
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

EVENT GRAPH MODELING OF A HETEROGENEOUS JOB SHOP WITH INLINE CELLS

Donghun Kang
Hyeonsik Kim

Byoung K. Choi Byung H. Kim

Department of Industrial and Systems Engineering VMS Solutions Co., Ltd.
KAIST Hanshin S-MECA #611

291 Daehak-ro, Yuseong-gu 1359 Gwanpyeong-dong, Yuseong-gu
Daejeon, 305-701, REPUBLIC OF KOREA Daejeon, 305-509, REPUBLIC OF KOREA

ABSTRACT

In a flat panel display (FPD) production line, unlike a table-type machine that processes one glass at a
time, an inline cell works simultaneously on several glasses unloaded from different cassettes in a serial
manner and is divided into two types (uni-inline cell and bi-inline cell) according to the job loading and
unloading behavior. In order to build a production simulator for this type of FPD production line, an
object-oriented event graph modeling approach is proposed where the FPD production line is simplified
into a job shop consisting of two types of inline cells, and the job shop is represented as an object-
oriented event graph model. This type of job shop is referred to as a heterogeneous job shop. The
resulting model is realized in a production simulator using an object-oriented event graph simulator and is
illustrated with the experimental results from the production simulator.

1 INTRODUCTION

In flat panel display (FPD) production lines, the processing unit of the jobs is a large piece of glass known
as the mother glass, which is later cut into smaller pieces to make the FPD product (Jang 2006). As a
result of the fragility and high quality requirements of these glasses, FPD production lines have adopted
fully automated material handling systems (AMHSs), such as inline stockers and conveyors, that connect
the processing machines. In this system, the glasses are carried inside a container called a cassette, which
means that the transportation unit and processing unit of the jobs are not the same. Therefore, in the FPD
production line, there are ports in front of each processing machine where the glasses are loaded from the
cassette into the processing machine or unloaded from the processing machine into the cassette.

In the FPD production line, unlike a table-type machine that processes one glass at a time, a typical
processing machine works simultaneously on several glasses unloaded from different cassettes in either
serial or parallel manners. Thus, the processing machines included in the FPD production line can be
further divided according to the job loading/unloading and processing behaviors. In order to allow this
heterogeneity in the behavior of a processing machine in an FPD production line, the authors proposed
the concept of homogeneous and heterogeneous job shops in the previous study (Song, Choi, and Park
2012). A homogeneous job shop consists of each job that has its own operation sequences and a single
type of processing machine that performs certain operations on the job, whereas a heterogeneous job shop
consists of two or more types of processing machines that have different job loading/unloading or
processing behaviors. The classical job shop system solely consisting of table-type machines is a typical
homogeneous job shop system. However, in order to simulate an FPD production line, a heterogeneous
job shop system consisting of various types of machines in the line is required.

2156978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Figu

seen in F
and conv
lines and
subordin
loading a
loading a
the bi-in
unloadin
connecte
1 can be

Due
various m
job has t
1976), a
processe
some sim
processin
used whe

Vino
propose
dynamic
time onl
Shirazi,
real-time
shop cas
and Bud
in the ab
at a time
when mo

In th
oriented

ure 1 depicts
Figure 1, the
veyors. An in
d consists o

nate processin
and unloadin
and unloadin

nline cell has
ng the finish
ed to differen
regarded as

to their ext
manufacturin
the same ope
and semicon
ed (Balas, Si
milarities to t
ng machine c
en analyzing
od and Sridh
a meta-mod

c job shops. Y
line job shop
and Soliman

e decision su
ses have adop
ddhakulsomsi
bovementione
e; that is, the
odeling an FP
his paper, a h
event graph

an example l
e production
nline cell is a

of an inner c
ng machines

ng behaviors,
ng of a casset

two types of
ed glasses in

nt inline stock
a typical het

Figure

tensive mode
ng systems in
eration seque
nductor lines
monetti, and
that of a sem
can perform

g the problem
haran (2009)
deling approa
Yin and Che
p scheduling
npu (2010) c
upport system
pted discrete
iri 2010, Leg
ed studies is
ey are simple
PD productio
heterogeneou
is proposed

Kang,

layout of an F
line consists

a typical proc
conveyor tha
s along the c
 the inline ce
tte in a uni-in
f ports: in-po
nto a cassett
kers. If the m
erogeneous j

