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ABSTRACT 

Job shops produce products on the basis of manufacturing orders which specify the due date and the 
volume. The orders accepted by the shop floor are put into a job pool. The job release decides when to 
start each job in the pool. It attempts not only to balance this time-varying demand against available 
capacity, but also manages to meet the due date constraints. The general job release policies, such as 
output-based or workload-based policies, have poor due date performance. A multi-time-periods release 
policy is proposed to match the time-varying demand. The due date pressure is distributed to every period. 
In each time period a near optimal short-term throughput of each product is obtained by an optimization 
model. The optimization problem is solved by an improved ant colony algorithm. In iteration processes of 
the algorithm ants are evaluated by the simulation which involves the setup and breakdown of machines. 

1 INTRODUCTION 

Generally, in most job shops products are produced according to manufacturing orders generated by their 
planning system. For each order a due date is specified and maybe sometimes an earliest start time. An 
order is connected to a product and often includes many jobs. Usually multiple orders are released to the 
shop floor at a time. The orders accepted by the shop floor are not directly started but put into a job pool. 
Dispatchers will decide when each job starts according to the situation of the shop floor. This is the job 
release problem. Studies on shop floor control are usually focused on the scheduling problem in which the 
release dates of jobs are assumed to be given and the only problem is the job sequencing at each machine. 
Thus there is a gap between the planning problem and the scheduling problem. The job release problem 
bridges the gap. The decisions on the job release can have a significant effect on the shop floor. Therefore, 
the job release problem should be solved before we carry out the scheduling. For the job release problem 
the product mix is a key factor and is often time-varying which makes the problem more difficult and 
complex. The varying mix is attributed to either the different combinations of products or the different 
throughputs of the same products. The job release attempts not only to balance this time-varying demand 
against available capacity, but also manages to meet the due date constraints. 

According to the information considered in the decision making, the job release can be classified to 
three types: due date-based job release, workload-based job release, and bottleneck-based release. We will 
give a short review on them in Section 2. In our case the due dates are assigned to orders rather than the 
job. It is difficult to calculate the due dates of jobs in the orders according to these due dates. Thus the 
pure due date-based job release is not suitable for the problem. Even though the other two approaches 
have been widely used in fixed-demand job shops, difficulties arise in the time-varying-demand job shops. 
Setting only one constant rate or one target workload level for each product/bottleneck cannot match the 
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time-varying demand anymore. Moreover, sometimes they assume that the release time of the first job in 
each order is calculated separately, which leads to poor due date performance. In our study, a multi-time-
period release policy is proposed to match the time-varying demand. The calculation of the start time of 
orders is involved in the policy. The start time of each order and the near optimal throughput of each 
product in each period can be obtained. The constant rate or target workload level of each 
product/bottleneck in each period can be calculated according to the throughput.  
 The paper is structured as follows. In Section 3 we give a detailed description of the problem in the 
time-varying-demand environment. A general outline of the proposed policy is presented in Section 4. In 
Section 5 an optimization model is given and an improved ant colony algorithm is used to solve the 
optimization problem. An application in a job shop environment is reported in Section 6, which also 
concludes the paper. 

2 RELATED WORKS  

2.1 Due Date-Based Job Release 

The due date-based job release calculates a release date for each job at decision point according to the due 
dates and current cycle time estimates, and creates a release time window based on the release date. If the 
decision point is within the release time window, the related job will be released. The decision is usually 
made at certain time intervals. There are three common ways to estimate the cycle time. One assumes that 
the cycle time is proportional to its sum of processing times Conway et al. (2012).They try to find the 
coefficient of the sum of processing times. One just uses the average cycle time obtained from the 
historical data of the shop floor. The last believes that the cycle time does not only depend on the sum of 
the processing times, but also the situation of the shop floor at the decision point. Mahmoodi et al. (1990) 
used regression analysis method to find the relationship between the total waiting time and the number of 
jobs on the concerned job’s route. The simulation collects the data pair they needed. To determine the due 
date of a job at a decision point, the obtained regression function is used and the parameter of the function 
is the number of jobs on the job’s route at the decision point. The cycle time equals the total waiting time 
plus the sum of processing times. Ragatz and Mabert (1988) calculate the cycle time according to the 
number of operations and the number of jobs on the concerned job’s route. Two coefficients are set for 
these two numbers. 

