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ABSTRACT 

In a flat panel display (FPD) production line, unlike a table-type machine that processes one glass at a 
time, an inline cell works simultaneously on several glasses unloaded from different cassettes in a serial 
manner and is divided into two types (uni-inline cell and bi-inline cell) according to the job loading and 
unloading behavior. In order to build a production simulator for this type of FPD production line, an 
object-oriented event graph modeling approach is proposed where the FPD production line is simplified 
into a job shop consisting of two types of inline cells, and the job shop is represented as an object-
oriented event graph model. This type of job shop is referred to as a heterogeneous job shop. The 
resulting model is realized in a production simulator using an object-oriented event graph simulator and is 
illustrated with the experimental results from the production simulator. 

1 INTRODUCTION 

In flat panel display (FPD) production lines, the processing unit of the jobs is a large piece of glass known 
as the mother glass, which is later cut into smaller pieces to make the FPD product (Jang 2006). As a 
result of the fragility and high quality requirements of these glasses, FPD production lines have adopted 
fully automated material handling systems (AMHSs), such as inline stockers and conveyors, that connect 
the processing machines. In this system, the glasses are carried inside a container called a cassette, which 
means that the transportation unit and processing unit of the jobs are not the same. Therefore, in the FPD 
production line, there are ports in front of each processing machine where the glasses are loaded from the 
cassette into the processing machine or unloaded from the processing machine into the cassette. 

In the FPD production line, unlike a table-type machine that processes one glass at a time, a typical 
processing machine works simultaneously on several glasses unloaded from different cassettes in either 
serial or parallel manners. Thus, the processing machines included in the FPD production line can be 
further divided according to the job loading/unloading and processing behaviors. In order to allow this 
heterogeneity in the behavior of a processing machine in an FPD production line, the authors proposed 
the concept of homogeneous and heterogeneous job shops in the previous study (Song, Choi, and Park 
2012). A homogeneous job shop consists of each job that has its own operation sequences and a single 
type of processing machine that performs certain operations on the job, whereas a heterogeneous job shop 
consists of two or more types of processing machines that have different job loading/unloading or 
processing behaviors. The classical job shop system solely consisting of table-type machines is a typical 
homogeneous job shop system. However, in order to simulate an FPD production line, a heterogeneous 
job shop system consisting of various types of machines in the line is required.  
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powerful and natural to represent a discrete-event system (Buss and Sanchez 2002). In event graphs, the 
influence of events on the state variables is represented using vertices and the relationships between 
events are represented as directed edges between the vertices (Schruben 1983). One of the enrichments in 
the event graph is a parameterization of event vertices in which similar events are represented using a 
single vertex with different parameter values (Schruben and Schruben 2006). The parameterized event 
graph model is one of the most efficient modeling formalisms that is used to represent the behaviors of 
the processing machine in an FPD production line (Song, Gu, and Choi 2010; Song, Choi, and Park 2012).  

However, in order to develop a production simulator for an FPD production line that consists of 
different types of processing machines, the parameterized event graph lacks the ability to model the entire 
FPD production line at a manageable level. As a heterogeneous job shop involves more various types of 
processing machines or even the AMHS equipment (e.g. inline stocker and conveyor), it becomes more 
complex and more difficult to understand and manage the model. In this paper, therefore, an object-
oriented event graph modeling approach to developing a production simulator is presented for the FPD 
production line of a heterogeneous job shop.  

Buss and Sanchez (2002) proposed an object-oriented modeling approach to the event graph, which 
enables small models to be encapsulated in reusable modules that are linked together using a listener 
pattern. In this paper, the encapsulation of events are adopted in order to model each type of processing 
machine and a simplified linking mechanism is introduced. 

The remainder of this paper is organized as follows. Section 2 presents the encapsulated event graph 
models of homogeneous job shops for each type of inline cell; these are merged into a single encapsulated 
event graph model of a heterogeneous job shop in order to represent the entire FPD production line of 
Figure 1 in Section 3. Section 4 presents the simulation execution of the encapsulated event graph model, 
and Section 5 presents the experimental results drawn from a production simulator prototype that 
implements the proposed model. Conclusions and discussions are given in the final section. 