1: An examp

eling power,
ncluding seri
ence, special
 where seve

d Vazacopou
miconductor l

more than o
ms related to F

used a simpl
ach to findin
en (2009) als
, which natu
onsidered a

m. In addition
e-event simul
gato and Maz
that the mac

e table-type m
on line due to
us job shop m
. An event g

 Kim, Choi, a

FPD product
s of inline ce
cessing mach
at carries the
conveyor belt
ells are classi
nline cell occ
orts for loadi
te. The in-po

material hand
job shop con

ple layout of

 job shop m
ial assembly
job shops, w

eral types o
ulos 2008). T
line because
ne processin
FPD product
le discrete ev
ng the optim
so proposed
urally has dy
more comple
n, several ot
lation model
zza 2001). Th
hines include
machines. H
o certain feat
model of an
raph is a form

and Kim

tion line of a
ells connecte
hine that is c
e glasses thr
t (Song, Gu,
ified into uni
curs at the sa
ing the glass
orts and out

dling process
sisting of two

a FPD TFT-s

models have
 lines (Lee,

which are oft
f jobs with

The productio
each job ha

ng step. There
ion lines.
vent simulati

mal dispatchi
a discrete-ev

ynamic and s
ex job shop
ther studies t
ls to represen
he common f
ed in the mo

However, it is
tures of the li

FPD produc
mal model, w

thin-film tra
ed by the AM
commonly fo
rough the eq
, and Choi 2
i-inline cells

ame input/out
es from a ca
t-ports of a b
can be negle

o types of inl

stage Fab.

been widely
Cheng, and
ten referred t

different op
on system o

as a series of
efore, a job s

ion model in
ing rules for
vent simulati
stochastic ch
that has flex

that have con
nt their targe
feature of the
dels are assu
s difficult to
ine, as explai
ction line in
which is quit

ansistor (TFT
MHS of inlin
ound in FPD
quipment an
010). Accord
and bi-inline
tput (I/O) po
ssette and ou
bi-inline cel
ected, the Fab
line cells.

y accepted to
Lin 1993) w
to as flow sho
peration sequ

of an FPD lin
f processing s
shop model c

n their study
r scheduling
on framewor

haracteristics
xibility and t
nsidered real
et systems (P
e job shop m

umed to proce
accept this a

ined above.
the form of

te simple yet

T) stage. As
ne stockers
production

nd multiple
ding to the
e cells. The
rt, whereas
ut-ports for
l are often
b in Figure

o represent
where every

ops (Garey
uences are
ne exhibits
steps and a
can also be

in order to
g stochastic
rk for real-
. Mahdavi,
they built a
l-world job

Parthanadee
models used

ess one job
assumption

f an object-
t extremely

2157

Kang, Kim, Choi, and Kim

powerful and natural to represent a discrete-event system (Buss and Sanchez 2002). In event graphs, the
influence of events on the state variables is represented using vertices and the relationships between
events are represented as directed edges between the vertices (Schruben 1983). One of the enrichments in
the event graph is a parameterization of event vertices in which similar events are represented using a
single vertex with different parameter values (Schruben and Schruben 2006). The parameterized event
graph model is one of the most efficient modeling formalisms that is used to represent the behaviors of
the processing machine in an FPD production line (Song, Gu, and Choi 2010; Song, Choi, and Park 2012).

However, in order to develop a production simulator for an FPD production line that consists of
different types of processing machines, the parameterized event graph lacks the ability to model the entire
FPD production line at a manageable level. As a heterogeneous job shop involves more various types of
processing machines or even the AMHS equipment (e.g. inline stocker and conveyor), it becomes more
complex and more difficult to understand and manage the model. In this paper, therefore, an object-
oriented event graph modeling approach to developing a production simulator is presented for the FPD
production line of a heterogeneous job shop.

Buss and Sanchez (2002) proposed an object-oriented modeling approach to the event graph, which
enables small models to be encapsulated in reusable modules that are linked together using a listener
pattern. In this paper, the encapsulation of events are adopted in order to model each type of processing
machine and a simplified linking mechanism is introduced.

The remainder of this paper is organized as follows. Section 2 presents the encapsulated event graph
models of homogeneous job shops for each type of inline cell; these are merged into a single encapsulated
event graph model of a heterogeneous job shop in order to represent the entire FPD production line of
Figure 1 in Section 3. Section 4 presents the simulation execution of the encapsulated event graph model,
and Section 5 presents the experimental results drawn from a production simulator prototype that
implements the proposed model. Conclusions and discussions are given in the final section.

2 EVENT GRAPH MODELING OF INLINE CELLS

In this section, the object-oriented event graph models of two homogeneous job shops of inline cells,
which are sourced from the parameterized event graph models presented in previous work (Song, Gu, and
Choi 2010; Song, Choi, and Park 2010), are presented. In the following subsections, a cassette object and
port object are introduced in order to provide a compact model description. In each inline cell, they are
declared as a record variable (cst) for cassette information and P[m] for the status of ports at a processing
machine, which is identified by m. The attributes of these variables are summarized in Table 1.

Table 1: Record variables declared for use in event graph models of job shops.