2.2 Workload-Based Job Release 

The workload is the amount of work that has to be done. It can be measured by the number of in-process 
jobs or the total processing time of in-process jobs. For the workload-based job release, the decision is 
made while the workload changed. A releasable job list is included in the method. The releasable job list 
stores the releasable jobs at the decision point. The jobs in the list are sorted in certain priority sequence. 
The following are three subtypes of the workload-based job release. 

2.2.1 Workload-Based Job Release at the Shop Floor Level 

The workload is measured at the shop floor level by terms of the number of in-process jobs or total 
processing time of in-process jobs in the shop at the decision point. A workload norm is set for the entire 
shop floor. While a job is finished, the first job in the list will be considered first. If releasing the first job 
does not cause that the workload exceeds the norm, the job will be released and the workload will be 
updated. Otherwise, the job will continue to be kept in the pool. Thereafter the second job will be 
considered. The remaining can be done in the same manner. If the workload exceeds the predetermined 
workload norm, the rest jobs will not be considered and the release procedure ends.  Framinan et al. (2006) 
developed a dynamic method to determine the norm (card number). The norm is adjusted dynamically 
according to the throughput of the shop floor at that moment. If the throughput is less than the target 
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throughput, the norm will increase; otherwise the norm decrease. The lower and upper bounds on the 
norm restrict the adjustment. 

2.2.2 Workload-Based Job Release at the Product Level 

The workload is measured at the product level by terms of the number of in-process jobs or total 
processing time of in-process jobs, which belong to the same product, in the shop at the decision point. A 
workload norm is set for each product. For each product a releasable job list is created as well. While a 
job belonging to a product is finished, the jobs in the related list will be considered from the first to the 
last. If releasing a job does not cause that the workloads of the product exceed its norm, the job will be 
released. With a fixed number of Kanbans (norms) dedicated to each product, Ryan and Vorasayan (2005) 
use a nonlinear program to evaluate and optimize the allocation of Kanbans to product types. In numerical 
examples, the allocations identified are similar to those obtained by exhaustive enumeration with 
simulation, but frequently differ significantly from a naïve allocation according to demand rates. A 
variant of the model that minimizes the total work-in-process to achieve specified throughput targets 
yields results similar to a previous heuristic method. 

2.2.3 Workload-Based Job Release at the Machine Level 

The workload is measured at the machine level by terms of the number of jobs or total processing time of 
jobs, which are/ will be processed on the machine or are waiting before the machine, in the shop at the 
decision point. A workload norm is set for each machine. While an operation is finished on a machine, the 
jobs in the list which will visit the influenced machines will be considered in the original sequence in the 
list. If releasing a job does not cause that the workloads of all related machines exceed their norm, the job 
will be released. Land and Gaalman (1998) give a general procedure for the workload-based job release. 
The procedure considers (1) the workload situation on the shop floor in combination with the workload 
contribution of the jobs, and (2) the relative urgency of the job. The release procedure is built up of two 
phases, sequencing and selecting. The jobs in the pool are sequenced in order of a planned release date to 
determine their relative urgency. Urgent jobs have a higher probability to be released, because the jobs are 
considered in order of planned release dates and the gaps between the workloads and the norms will be 
largest at the beginning of the release procedure. The selecting phase, choosing jobs that obey the 
workload norms, is responsible for the load balancing function. The term load balancing refers to 
maintaining a constant direct load level for each station, which speeds up the throughput in the first place. 

2.3 Bottleneck-Based Job Release 

The bottleneck-based job release is a special case of the workload-based job release at the machine level. 
It focuses only on the workloads of bottlenecks. The bottleneck principle is converted into a 
manufacturing control method. Akhavan-Tabatabaei and Salazar (2011) propose a procedure based on 
trial and error to find the best values for the WIP threshold (norm) in different cases The procedure begins 
with running the simulation model for no policy case with norm =0 and recording the resulting cycle time 
and throughput. Then this step is repeated through incrementing the value of norm by one and increasing 
the value of arrival rate in such a way that the effective arrival rate of cases with policy remain very close 
to that of the no policy case. The iterations stop when no significant improvement in the cycle time is 
observed. 