2 EVENT GRAPH MODELING OF INLINE CELLS 

In this section, the object-oriented event graph models of two homogeneous job shops of inline cells, 
which are sourced from the parameterized event graph models presented in previous work (Song, Gu, and 
Choi 2010; Song, Choi, and Park 2010), are presented. In the following subsections, a cassette  object and 
port object are introduced in order to provide a compact model description. In each inline cell, they are 
declared as a record variable (cst) for cassette information and P[m] for the status of ports at a processing 
machine, which is identified by m. The attributes of these variables are summarized in Table 1. 

Table 1: Record variables declared for use in event graph models of job shops. 

Variable Type/Value Description 
cst j int Job type of the glasses in cassette cst 

 p int Processing step of the glasses in cassette cst 
 d string ID of the equipment for the next processing step of cassette cst 
 n int Number of glasses in cassette cst 

P[m] x 0 ~ port capacity Number of empty ports at the I/O Port of an inline cell m 
 rx 0 ~ port capacity Number of reserved empty ports at the I/O Port 
 f 0 ~ port capacity Number of full-cassette ports at the I/O Port 
 e 0 ~ port capacity Number of empty-cassette ports at the I/O Port 

  
The admissible states of a point in the I/O Port of an inline cell are occupied by a full cassette (f); 

occupied by an empty cassette (e); not occupied but reserved (rx); and not occupied nor reserved (x). The 
following functions are defined in order to update the state of a port: 
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a list of cassettes waiting for processing at a uni-inline cell u; (2) B[u], a list of cassettes loaded on the 
ports at a uni-inline cell u; (3) R[u], status of the track-in robot at a uni-inline cell u; and (4) P[u], a record 
variable for the I/O port of a uni-inline cell u. Also, the time-related variables t1[u, cst], π[u, cst], and delay[u, 
nu] denote the cycle time for a cassette (cst) of glasses, the flow time of the cell, and the transportation 
delay time from a uni-inline cell u to other cell nu, respectively. The en-queue function (cstQ[u]) and de-
queue function (Q[u]→cst) are used to manage the cassette queues (e.g. Q[u], R[u]).  

The encapsulated event graph model depicted in Figure 3 consists of two event object (EO) models: a 
uni-inline EO model and a material handling EO model. The event object model is an independent 
parameterized event graph model that encapsulates a group of events that describe the state changes made 
at an object that is comprised of a discrete-event system.  

The material handling EO model simplifies the material handling process of the FPD production line 
depicted in Figure 1 into the direct transportation of a cassette from a processing machine to another 
machine. The following events are encapsulated in the material handling EO model:  

 
 CA (u, cst): (1) en-queue an arriving cassette (cst) into Q[u], (2) reserve an empty port if any, and (3) 

schedule a CL event if a port is reserved.  
 Move (u, cst): (1) schedule a CA event to occur after delay[u, cst.d] (moving to the next machine). 
 
The uni-inline EO model also encapsulates the following events related to the loading, inline 

processing, and unloading of the glasses:  
 
 CL (u): (1) de-queue a cassette (cst) from Q[u], (2) en-queue the cassette (cst) into B[u], (3) set the 

status of the port to a full-cassette port (P[u](rx→x)), and (4) schedule an FGL event if the track-in 
robot R[u] is available (C1=RsvR(u)). 

 FGL (u): (1) de-queue a cassette (cst) from B[u], (2) set the status of the track-in robot R[u] to busy, 
and (3) schedule an event LGL to occur after t1[u, cst]. 

 LGL (u, cst): (1) set the status of the track-in robot R[u] to idle, (2) change the port status to an 
empty-cassette port, (3) schedule an FGL event if B[u] is not empty, and (4) schedule a CD event to 
occur after π[u, cst]. 

 CD (u, cst): (1) set the port status to a reserved port (P[u](e→rx)) if Q[u] is not empty and no port is 
reserved, if else, set the port status to an empty port (P[u](e→x)) and (2) the cassette (cst) is 
updated with next processing-step ID (cst.p) and next processing-equipment ID (cst.d) using the 
job-routing functions: (1) NextStep(cst) returns the next processing-step ID of a job and (2) 
NextEQP(cst) returns the next equipment ID that will process a cassette (cst). 

 
In order to encapsulate a group of events into an event object model, a mirror event is created for 

each boundary event at the receiving side. In Figure 3, the CL event of the uni-inline EO model and the 
Move event of the material handling EO model are the boundary events of the receiving sides. Thus, their 
mirrors events CL* and Move* are introduced in the respective event object models. Note that the 
encapsulated event graph model of the uni-inline job shop presented in Figure 3 is embellished from the 
parameterized event graph model of the uni-inline job shop presented in Song, Gu, and Choi (2010).  