Variable Type/Value Description
cst j int Job type of the glasses in cassette cst

 p int Processing step of the glasses in cassette cst
 d string ID of the equipment for the next processing step of cassette cst
 n int Number of glasses in cassette cst

P[m] x 0 ~ port capacity Number of empty ports at the I/O Port of an inline cell m
 rx 0 ~ port capacity Number of reserved empty ports at the I/O Port
 f 0 ~ port capacity Number of full-cassette ports at the I/O Port
 e 0 ~ port capacity Number of empty-cassette ports at the I/O Port

The admissible states of a point in the I/O Port of an inline cell are occupied by a full cassette (f);

occupied by an empty cassette (e); not occupied but reserved (rx); and not occupied nor reserved (x). The
following functions are defined in order to update the state of a port:

2158

 P
 P
 P
 P

2.1 M

Figure 2
found in
machine
at the un

A ca
process
robot (R)
time (π)
loaded fr
queue of

Figu
consistin

P[m](rx→f): c
P[m](f→e): ch
P[m](e→x): ch
P[m](x→rx): c

Modeling of

2 presents the
n FPD produ
s, as well as

ni-inline cell r

assette with n
is called Ca
), with one g
for the glass

from at the I/
f a processing

F

ure 3 illustrat
ng of uni-inli

hange the sta
hange the sta
hange the sta
change the st

a Uni-inline

e reference m
ction lines. I
the conveyor
return to the

Fig

new glasses t
assette Loadi
glass being lo
s to reach th
/O port. The
g machine fo

Figure 3: Enc

tes an encaps
ne cells. Use

Kang,

ate of a port f
ate of a port f
ate of a port f
tate of a port

e Job Shop

model of a u
It consists of
r. It has a dis
same cassett

ure 2: Refere

that is stored
ing. The glas
oaded at every
e end of the
cassette dep

or the next pr

capsulated ev

sulated even
ed in the enca

 Kim, Choi, a

from ‘reserve
from ‘full-cas
from ‘empty-
from ‘no-cas

uni-inline cel
f several I/O
stinguished fe
te after proce

ence model o

in the queue
sses are then
y takt time (τ
cell where i

parts when it
rocessing step

vent graph mo

t graph mod
apsulated eve

and Kim

ed’ to ‘full-c
ssette’ to ‘em
-cassette’ to
ssette’ to ‘res

ll with typica
O ports (P), a
feature of the
essing.

of a uni-inline

e (Q) is loade
n loaded into
τ), which is c
it is unloaded
is filled with

p.

odel of a uni-

del of a uni-in
ent graph mo

assette’.
mpty-cassette

‘no-cassette’
served’.

al processing
a track-in rob

glasses of th

e cell.

ed on a port i
o the Inline
called Glass L
d into the sa
h finished gl

-inline job sh

nline job sho
odel are the s

e’.
’.

g equipment
bot (R), and
he cassette be

in the I/O por
Cell using th
Loading. It ta

ame cassette
lasses and mo

hop.

op, which is
state variable

commonly
processing

eing loaded

rts (P); this
he track-in
akes a flow
that it was
oves to the

a job shop
es: (1) Q[u],

2159

Kang, Kim, Choi, and Kim

a list of cassettes waiting for processing at a uni-inline cell u; (2) B[u], a list of cassettes loaded on the
ports at a uni-inline cell u; (3) R[u], status of the track-in robot at a uni-inline cell u; and (4) P[u], a record
variable for the I/O port of a uni-inline cell u. Also, the time-related variables t1[u, cst], π[u, cst], and delay[u,
nu] denote the cycle time for a cassette (cst) of glasses, the flow time of the cell, and the transportation
delay time from a uni-inline cell u to other cell nu, respectively. The en-queue function (cstQ[u]) and de-
queue function (Q[u]→cst) are used to manage the cassette queues (e.g. Q[u], R[u]).

The encapsulated event graph model depicted in Figure 3 consists of two event object (EO) models: a
uni-inline EO model and a material handling EO model. The event object model is an independent
parameterized event graph model that encapsulates a group of events that describe the state changes made
at an object that is comprised of a discrete-event system.

The material handling EO model simplifies the material handling process of the FPD production line
depicted in Figure 1 into the direct transportation of a cassette from a processing machine to another
machine. The following events are encapsulated in the material handling EO model:

 CA (u, cst): (1) en-queue an arriving cassette (cst) into Q[u], (2) reserve an empty port if any, and (3)

schedule a CL event if a port is reserved.
 Move (u, cst): (1) schedule a CA event to occur after delay[u, cst.d] (moving to the next machine).

The uni-inline EO model also encapsulates the following events related to the loading, inline

processing, and unloading of the glasses:

 CL (u): (1) de-queue a cassette (cst) from Q[u], (2) en-queue the cassette (cst) into B[u], (3) set the

status of the port to a full-cassette port (P[u](rx→x)), and (4) schedule an FGL event if the track-in
robot R[u] is available (C1=RsvR(u)).

 FGL (u): (1) de-queue a cassette (cst) from B[u], (2) set the status of the track-in robot R[u] to busy,
and (3) schedule an event LGL to occur after t1[u, cst].

