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ABSTRACT

Production-inventory systems model the interaction of manufacturing processes with internal and external
customers. The role of inventory in these systems is to buffer mismatches between production and demand
caused by process uncertainty. Often, production and demand variability is described using simplified
probabilistic models that ignore underlying characteristics such as skewness or autocorrelation. These
models lead to suboptimal inventory policies that result in higher costs. This work presents a novel analysis
of the impact of uncertainty in the performance of production-inventory systems. It quantifies the effect
of different probabilistic descriptions of production capacity and demand in systems subject to lost sales
or backorders. The analysis is based on the results of discrete-event simulations. The flexibility offered
by simulation allows studying diverse conditions that arise in production-inventory systems. The results
clearly illustrate the importance of appropriately quantifying variability and performance for inventory
management in process networks.

1 INTRODUCTION

One of the roles of inventory in manufacturing systems is to buffer temporal mismatches between production
and demand. Production-inventory systems can generally be employed to represent the interactions between
manufacturing plants and customers, or to model individual blocks in complex production networks. It is
widely accepted that inventory control is of prime importance to industries because of its significant costs
and its impact on customer satisfaction (Wilson 2013).

Inventory management in capacitated production-inventory systems under uncertainty is a difficult task.
Unlike most supply chains, the capability to replenish inventory in these systems is constrained by a limited
production capacity. A simplistic approach to maximize utilization might suggest to produce at full capacity
and store surplus products. However, this approach may not obey the economic purpose of production
systems and might lead to unstable behavior. A more rational approach is to establish an operating policy
that determines production rate, inventory replenishment, and inventory depletion.
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An operating policy is a set of rules that establishes the operating decisions as a function of the system’s
state. The right policy allows balancing the cost of inventory and the risk associated with stockouts. A
production-inventory system operating under such a policy works as a push and a pull system with the
inventory serving as the Customer Order Decoupling Point (Olhager 2010). Federgruen and Zipkin (1986)
demonstrated that under a few mild conditions a modified base-stock policy is optimal for production-
inventory systems with stochastic demand. The modification to the classic base-stock policy accounts for
the capacity limitation of the replenishment orders. Tayur (1993) and Ciarallo, Akella, and Morton (1994)
developed algorithms to find the optimal base-stock level and to calculate the average cost of these systems.

One of the main assumptions for the model developed by Federgruen and Zipkin (1986) requires
demands to be independent and identically distributed (iid) random variables. This assumption might seem
reasonable for long time periods but neglects autoregressive effects that impact inventory management
strategies (Luong 2007). The performance of production-inventory systems can be quite sensitive to
autocorrelation because of the time dependence of production, demand, and inventory levels. The novelty
of this study is to analyze of the effect of skewness and autocorrelation on the performance of capacitated
production-inventory systems.

The derivation of closed-form solutions that model the effect of autocorrelation in inventory policies
has proved to be very challenging. Alcay, Biller, and Tayur (2012) presented a numerical approach to find
the optimal base-stock in a newsvendor model (single period and unlimited capacity) with autocorrelated
demand. Additionally, they consider parameter uncertainty for the probabilistic description of demand.
The present study does not include parameter uncertainty but it develops a strategy that allows considering
stochastic production and demand processes with arbitrary distributions.

The potential of using a simulation model to improve inventory management strategies has been
well recognized (Gaither 1982). The present work proposes a methodology to study the behavior of
production-inventory systems under different uncertainty characterizations based on the statistical analysis
of Discrete-Event Simulations (DES). DES is a flexible approach to evaluate inventory management strategies
with many realistic considerations. In particular, it allows easy implementation of base-stock policies and
estimation of performance measures. DES has been extensively used to analyze inventory systems (Badri
1999, Kristianto, Helo, and Takala 2010, Kravchenko 2013) and complex production networks with diverse
industrial applications (Sharda and Bury 2008, Sharda and Bury 2010, Kulkarni and Prashanth 2012,
Spieckermann and Stobbe 2012, Sharda and Bury 2012). The motivation for this methodology comes from
the need to develop simulation models that can leverage the diverse sources of data available in the process
industry. This methodology can be used to evaluate equipment utilization and demand satisfaction levels
for any production system that follows a base-stock policy.