3 PROBLEM DESCRIPTION 

The job release has two tasks. One is to decide the start time of each order, i.e. the start time of the first 
job or jobs (if several jobs can start at a time). The other task is to determine the start times of the 
remaining jobs. Many studies assume that the start time of orders equals the earliest start time and then 
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they have enough slack time to meet the due dates. This usually leads to longer waiting times of finished 
jobs because they have to wait for other jobs in the order and only all of jobs in the order are completed 
they can start delivery.  The longer waiting time can be problematic. Thus we should start orders as late as 
possible under the condition that the due dates are met. Figure 1 shows an example where there are five 
orders in the job pool. Each order includes one product. The latest start time is calculated according to the 
maximal throughput. If we split the time into several periods according to the product mix, we can see 
that in some periods only one product is produced and in some periods two or three products are produced. 
Obviously, if we use the normal approach, we have to specify different policies or different parameters 
for the policies in the different periods. Someone may believe that just presetting a release policy for each 
possible situation of the product mix can solve this problem. In that case once the product mix changes, a 
corresponding policy will be used. However it is not true because the preset policies do not consider the 
due dates. It is difficult to meet the due dates. The policy or the parameters of the policy are not only 
dependent on the product mix but also on the due dates. 

 

 

Figure 1: An example of the time-varying product mix. 

 A reasonable way to solve this problem is to distribute jobs to every period in order to separate due 
date pressures. In other words, we should specify for each product a short-term throughput in each period. 
The short-term throughput is dependent not only on the product mix but also on the duration of the period 
and the time difference from the period to the due dates. When the short-term throughput is determined, 
we can adopt the normal approach in each period. The parameters of the policy in a period can be 
determined easily according to the related short-term throughput. So the main problem in the study is to 
determine the short term throughput in each period. Moreover, because the start time of orders are 
unknown before, we cannot split the time into several periods at a time. This is very tricky. The start 
times are obtained from the short-term throughput while the short-term throughput is determined only if 
the periods are generated according to the start time.  Thus, how to split the time into periods is also a 
very important problem. To sum up, there are two subproblems in our study: finding the time periods 
which represent different product mixes and determining the short-term throughput in each period 
according to the product mix and the due dates. 

4 MULTI-TIME-PERIODS POLICY 

As we mentioned before, the time periods cannot be generated at a time. In our approach we find the time 
periods one by one from the right to the left (backward calculation) beginning from the latest due date of 
the orders. The start time of the orders are initialized with the latest start time. Once a period is found, an 
optimization procedure will be started to obtain the short-term throughput for each product included in the 
period. The start times of related orders are updated according to the short-term throughput. Then we start 
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to find the next period and perform the same computations. The approach will finish if no more periods 
can be found. The left part of Figure 2 shows a flow chart of our approach. The remaining part will be 
introduced in Section 4. 

 

 

Figure 2: Flow chart of our approach. 

4.1 Initialization and Time Period Finder 

The start time of an order is initialized with the latest start time which is calculated from the maximal 
throughput. The maximal throughput is the throughput while only the concerned product is produced in 

the job shop. The latest start time of product i LS
i  can be calculated as follows: 

/LS D Max
i i i iN r   , 

where D
i  is the due date of the related order, iN denotes the number of jobs in the order and Max

ir  is the 

maximal throughput of the product. The maximal throughput is determined by the capacity of the 
bottleneck machine. It is easy to find out the bottleneck because the bottleneck is fixed when only one 
product is produced. 

A time period finder is responsible to generate the time period. At the beginning the end time of the 
first period is set to the latest due date of orders. The start time or the due date which is closest to the end 
time of the periods will be the start time of the period. When we try to find the next time period, the start 
time of the period will become the end time of the next period. The rest will be carried out in the same 

manner. The start time of the k-th period S
k  is computed by 

min(min( ), min( ))S S D
k i it t    

1, , ,S E S S E E S
i k i i k k kt i P            

 1, , ,D E D D E E E
i k i i k k kt i P           , 
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where E
k  is the end time of the k-th period, S

i  and D
i  are the start time and the due date of product i. P 

denotes the set of all products. S
it  and D

it  are the time differences from the end time of the period to the 

start time and the end time of product i. 

4.2 Small Period Handler and Unfilled Product Handler 

Following the above steps, we may find very small period durations. To determine the short-term 
throughput in such small periods makes no sense. We consider a period too small when the duration is 
less than ten times the longest release interval of products. Once a small period is found, we will give up 
the found start time immediately and looking for next earlier starting time. If the new duration is still 
small, just continue until the duration is longer than the limitation (as shown in Figure 3 (a)).  

 

 

Figure 3: Small period handler (a) and unfilled product handler (b). 

The small period handler leads to a new problem, shown in Figure 3 (b). There are products which do 
not fully fill up the period (marked as 1, 2, 3, and 4). The fully filled products (marked as 5) will be 
chosen and taken to the optimization phase. The problem is how to deal with the unfilled products. We 
select the near fully filled products (1, 2) to the optimization phase too. The less filled products (3, 4) will 
not be chosen. In this period the product 2 will adopt its throughput in the previous period and the product 
1 will use the throughput from the next period. 