 LGL (u, cst): (1) set the status of the track-in robot R[u] to idle, (2) change the port status to an
empty-cassette port, (3) schedule an FGL event if B[u] is not empty, and (4) schedule a CD event to
occur after π[u, cst].

 CD (u, cst): (1) set the port status to a reserved port (P[u](e→rx)) if Q[u] is not empty and no port is
reserved, if else, set the port status to an empty port (P[u](e→x)) and (2) the cassette (cst) is
updated with next processing-step ID (cst.p) and next processing-equipment ID (cst.d) using the
job-routing functions: (1) NextStep(cst) returns the next processing-step ID of a job and (2)
NextEQP(cst) returns the next equipment ID that will process a cassette (cst).

In order to encapsulate a group of events into an event object model, a mirror event is created for

each boundary event at the receiving side. In Figure 3, the CL event of the uni-inline EO model and the
Move event of the material handling EO model are the boundary events of the receiving sides. Thus, their
mirrors events CL* and Move* are introduced in the respective event object models. Note that the
encapsulated event graph model of the uni-inline job shop presented in Figure 3 is embellished from the
parameterized event graph model of the uni-inline job shop presented in Song, Gu, and Choi (2010).

2.2 Modeling of a Bi-inline Job Shop

Figure 4 presents the reference model of a bi-inline cell, which has the distinctive feature of the loading
and unloading of cassettes being separated into in-ports and out-ports. In the bi-inline cell, the underlying
behavior of processing a cassette is essentially the same as that of a uni-inline cell. As the in-port and out-
port are separated, the empty cassette is placed at the in-port when the loading is finished and the out-port
requires an empty cassette to unload the finished glasses. Thus, in order to prevent the equipment from
the blocking, a mechanism for handling the empty cassettes must be provided.

2160

Figu
from the
(2012) th
handling
introduce

Note
and PO r
order to
in-port; t
(RO) is i
port by s
schedule
takt time

3 EV

A hetero
Figure 6
and bi-i

ure 5 illustrat
e parameteriz
hrough group

g EO model.
ed in order to

e that Figure
replacing P,
handle the e
then, the in-p
dle, it is rese
scheduling a
es an FGP eve
e for a bi-inlin

VENT GRAP

ogeneous job
6 presents an
nline cells,

Fig

tes an encaps
zed event gra
ping events i
 Similar to t
o encapsulate

Figure 5: E

5 introduces
RI and RO re

empty cassett
port scans its
erved to unlo
an X2PO even
ent to occur a
ne cell (b) to

PH MODEL

b shop refers
n encapsulate

and with a

Kang,

gure 4: Refer

sulated event
aph model o
into two even
that of the u
e the event ob

Encapsulated

s two new ev
eplacing R, an
te. In the LG
s queue (Q) f
oad the first g
nt to occur a
after the first
 process a ca

LING OF A

s to a job sh
ed event grap
a material h

 Kim, Choi, a

rence model o

t graph mod
of the bi-inlin
nt object (EO
uni-inline job
bjects.

d event graph

vents of FGP
nd IQ and OQ

GL event, whe
for a cassette
glass. In a CD
after te[b] (tim
t glass is proc
assette (cst) w

HETEROG

hop consistin
ph model of
andling syst

and Kim

of a bi-inline

el of a bi-inl
ne job shop
O) models: a
b shop, two

h model of a b

P and X2PO w
Q replacing B
en the casset
e to load. In
D event, an em
me to supply
cessed (τ[b,c

with a job-typ

GENEOUS J

ng of differe
f a heterogen
tem. The en

e cell.

line job shop
presented in

a bi-inline EO
mirror even

bi-inline cell

with a numbe
B of the uni-l
tte is empty,
an FGP even
mpty cassette
an empty ca

cst] + π[b, cst
pe (cst.j) and

JOB SHOP

ent types of
neous job sho
ncapsulated

p, which is e
n Song, Choi
O model and
nts (CL* and

.

er of state va
line job shop
it is remove

nt, if the track
e is supplied
assette). The
t]), where τ[b
processing st

processing e
op with uni-i
event graph

mbellished
i, and Park

d a material
Move*) are

ariables (PI
p model) in
ed from the
k-out robot
to the out-
FGL event

b,cst] is the
tep (cst.p).

equipment.
inline cells

h model is

2161

construc
models:

As s
in the qu
the CA e
which in
not. Note
bi-inline
uni-inlin

4 SIM

The enca
event ob
boundary
encapsul
7(b). The
(EO) sim
An EO
methodo
itself.