Six production-inventory systems are tested with DES; they consider asymmetry and autocorrelation in
the distributions of production capacity and demand. The results obtained are compared to assess the impact
of different uncertainty characterizations on the performance of the production-inventory system. In order
to gain a comprehensive insight into the system’s behavior, two performance measures are considered. The
comparisons indicate a noticeable difference in the production targets when these measures are considered.
Additionally, a significant effect of time correlations on the performance production-inventory systems is
demonstrated.

2 PROBLEM STATEMENT

The goal of this study is to analyze the response of production-inventory system to different stochastic
processes describing production capacity and demand. An illustration of the system under study is presented
in Fig. 1. The performance function to evaluate is the average cost in an infinite horizon. The cost has
two components: inventory cost and stockouts cost. The model does not consider production costs. Two
stockouts models are evaluated: lost sales and backorders. In the lost sales model, the cost in any time
period is given by the holding cost (/) per unit of inventory and the penalty cost (p) per unit of unsatisfied
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Figure 1: Illustration of the production-inventory system under uncertainty

demand. In the backorders model, demand satisfaction can be postponed to the next time period whenever
stockouts occur; the penalty cost (b) per unit of backordered demand is applied in every time period.

The production-inventory system operates on a base-stock policy. The policy is characterized by the
base-stock level which represents the maximum level of inventory that is desirable to store. The model
assumes that demand is realized at the beginning of the time period and production is available instantly
(no lead time). Following this logic, the largest demand that can be satisfied in a time period is given by
the sum of the production capacity and the initial inventory.

In order to guarantee a finite average cost function, the mean production capacity is assumed to be
greater than the mean demand. Furthermore, all stochastic processes under study have unique stationary
distributions; they have finite expected values, variances, and covariances that are independent of time.
These assumptions allow estimating the infinite horizon statistics from finite simulations.

3 DISCRETE-EVENT SIMULATION ALGORITHM

The discrete-event simulation model of the production-inventory system is based on the base-stock policy.
The policy works as follows. At the beginning of a time period, the inventory is at some level (L;). Then,

1. Random demand (D) is realized.
Production target is calculated to satisfy demand (D;) and bring inventory level to base-stock (S).
3. Actual production is realized according to the production target and the realization of the random
capacity (Ry).
4. Production and inventory is used to try to satisfied demand (D) completely.
5. Inventory level (L,41) is updated.
6. Holding or stockout costs are calculated.

Fig. 2 presents the sequence of calculations involved in the simulation. The algorithm is implemented
in MATLAB R2013a in order to leverage the functions available for stochastic processes simulation.

4 CASE STUDIES

Six case studies are analyzed in order to consider different types of uncertainty. Sequences of independent
and identically distributed (iid) random variables are used to represent uncertainties that are not influenced
by the history of the process. The autocorrelation of realizations in consecutive time periods is modeled
using the Moving Average (MA) model. Autocorrelation in the production capacity is intended to model
favorable or adverse operating conditions that span during several time periods. Autocorrelation in the
demand is intended to model market trends.