2.2 Modeling of a Bi-inline Job Shop 

Figure 4 presents the reference model of a bi-inline cell, which has the distinctive feature of the loading 
and unloading of cassettes being separated into in-ports and out-ports. In the bi-inline cell, the underlying 
behavior of processing a cassette is essentially the same as that of a uni-inline cell. As the in-port and out-
port are separated, the empty cassette is placed at the in-port when the loading is finished and the out-port 
requires an empty cassette to unload the finished glasses. Thus, in order to prevent the equipment from 
the blocking, a mechanism for handling the empty cassettes must be provided. 
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name of the local event, and its scheduled time to occur, respectively. As depicted in Figure 7(b), an EO 
simulator sends a local event (e) to the simulation coordinator by calling the function ScheduleLocalEvent(e) 
of the simulation coordinator. Then, the simulation coordinator (1) stores the local events in the LEL, (2) 
selects the next local event from the LEL, and (3) sends it back to the respective EO simulator through 
calling the function ExecuteLocalEvent(e) of the EO simulator.  

 

 

Figure 7: (a) An encapsulated event graph model and (b) its object-oriented event graph simulator. 

4.1 Simulation Coordinator 

Figure 8 presents an event graph model of the simulation coordinator, which is a single server system that 
processes the local events in the order of the scheduled event time. The event graph model has two state 
variables: LEL represents a buffer of local events and SC denotes the status of a machine, i.e. simulation 
coordinator (–1 = reserved, 0 = busy, and 1 = idle).  
 

 

Figure 8: Event graph model of the simulation coordinator. 

 A brief description of the events used in the event graph model in Figure 8 is as follows:  
 ScheduleLE(e): The role of this event is the same as that of the Arrive event in a single server 

system where the EO simulator sends an enabled local event (e) to the simulation coordinator.  
 GetNextLE: This event functions as the Load event in a single server system. The simulation 

coordinator becomes busy (SC=0) and the next local event (e) is retrieved from LEL (LEL→e).  
 ExecuteLE: This event functions as an Unload event in a single server system where the loaded job, 

local event (e), is ready. The local event (e) is executed on its EO simulator through calling the 
function ExecuteLocalEvent(e).  

 Terminate: This event stops the simulation when the simulation clock exceeds the EOS time. 
 
The event graph model of the simulation coordinator in Figure 8 is executed using the next-event 

scheduling algorithm (Schruben and Schruben 2006) that maintains the simulation clock (CLK) and the 
future event list (FEL). The FEL is an ordered list of future events {Time, Name, e}, where Time is the event 
time, Name is the event name, and e is the local event.  

Figure 9 illustrates the main program and event routines of the simulation coordinator in a pseudo-
code. The main program of Figure 9(a) implements the next-event scheduling algorithm using four event 
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Time Name e (local event)

t0 ScheduleLE e2 (u,CL,t0)

t0 GetNextLE −
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routines. The event routine is a subprogram that describes the changes in the state variables and how the 
future events are scheduled. One event routine is required for each event in the event graph model. Figure 
9(b) presents the event routines of four events with an initialize routine. Furthermore, the simulation 
coordinator defines two functions for handling the local events: ScheduleLocalEvent(e) that stores a local 
event in the LEL and ExecuteLocalEvent(e) that executes the event routine of a local event e. 

 

 

Figure 9: Simulation coordinator: (a) main program and (b) event routines. 

 

Figure 10: Event object simulator for a uni-inline EO model. 

4.2 Event Object Simulator 

For each event object (EO) in an encapsulated event graph model, the event object simulator is 
constructed with the event routines and a public function ExecuteLocalEvent(). Figure 10 presents an event 
object simulator for the uni-inline EO model of Figure 6 in pseudo-code form. The event object simulator 
consists of two parts: event routines for each event vertex and a function ExecuteLocalEvent(e). Due to 
space limitations, only the event routine for an FGL event is presented: (1) change the state variables and 
(2) schedule a new local event LGL to occur after t1[u, cst]. Here, the local event (e) is defined using an 
Object ID (u), Event Name (LGL), Event Time (Now + t1[u, cst]), and Parameter Variables (u, cst). The 
function ExecuteLocalEvent(e) is invoked by the simulation coordinator at the event ExecuteLE, and then it 
calls the respective event routine for a given local event (e) using the event name (e.Name).  