The
tradition
of the lo
attributes

ted by joinin
uni-inline EO

seen in Figur
ueue of diffe
event is revis
ndicates whet
e that the I/O
 cell are repr

ne cells and a

Figu

MULATION

apsulated eve
bject models
y events of
lated event g
e object-orie

mulators: one
simulator is

ology with th

simulation
nal event grap

cal events sc
s: ObjectID,

ng the two m
O, bi-inline E
re 6, the mate
erent types of
sed by defini
ther the in-po

O ports of a u
resented by a
a set of IDs of

ure 6: Encaps

N EXECUT

ent graph mo
s with sched

another eve
graph model
nted event g

e for each ev
s similar to
he event rou

coordinator
ph simulator
cheduled by
 Name, and

Kang,

models in Fig
EO, and mate
erial handling
f processing
ing the follow
ort of an inli

uni-inline cel
a state variabl
f bi-inline ce

sulated event

ION OF AN

odel of the he
duling edges
ent object, a
is conducted
raph simulat

vent object m
the tradition

utines except

maintains t
does, and it
the EO simu
Time denote

 Kim, Choi, a

gures 3 and 5
erial handling
g EO model
equipment w

wing functio
ine cell m (ei
l are represen
le PI[b]. Here

ells, respectiv

t graph mode

N ENCAPSU

eterogeneous
that connec

as seen in F
d using the o
tor consists o

model in the e
nal event gr

that the EO

the simulatio
also maintain

ulators. A loc
e the ID of t

and Kim

5, and it is a
g EO models
is revised in

where an in-
on RsvP(m) th
ither a uni-in
nted by a sta
e, the set vari
vely.

el of an hetero

ULATED EV

s job shop pre
ct the mirror
Figure 7(a).
object-orient
of a simulator
encapsulated

raph simulato
O simulator d

on clock an
ns another lis
cal event (e)
the EO simu

network of t
s.
n order to han
port reservat

hat returns a
nline or bi-in
ate variable P
iables U and

ogeneous job

VENT GRAP

esented in Fi
r events of
The simula

ted event gra
r coordinator

d event graph
or that impl
does not sch

nd future ev
st, named the
is an event r

ulator that se

three event o

ndle the cass
tion is used.
Boolean var

nline cell) is r
P[u] and the in
B denote a se

b shop.

PH MODEL

igure 6 consi
an event obj

ation executi
aph simulator
r and three ev
h model of F
lements the

hedule future

vent list (FE
e local event
record that ca
ent the local

object (EO)

sette arrival
Therefore,

riable RSV,
reserved or
n-ports of a
et of IDs of

L

sts of three
bject to the
ion of this
r in Figure
vent object

Figure 7(a).
next-event

e events by

EL) as the
list (LEL),

arries three
 event, the

2162

Kang, Kim, Choi, and Kim

name of the local event, and its scheduled time to occur, respectively. As depicted in Figure 7(b), an EO
simulator sends a local event (e) to the simulation coordinator by calling the function ScheduleLocalEvent(e)
of the simulation coordinator. Then, the simulation coordinator (1) stores the local events in the LEL, (2)
selects the next local event from the LEL, and (3) sends it back to the respective EO simulator through
calling the function ExecuteLocalEvent(e) of the EO simulator.

Figure 7: (a) An encapsulated event graph model and (b) its object-oriented event graph simulator.

4.1 Simulation Coordinator

Figure 8 presents an event graph model of the simulation coordinator, which is a single server system that
processes the local events in the order of the scheduled event time. The event graph model has two state
variables: LEL represents a buffer of local events and SC denotes the status of a machine, i.e. simulation
coordinator (–1 = reserved, 0 = busy, and 1 = idle).

Figure 8: Event graph model of the simulation coordinator.

 A brief description of the events used in the event graph model in Figure 8 is as follows:
 ScheduleLE(e): The role of this event is the same as that of the Arrive event in a single server

system where the EO simulator sends an enabled local event (e) to the simulation coordinator.
 GetNextLE: This event functions as the Load event in a single server system. The simulation

coordinator becomes busy (SC=0) and the next local event (e) is retrieved from LEL (LEL→e).
 ExecuteLE: This event functions as an Unload event in a single server system where the loaded job,

local event (e), is ready. The local event (e) is executed on its EO simulator through calling the
function ExecuteLocalEvent(e).

 Terminate: This event stops the simulation when the simulation clock exceeds the EOS time.

The event graph model of the simulation coordinator in Figure 8 is executed using the next-event

scheduling algorithm (Schruben and Schruben 2006) that maintains the simulation clock (CLK) and the
future event list (FEL). The FEL is an ordered list of future events {Time, Name, e}, where Time is the event
time, Name is the event name, and e is the local event.