4.3 Throughput Optimization and Start Time Update 

Once a time period is found, the short-term throughput will be obtained through an optimization 
procedure which will be introduced in Section 5. The optimization is carried out for the chosen products 
in the period according to the range (min and max values) of the throughputs of each chosen product. The 
lower bound of the short-term throughput of product i in the k-th time period is calculated as follows. 

1

, ,
1

( ( ) ( )) / ( )
k

L E S Max S ES E S
i k i i j j j i k i k k

j

r N r r     




      , 

where ,i jr  is the short-term throughput of product i in the j-th period. S
j  and E

j  are the start time and 

the end time of the j-th period. ES
i  is the earliest start time of product i. The lower bound ensures that the 

remaining jobs of the product can be finished in the remaining time with the maximal throughput. The 
upper bound of the range cannot be the maximal throughput. If so there will be not enough capacity for 
other products to even reach their lower bound throughput. Thus the upper bound should be the 
throughput while other products are produced at the lower bound pace and the remaining capacity is fully 
utilized by the product. Even though the bottleneck of the product may change, the upper bound is still 
easy to determine because the throughput of the remaining products is fixed to the lower bound. Only if 
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there is just one product in the period, the upper bound can be the maximal throughput. In this case the 
lower bound is already the maximal throughput. Thus the maximal throughput is the optimal throughput 
in this case. 

The start time of each chosen product will be updated after we know the short-term throughput in the 
period. The short-term throughput is only used for this period. In the later time periods the maximal 
throughput is still effective. The start time of the product i is updated as follows. 

'
,( )( ) /S S Max E S Max

i i i i k k k ir r r       , 

where 'S
i is the old value. The other variables have been explained before. For the unfilled product types 

3 and 4 (in Figure 3), we just need to change the duration to the real one. For the unfilled product type 2 
(in Figure 3), we use the throughput from the previous time period. 

' '
, 1( )( ) /S S Max E S Max

i i i i k k i ir r r        

For the unfilled product type 1 (in Figure 3), we do not update its start time in this period but in the 
next period because the short-term throughput is the throughput in the next period, . 

'
, 1( )( ) /S S Max D S Max

i i i i k i k ir r r       . 

5 OPTIMIZATION FOR EACH TIME PERIOD 

Once a time period is found, we try to determine a reasonable short-term throughput for each chosen 
product under the constraints of the lower and upper bounds that we calculated before. This work is 
carried out by means of an optimization procedure. In this section we will introduce the optimization 
procedure in detail. 

5.1 Optimization Model 

The first step is to create an optimization model. The optimization model is usually composed of an 
objective, several decision variables and some constraints. Naturally, the short-term throughputs of 
products are the decision variables. The lower and upper bounds of the throughputs are one kind of 
constraints. The objective in our study has two parts: maximizing the overall throughput and minimizing 
the average WIP level (see the following equations). They are integrated into one maximizing objective 
by means of two coefficients. 

, , , , , ,
1 1

max ( , ) /
m m

sim sim sim sim
i k i k i k i k i k i k

i i

f r w r w   
 

   , 

where '
, / ( )Max S ES

i k i i iw r     and , , , , ,, , 1/simsim sim
i k i k i k i k i kr v v r   . 

The weight ,i kw represents the urgency of the product i in the k-th period. m denotes the number of 

the chosen products in the period. The short-term throughput ,i kr  is not considered in the objective 

function directly. It is converted to the release time interval ,i kv and then input into the manufacturing 

simulation.  ,
sim

i kr  is the modified short-term throughput. sim
i  is the average WIP level of product  i. Both 

of them are obtained from the simulation.   and   are two coefficients which represent the importance 

of the throughput and the WIP level in the objective function. Here, we assume 0.5a   .   

5.2 Ant Colony Algorithm 

The ant colony algorithm is used to solve the optimization model. The algorithms are stochastic search 
procedures. Their central component is the pheromone model, which is used to probabilistically sample 
the search space (Dorigo and Blum 2005). Because the optimization model is a continuous model, but the 
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ant colony algorithm is only suitable for a discrete model, the continuous decision variables have to be  
converted to discrete variables first (Liao et al. 2014). We normalize all variables to [0,1) and specify for 
each variables a number of digits after the decimal point. Each decimal place can be one digit from 0 to 9. 
Thus a network can be created as shown in Figure 4. The start node and the end node have no real 
meaning. Each of other columns represents a decimal place of one variable. Figure 4 shows an example 
having two variables and three decimal digits for each variable. Thus the continuous problem turns into a 
discrete routing problem in the network.  
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Figure 4: Discretization of the continuous problem for the ant colony algorithm. 