Main Program of Coordinator
Begin 

Clock = 0;
Execute-Initialize-Routine(Clock);
While (Clock < EOSTime) {

Retrieve-event (TIME, E-NAME, e); 
Clock = TIME;
case E-NAME of {

ScheduleLE: Execute-ScheduleLE-Routine(e, Clock);
GetNextLE: Execute-GetNextLE-Routine(Clock);
ExecuteLE: Execute-ExecuteLE-Routine(e, Clock);
Terminate: Execute-Terminate-Routine(Clock); }

}
End

ScheduleLocalEvent (e) {
Schedule-event ( ScheduleLE, e, Clock); }

ExecuteLocalEvent (e) {
ObjectList [e.ObjectID].ExecuteLocalEvent (e); }

Execute-Initialize-Routine (Now) {
SC=1; LEL = null;  

}

Execute-ScheduleLE-Routine (e, Now) {
e→ LEL; 
if (SC≡1) { SC= -1; RSV= true;} else {RSV= false;}
if (RSV≡ true) Schedule-event (GetNextLE, Now); }

Execute-GetNextLE-Routine (Now) {
SC=0; LEL→ e; 
if (e.Time ≤ tEOS) 

Schedule-event(ExecuteLE, e, e.Time);
if (e.Time > tEOS) Schedule-event(Terminate, Now); }

Execute-ExecuteLE-Routine (e, Now) {
ExecuteLocalEvent (e); 
if (|LEL|>0) {SC=-1; RSV=true;} else {SC=1; RSV=false;}
if ( RSV≡ true) Schedule-event(GetNextLE, Now); }

Execute-Terminate-Routine (Now) { LEL = null; }

(a) (b)

Uni-inline EO Simulator:

Execute-CL-Routine (u, Now) {…}
Execute-FGL-Routine (u, Now) { 

B[u]→cst; R[u]=0;
e = new LocalEvent (u, LGL,  Now + t1[u, cst], u, cst);
Coordinator.ScheduleLocalEvent (e); } }

…

ExecuteLocalEvent (e) { // invoked from SC
case e.Name of {

CL: Execute-CL-Routine ( e.ObjectID, e.Time); 
FGL: Execute-FGL-Routine ( e.ObjectID,  e.Time);
LGL: Execute-LGL-Routine ( e.ObjectID, e.cst, e.Time);
CD: Execute-CD-Routine ( e.ObjectID, e.cst, e.Time);
Move: Execute-Move-Routine ( e.ObjectID, e.cst, e.Time); } }

Event Routines

ExecuteLocalEvent(e)
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Figure 12 presents a simulation output report of the FPD Fab described in Figure 1 under the 
CONWIP policy of a 600 cassette limit. From the Fab In/Out report, thirty cassettes are released per shift 
(the Fab operates in three eight-hour shifts) from the sixth shift (excluding warm-up periods), which 
amounts to 1350 glasses per day. If the CONWIP size is adjusted to 300 cassettes, the turn-around time of 
the cassettes is decreased by 20.5%. 

6 CONCLUSION 

This paper presents an object-oriented event graph modeling approach to developing a production 
simulator for an FPD production line that is a heterogeneous job shop of inline cells and a material 
handling system. Firstly, the concept of an encapsulated event graph model was provided in order to 
model the uni-inline job shop and bi-inline job shop. The encapsulated event graph models of two 
homogeneous job shops are combined into a single encapsulated event graph model that consists of a uni-
inline EO model, a bi-inline EO model, and a material handling EO model to represent the entire FPD 
production line. The resulting model was realized in a production simulator using an object-oriented event 
graph simulator that consists of the simulation coordinator and the event object simulators for each EO 
model. The presented encapsulated event graph model successfully captured the heterogeneous properties 
of the FPD production line with a valid simulation execution method.  

 Although the inline cells are typical processing machines that are found in FPD production lines, 
other types of processing machines are also found, including chamber-type and oven-type machines. In a 
future study, these types of processing machines should be modeled in an event object model and would 
be easily integrated into the encapsulated event graph model of the heterogeneous job shop presented in 
this paper. 

Furthermore, the AMHS is a core facility of FPD production lines, which handle all material flows 
between the processing machines through inline stockers and conveyors. In this paper, however, the 
AMHS is simplified into a material handling EO model that only considers the transportation delay times 
between the processing machines. As the demands for FPD products increase, the capacity of the AMHS 
becomes more important to production planners. In order to manage this requirement, the event object 
model for each type of AMHS machine should be incorporated into the encapsulated event graph model.  
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