Figure 9 illustrates the main program and event routines of the simulation coordinator in a pseudo-
code. The main program of Figure 9(a) implements the next-event scheduling algorithm using four event

(a) Encapsulated Event Graph Model

Material
Handling

EO Model

Uni‐inline EO
Model (u)

Bi‐inline EO
Model (b)

Sc
he

du
le

Lo
ca

lE
ve

nt

Execute
LocalEvent

Sc
he

du
le

Lo
ca

lE
ve

nt

Execute
LocalEvent

Sc
he

du
le

Lo
ca

lE
ve

nt

Execute
LocalEvent

(b) Object-oriented Event Graph Simulator

Material
Handling

EO Simulator

Uni‐inline
EO Simulator

(u)

Bi‐inline
EO Simulator

(b)

Simulation Coordinator (SC) LEL

{ e→ LEL;
If (SC ≡ 1)

{SC = −1; RSV = true;}
else {RSV = false;} }

{ SC = 0;
LEL→ e;

ts = e.Time − CLK; }

{ ExecuteLocalEvent (e);
If (|LEL| > 0)

{SC = −1; RSV = true;}
else {SC = 1;RSV = false;} }

(RSV)

Terminate

(e.Time ≤ tEOS)

(RSV)

ScheduleLE
(e) GetNextLE ExecuteLE

(e)
tse

Simulation Coordinator (SC = 1; LEL = null;)

(e.Time > tEOS)
LEL= {e}

FEL

Time Name e (local event)

t0 ScheduleLE e2 (u,CL,t0)

t0 GetNextLE −

2163

Kang, Kim, Choi, and Kim

routines. The event routine is a subprogram that describes the changes in the state variables and how the
future events are scheduled. One event routine is required for each event in the event graph model. Figure
9(b) presents the event routines of four events with an initialize routine. Furthermore, the simulation
coordinator defines two functions for handling the local events: ScheduleLocalEvent(e) that stores a local
event in the LEL and ExecuteLocalEvent(e) that executes the event routine of a local event e.

Figure 9: Simulation coordinator: (a) main program and (b) event routines.

Figure 10: Event object simulator for a uni-inline EO model.

4.2 Event Object Simulator

For each event object (EO) in an encapsulated event graph model, the event object simulator is
constructed with the event routines and a public function ExecuteLocalEvent(). Figure 10 presents an event
object simulator for the uni-inline EO model of Figure 6 in pseudo-code form. The event object simulator
consists of two parts: event routines for each event vertex and a function ExecuteLocalEvent(e). Due to
space limitations, only the event routine for an FGL event is presented: (1) change the state variables and
(2) schedule a new local event LGL to occur after t1[u, cst]. Here, the local event (e) is defined using an
Object ID (u), Event Name (LGL), Event Time (Now + t1[u, cst]), and Parameter Variables (u, cst). The
function ExecuteLocalEvent(e) is invoked by the simulation coordinator at the event ExecuteLE, and then it
calls the respective event routine for a given local event (e) using the event name (e.Name).

Main Program of Coordinator
Begin

Clock = 0;
Execute-Initialize-Routine(Clock);
While (Clock < EOSTime) {

Retrieve-event (TIME, E-NAME, e);
Clock = TIME;
case E-NAME of {

ScheduleLE: Execute-ScheduleLE-Routine(e, Clock);
GetNextLE: Execute-GetNextLE-Routine(Clock);
ExecuteLE: Execute-ExecuteLE-Routine(e, Clock);
Terminate: Execute-Terminate-Routine(Clock); }

}
End

ScheduleLocalEvent (e) {
Schedule-event (ScheduleLE, e, Clock); }

ExecuteLocalEvent (e) {
ObjectList [e.ObjectID].ExecuteLocalEvent (e); }

Execute-Initialize-Routine (Now) {
SC=1; LEL = null;

}

Execute-ScheduleLE-Routine (e, Now) {
e→ LEL;
if (SC≡1) { SC= -1; RSV= true;} else {RSV= false;}
if (RSV≡ true) Schedule-event (GetNextLE, Now); }

Execute-GetNextLE-Routine (Now) {
SC=0; LEL→ e;
if (e.Time ≤ tEOS)

Schedule-event(ExecuteLE, e, e.Time);
if (e.Time > tEOS) Schedule-event(Terminate, Now); }

Execute-ExecuteLE-Routine (e, Now) {
ExecuteLocalEvent (e);
if (|LEL|>0) {SC=-1; RSV=true;} else {SC=1; RSV=false;}
if (RSV≡ true) Schedule-event(GetNextLE, Now); }

Execute-Terminate-Routine (Now) { LEL = null; }

(a) (b)

Uni-inline EO Simulator:

Execute-CL-Routine (u, Now) {…}
Execute-FGL-Routine (u, Now) {

B[u]→cst; R[u]=0;
e = new LocalEvent (u, LGL, Now + t1[u, cst], u, cst);
Coordinator.ScheduleLocalEvent (e); } }

…

ExecuteLocalEvent (e) { // invoked from SC
case e.Name of {

CL: Execute-CL-Routine (e.ObjectID, e.Time);
FGL: Execute-FGL-Routine (e.ObjectID, e.Time);
LGL: Execute-LGL-Routine (e.ObjectID, e.cst, e.Time);
CD: Execute-CD-Routine (e.ObjectID, e.cst, e.Time);
Move: Execute-Move-Routine (e.ObjectID, e.cst, e.Time); } }