 Ants will run on the network and leave the pheromone on the sides. The pheromone also can be 
evaporated as time goes on. Which side the ant will take depends on the volume of the pheromone on the 
sides. The probability to select one side is directly proportional to the volume of the pheromone (roulette 
wheel selection). The path that an ant goes through denotes a solution. We update the pheromones only 
after the ant finishes the run. The increased pheromone level is related to the evaluation results of the ant. 
The evaporation rate of pheromones is fixed. When more and more ants go through the network, there 
will be one path with very high pheromone levels and most of ants run on the path. This path will be the 
optimal solution. In our approach, the short-term throughputs are normalized according to their lower and 
upper bound. In order to speed up the convergence we form batches of ants. For each batch we select 
several best ants and update the pheromones according to these ants’ performances.  The procedure is 
shown in the center part of Figure 3. The pheromone update is performed as follow. 

0 , ,(1 ) ( , )sim sim
i k i kf r Q      , 

where  and 0 are the new and old value of the pheromone.  is the evaporation rate. Q  denotes the 

importance of the objective.  
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5.3 Manufacturing Simulation 

The manufacturing simulator we proposed in another paper (Zhang and Rose 2012) is used to evaluate 
each ant. The short-term throughputs that each ant implies are converted to release time intervals. During 
the simulation, jobs are released according to the release time intervals. Setups, breakdowns and 
maintenances are also involved in the simulation. The dispatching rule FIFO is adopted by all machines. 
The simulation outputs the throughputs of the products and the average WIP levels which will be used in 
the objective function to calculate the ant’s performance. When the optimization finishes, we replace the 
optimal short-term throughputs with the throughputs from the simulation which will be adopted by the 
corresponding time period and used to update the start times of the products. Because the simulation 
model is stochastic, we try to evaluate as many ant simulation runs as possible to obtain significant 
results. But due to the run time limitation of the approach, the simulation run times are limited. The 
minimal run times can be determined by the average deviation of the simulation outputs. The average 
deviation is decreasing while the run times increase. A norm is preset in advance. Once the deviation 
reduces to the norm, we believe that the mean values of the simulation outputs are almost true value.  

6 EXPERIMENTS AND CONCLUSION 

6.1 Experiments 

We carried out experiments for a job shop. The job shop has 12 machines with different functions. The 
machines break down randomly, and the recovering time is dependent on the type of the breakdowns. At 
the beginning of February there are five orders accepted in the job pool. Each order is related to a product. 
Different products have different processing flows and different cycle times. We put these fiver orders 
into our consideration.  
 In the ant colony algorithm, the number of decimal places is 4;   is 0.23 and Q is 1. The result is 
shown in Figure 5. There are 8 time periods found. The density of the vertical lines in the periods 
represents the value of the short-term throughput. In the denser periods the short-term throughput is 
higher. Besides, from the diagram we can see that only one product is started at the earliest start time. The 
other products are all started later.  The time that we saved will result in an inventory cost reduction. 

 

 

Figure 5: Results of the experiment: time periods and the short-term throughput of each product. 
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A simple way to use the short-term throughputs we obtained is to calculate the release interval or the 
target WIP level for each product at each time period. Then we can use the constant interval policy 
(CONINT) or the constant WIP level policy (CONWIP) to release the jobs. It is nature that the average 
WIP level and the average cycle time of each product is varying among different time periods. The 
bottlenecks are also varying among different time periods due to the varying product mix. Except 
CONINT and CONWIP, how to more effectively use the short-term throughputs to release the job, will be 
our next work. 

6.2 Conclusion 

The proposed approach divided the manufacturing time interval into several time periods according to the 
different product mixes. For each period a short-term throughput is specified to each product. The 
dividing process is carried out backwards. Therefore, it is straightforward to meet the due dates. The start 
times that we finally obtained were usually later than the earliest times. The time that we saved will result 
in an inventory cost reduction. The short-term throughputs are from the results of the stochastic 
simulation. They are robust enough to adapt to the unexpected events. In the optimization model, the 
urgency of each product is involved in the objective, which can guarantee that the products start later than 
the earliest start time. The best ants are selected to update the pheromone to speed up the convergence. 
The shortcoming of our approach is the high time consumption because the simulation had to run several 
thousand times. 
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