fifteen buffer spaces are saved. The optimum results are obtained in iteration 28 for 8th particle . Hence,
the time required to reach the optimum is 4 minutes. The details of the base model and optimized model
are mentioned in Table 2.

Table 2: BSA Real-time Testcase 2 results.

Base Model output
Average Minimum Maximum

Worker utilization 88.3 63.51 100
Average output(unit) per day 15.8 0 19
Number of buffers 22

Buffer Optimization output
Average Minimum Maximum

Worker utilization 89.6 64.25 100
Average output(unit) per day 16.13 0 20
No of buffers 7
Optimization run time 7 mins

5.2 Worker Assignment

Description of Testcase 1. The test scenario is the same as the 1st test scenario of BSA. Hence, the model
description is the same as described above. However, for WA the base case results are obtained by using
a predetermined sequence. Hence the base case results for WA are as follows.

The number of parts produced is 875. This is the last part that comes out of the assembly line on the
last day (Day 5) at 11:24 pm.

After optimizing the assembly line for worker allocation, the number of parts produced in 5 days is
1047. This is the last complete part that comes out of the assembly line on the last day (Day 5) at 11:48
pm. Thus, after applying WA the target is reached. The optimum result for WA is obtained in iteration
335 for 5th particle. Hence the time required to actually reach the optimum is around 60 minutes. The
details of the base model and optimized model are mentioned in Table 3.

2144

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

Table 3: WA Testcase 1 results.

Base Model output
Average Minimum Maximum

Worker utilization 62.47 31.31 99.76
Average output per day (units per day) 175 168 179

Worker Allocation output
Average Minimum Maximum

Worker utilization 74.32 99.57 35.62
Average output per day (units per day) 209.4 197 221
Optimization run time 90 mins

Description of Testcase 3. The test case consists of an assembly line with 17 workstations on the main
line, 50 subassemblies with 1 workstation in each, 39 workers, with a planning horizon of 15 days. There
is no warm up period for this test scenario. The target throughput is 42 per day. The main line does not
have any buffer spaces. However, the subassemblies contain buffers with capacities ranging from 2 to 100.
On an average 3-4 subassemblies merge at every workstation with the main line.

In the base model number of parts produced are 631. This is the last complete part that comes out of
the assembly line on the last day (Day 15) at 11:24 pm. The work content variation varies in the range
of 700.7 to 1025.42 minutes. The variation in finished products is none. Thus, the end product of this
assembly line is only 1 finished product. The cycle time on the workstations vary from 0.18 minutes to 12
minutes.

After optimizing the assembly line for worker allocation, the number of parts produced in 5 days is
1047. This is the last complete part that comes out of the assembly line on the last day (Day 5) at 11:48
pm. The optimum results are obtained in iteration 19 for 6th particle. Hence the time required to reach
the optimum is 11 minutes. The details of the base model and optimized model are mentioned in Table 4.

Table 4: DSO and WA real-time Testcase 3 results.

Base Model Output
Average Minimum Maximum

Worker utilization 58.21 15.9 75.69
Average output per day (units per day) 42.07 33 44

Worker Allocation Output
Average Minimum Maximum

Worker utilization 83.18 53.11 94.57
Average output per day (units per day) 60.73 65 52
Optimization run time 27 mins

6 CONCLUSIONS

The PSO algorithm has been developed in two versions, both having a discrete nature. The first version
is a 1 dimensional PSO algorithm with position taking integral values while the second version is a 2
dimensional PSO algorithm with position taking only binary values. The two versions of the algorithm
developed perform satisfactorily and reaching the optimum values (best solution) for the scenarios tested.
Work is in progress to evaluate and benchmark the performance of the algorithms for larger and complex
assembly lines. Also, while testing for buffer allocation optimization, only the main line buffers have been
considered by PSO. Subassembly and feeder line buffers are to be included for optimization in the future.
Also, in worker allocation, the number of workers was fixed while only the maximization of utilization

2145

Phatak, Venkateswaran, Pandey, Sabnis, and Pingle

and throughput are addressed. An additional objective of minimizing the number of workers can also be
considered. Further, a decision making framework is being developed, with simulation-based optimisation
as its core, to optimize all aspects of the assembly line.

ACKNOWLEDGMENTS

We would like to thank John Deere India Pvt. Ltd. for providing us the opportunity to carry out this work.

REFERENCES

AlRashidi, M. R., and El-Hawary. 2009. “A Survey of Particle Swarm Optimization Applications in Electric
Power Systems”. IEEE Transactions on Evolutionary Computation 13 (4): 913–918.

Boussaid, I., J. Lepagnot, and P. Siarry. 2013. “A survey on optimization metaheuristics”. Information
Sciences 237:82–117.

Eberhart, R. C., and Y. Shi. 2001. “Particle Swarm Optimization, Development, Applications and Resources”.
In Proceedings of the 2001 Congress on Evolutionary Computation, Volume 1, 81–86. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Henriksen, J. O. 1996. “An Introduction to SLX”. In Proceedings of the Winter Simulation Conference,
edited by J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain, 468–475. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc.

Kennedy, J., and R. Eberhart. 1995. “Particle Swarm Optimization”. In Proceedings of the 1995 IEEE
International Conference on Neural Networks, Volume 4, 1942–1948. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Kennedy, J., and R. Eberhart. 1997. “A discrete binary version of the particle swarm algorithm”. In
Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Volume 5,
4104–4108. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Liao, C.-J., C.-T. Tseng, and P. Luarn. 2007. “A discrete version of Particle Swarm Optimization for
Flowshop Scheduling problems”. Computers and Operations Research 34 (10): 3099–3111.

Pingle, A., S. Sabnis, and G. Pandey. 2013. “In process kanban optimization for a manufacturing simulation”.
Technical report, SAE Technical Paper 2013-01-0065.

AUTHOR BIOGRAPHIES

SAI PHATAK is a Master’s student in Industrial Engineering and Operations Research at Indian Institute
of Technology Bombay, Mumbai, India. She did her Bachelors in Electronics and Telecommunication
from V.E.S.I.T., Mumbai, India. Her research interests are in simulation modelling with applications in
manufacturing systems. Her email address is saig21090@gmail.com.

JAYENDRAN VENKATESWARAN is an Assistant Professor of Industrial Engineering and Operations
Research at Indian Institute of Technology Bombay, Mumbai, India. He holds M.S. and Ph.D. degrees in
Systems and Industrial Engineering from the University of Arizona, Tuscon, U.S.A. His research and teach-
ing interests are primarily in the areas of hybrid modeling, simulation and analysis of complex stochastic
systems (viz. supply chains). His email address is jayendran@iitb.ac.in.

GUNJAN PANDEY is working with John Deere India Pvt. Ltd. She holds M.Tech. degree in CADCAM
from N.I.T. Allahabad, India. Her email address is pandeygunjan@johndeere.com.

SHIRISH SABNIS is working with John Deere India Pvt. Ltd. He holds a master’s degree in Mechanical
Engineering from I.I.Sc. Bangalore, India. His email address is SabnisShirish@johndeere.com.

AMIT PINGLE is working with John Deere India Pvt. Ltd. He holds a master’s degree in optimization
from Wichita State University, U.S.A. His email address is pingleamitb@johndeere.com.

2146