Event Routines

ExecuteLocalEvent(e)

2164

5 IL

Figure 1
three mo
module.
in the O
CONWI
into the F
of work
the inline

In th
simulatio
Plan, and
to the ev
object sim

LUSTRATI

1 presents th
odules: Input
As seen in F

Object-oriente
P policy (Sp
Fab when an
in progress.
e cells, respe

he Input Da
on: Product,
d Moving Ti

vents defined
mulators and

Input D
Modu

Input
(Exce

Input D
Edito

IVE EXAMP

he system arc
t Data modu
Figure 11, tw
ed Event Gra
pearman, Wo
nother cassett
The RTD ha

ectively.

Figure 11

Fi

ata module,
Equipment, E
ime. In the O
in the event

d to calculate

Data
ule

U
E

File
el)

Input

Data
Data
or

Kang,

PLE

chitecture of
ule, Object-or
wo more even
aph Simulato
odruff, and H
te has comple
andles the job

1: System arc

igure 12: Sim

a set of dat
Equipment P

Output Repor
object mode

e the perform

Object‐ori

Sim

Processing‐type

Event Object
Simulator

Uni‐inline Cell
EO Simulator

FabIn
EO Simulato

Real‐time Dis
Job

Selection

 Kim, Choi, a

f the producti
riented Even
nt object (EO
or module in
Hopp 1990):
eted the last p
b selection an

chitecture of

mulation resu

ta should be
Port, Bill of P
rt module, a
els in order to

mance measur

ented Event Grap

mulation Coordin

r

Processing‐type

Event Object
Simulator

Bi‐inline Cell
EO Simulator

spatcher
Machine
Selection

and Kim

ion simulator
nt Graph Sim
O) simulators
n order to co

the FabIn E
processing st
nd machine s

f a production

lts of a FPD

e prepared in
Process, Load
set of observ

o collect the
res at the end

ph Simulator

nator

FabOut
EO Simulator

Material Handli
EO Simulator

r for an FPD
mulator modu
s (FabIn and

ontrol the cas
EO simulator

tep and it ma
selection at t

n simulator.

Fab.

n order to e
dable Set, Pr
vers (Gamma
event data ge

d of the simul

Outp
M

Outp
Ge

ObOb

Outp
V

ing
r

Event

Data

 Fab, which
ule, and Out
FabOut) are

ssette release
releases a ne

aintains a con
the CL and CD

execute the
rocessing Tim
a et al. 1994
enerated from
lation run.

put Report
Module

put Report
enerator

bserversbservers

Collected
Data

put Report
Viewer

Outupt
Report

consists of
tput Report
introduced

e under the
ew cassette
nstant level
D events of

production
me, FabOut
) subscribe

m the event

2165

Kang, Kim, Choi, and Kim

Figure 12 presents a simulation output report of the FPD Fab described in Figure 1 under the
CONWIP policy of a 600 cassette limit. From the Fab In/Out report, thirty cassettes are released per shift
(the Fab operates in three eight-hour shifts) from the sixth shift (excluding warm-up periods), which
amounts to 1350 glasses per day. If the CONWIP size is adjusted to 300 cassettes, the turn-around time of
the cassettes is decreased by 20.5%.

6 CONCLUSION

This paper presents an object-oriented event graph modeling approach to developing a production
simulator for an FPD production line that is a heterogeneous job shop of inline cells and a material
handling system. Firstly, the concept of an encapsulated event graph model was provided in order to
model the uni-inline job shop and bi-inline job shop. The encapsulated event graph models of two
homogeneous job shops are combined into a single encapsulated event graph model that consists of a uni-
inline EO model, a bi-inline EO model, and a material handling EO model to represent the entire FPD
production line. The resulting model was realized in a production simulator using an object-oriented event
graph simulator that consists of the simulation coordinator and the event object simulators for each EO
model. The presented encapsulated event graph model successfully captured the heterogeneous properties
of the FPD production line with a valid simulation execution method.

 Although the inline cells are typical processing machines that are found in FPD production lines,
other types of processing machines are also found, including chamber-type and oven-type machines. In a
future study, these types of processing machines should be modeled in an event object model and would
be easily integrated into the encapsulated event graph model of the heterogeneous job shop presented in
this paper.

Furthermore, the AMHS is a core facility of FPD production lines, which handle all material flows
between the processing machines through inline stockers and conveyors. In this paper, however, the
AMHS is simplified into a material handling EO model that only considers the transportation delay times
between the processing machines. As the demands for FPD products increase, the capacity of the AMHS
becomes more important to production planners. In order to manage this requirement, the event object
model for each type of AMHS machine should be incorporated into the encapsulated event graph model.

REFERENCES

Balas, E., N. Simonetti, and A. Vazacopoulos. 2008. “Job Shop Scheduling with Setup Times, Deadlines
and Precedence Constraints.” Journal of Scheduling 11(4):253−262.

Buss, A., and P. Sanchez. 2002. “Building Complex Models with LEGOS (Listener Event Graph
Objects).” In Proceedings of the 2002 Winter Simulation Conference, edited by E. Yücesan, C.-H.
Chen, J. L. Snowdon, and J. M. Charnes, 732−737. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Garey, M. R., D. S. Johnson, and R. Sethi. 1976. “The Complexity of Flowshop and Jobshop Scheduling.”
Mathematics of Operations Research 1(2):117–129.

Gamma, E., R. Johnson, R. Helm, and J. Vlissides. 1994. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Jang, Y. J., and G. H. Choi. 2006. “Introduction to Automated Material Handling Systems in LCD Panel
Production Lines.” In Proceedings of the 2006 International Conference on Automation Science and
Engineering, 223−229.

Lee, C. Y., T. C. E. Cheng, and B. M. T. Lin. 1993. “Minimizing the Makespan in the 3-Machine
Assembly-Type Flowshop Scheduling Problem.” Management Science 39(5):616−625.

Legato, P., and R. M. Mazza. 2001. “Berth Planning and Resources Optimisation at a Container Terminal
via Discrete Event Simulation.” European Journal of Operational Research 133(3):537−547.

2166

Kang, Kim, Choi, and Kim

Parthanadee, P., and J. Buddhakulsomsiri. 2010. “Simulation Modeling and Analysis for Production

Scheduling using Real-time Dispatching Rules: A Case Study in Canned Fruit Industry.” Computers
and Electronics in Agriculture 70(1):245−255.

Schruben, L. 1983. “Simulation Modeling with Event Graphs.” Communications of the ACM
26(11):957−963.

Schruben, D. L., and L. W. Schruben. 2006. Event Graph Modeling Using SIGMA. 5th ed. Custom
Simulations.

Spearman, M., D. Woodruff, and W. Hopp. 1990. “CONWIP: A Pull Alternative to Kanban.”
International Journal of Production Research 28(5):879−894.

Song. E., S. J. Gu, and B. K. Choi. 2010. “Event Graph Modeling of Electronics Fab with Uni-inline
Cells.” In Proceedings of the 2010 Spring Joint Conference of KIIE and KORMS, Jeju.

Song, E., B. K. Choi, and B. Park. 2012. “Event Graph Modeling of a Homogeneous Job Shop with Bi-
inline Cells.” Simulation Modelling Practice and Theory 20(1):1−11.

Mahdavi, I., B. Shirazi, and M. Solimanpu. 2010. “Development of a Simulation-based Decision Support
System for Controlling Stochastic Flexible Job Shop Manufacturing Systems.” Simulation Modelling
Practice and Theory 18(6):768−786.

Yin, J., and B. Chen. 2009. “The Simulation Expert System for Job Shop On-line Scheduling based on
G2.” In Proceedings of 16th International Conference on Industrial Engineering and Engineering
Management, 860−863.

Vinod, V., and R. Sridharan. 2009. “Simulation-based Metamodels for Scheduling a Dynamic Job Shop
with Sequence-dependent Setup Times.” International Journal of Production Research
47(6):1425−1447.

AUTHOR BIOGRAPHIES

DONGHUN KANG is a postdoctoral researcher in the Department of Industrial and Systems
Engineering at KAIST in Daejeon, Republic of Korea. He holds a Ph.D. from KAIST in Industrial
Engineering. His research interests lie broadly in the discrete-event system modeling and simulation. His
email address is donghun.kang@kaist.ac.kr.

HYEONSIK KIM is a Ph.D. candidate student in the Department of Industrial and Systems Engineering
at KAIST, Daejeon, Republic of Korea. He holds a B.S. and a M.S. from KAIST in Industrial and
Systems Engineering. His current research area is system modeling and simulation. His email address is
hyeonsik.kim@vmslab.kaist.ac.kr.

BYOUNG K. CHOI is a Professor in the Department of Industrial Engineering at KAIST in Daejeon,
Republic of Korea. He is also affiliated with the Faculty of Communication and Information Technology
at King Abdulaziz University in Jeddah, Saudi Arabia. He holds a Ph.D. in Industrial Engineering from
Purdue University. His current research interests are system modeling and simulation, BPMS, simulation-
based scheduling, and virtual manufacturing. His email address is bkchoi@kaist.ac.kr.

BYUNG H. KIM is the president of VMS Solutions Co., Ltd. He holds a B.S. from Sungkyunkwan
University, a M.S. from KAIST, and a Ph.D. from KAIST, all in Industrial Engineering. His main
interests are simulation-based scheduling and planning, manufacturing information systems, BPMS, and
virtual manufacturing. His email address is kbhee@vms-solutions.com.

2167