The first case study considers the stochastic processes characterizing production capacity and demand
as sequences of iid random variables with normal distributions. The second case study analyzes the effect
of skewness in the production capacity; it characterizes production capacity with a sequence of iid random
variables with Pearson distributions and demand with a sequence of iid random variables with normal
distributions. The third case study characterizes production capacity with MA model with lag 1 and
demand with a sequence of iid variables with normal distributions. The fourth case study characterizes
production capacity with a lag-3 MA model and demand with a sequence of iid random variables with
normal distributions. The fifth case study characterizes production capacity and demand with lag-1 MA
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Initialize:
Ly=Ly; and t=0

Lostsales: Calculate actual output:
S;=D,-OUT, OUT, = min(D,R.+L;)

t=t+1

Idle capacity: Calculate actual input:
U.=R,- IN, IN,= min(R,B-L+D,)

Update level:
Ly =L+ 1IN, - OUT,

Figure 2: Algorithm for discrete-event simulation of the production-inventory system

models. The sixth case study characterizes production capacity and demand with lag-3 MA models. A
summary of the parameters used for each case study is presented in Table 1.

Table 1: Parameters of the stochastic processes characterizing production capacity and demand

Case Production capacity Demand

Case 1 Normal: u=110; 6=20 Normal: p=100; 6=20

Case 2 Pearson: u=110; 0=20; y1=-1; =1 Normal: u=100; 6=20

Case 3 MA: u=110; 0=16.33; 6_1=0.5 Normal: u=100; =20

Case 4 MA: u=110; 6=17.03; 6_1=0.5; 6_,=0.3; 6_3=0.2 Normal: u=100; c=20

Case 5 MA: u=110; 6=16.33; 6_1=0.5 MA: u=100; 0=16.33; 6_,=0.5

Case 6 MA: u=110; 0=17.03; 6_1=0.5; 6_1=0.3; 6_1=0.2 MA: u=100; 6=17.03; 6_,=0.5; 6_,=0.3; 6_3=0.2

All simulations are evaluated in a time horizon (7) of 200,000 time periods. The parameters of the
stochastic processes are calculated to generate time series with stationary distributions that have the same
mean and variance. The stationary distribution of the processes describing production capacity have a
mean equal to 110 ton/period (1 ton = 1,000 kg) and a standard deviation equal to 20 ton/period. Demand
processes have stationary distributions with mean equal to 100 ton/period and standard deviation equal to
20 ton/period.

Sequences of iid normal variables are characterized by their mean (u) and standard deviation (o); they
are simulated in MATLAB using the function normrnd (mu, sig, T, 1). Similarly, sequences of iid
Person variables are characterized by their mean (i), standard deviation (o), skewness (1), and kurtosis
(72); they are simulated in MATLAB using the function pearsrnd (mu, sig, skew, kurt, T, 1).
The autocorrelated stochastic processes are described with the Moving Average (MA) model; they are
characterized by their mean (i), standard deviation of the innovation process (o), and the lag coefficients
(6_;). The MA models are simulated in MATLAB scaling the variance of the innovation process (white
noise) to obtain the desired stationary distributions.

The average cost for each case study is estimated using lost sales and backorders. The cost function
includes a unit holding cost (k) of $5/(period ton) and the stockout cost. In the lost sales model, the
unit penalty cost (p) for stockouts equals $40/ton. In the backorders model, the unit penalty cost (b) for
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stockouts is $10/(period ton). The estimation of the average cost for each case is based on 100 different
simulations.

S RESULTS AND ANALYSIS

The results of the simulations are presented in Fig. 3 - 8. The figures show the average costs of the
production-inventory systems for the lost sales and backorder models with varying base-stock levels. Base-
stocks are evaluated in the range from O to 50 ton. The lines in Fig. 3 - 8 represent the mean value of the
inventory cost, stockout cost, and total cost over 100 simulations. The base-stock levels that yield lowest
average total costs are listed in Table 2 and can also be verified from Fig. 3 - 8.

Fig. 3 presents the results for case study 1. It can be observed that the costs of the lost sales and backorder
models are very similar throughout the range of evaluated base-stocks. They both attain the minimum cost
with a base-stock of 26 ton. The similarity between both models is explained by a small accumulation
of backorders. The effectiveness of inventory to buffer short-term mismatches between production and
demand is the result of characterizing uncertainty as sequences of iids. Additionally, the symmetry of the
normal distributions provides consistent surplus production capacity over successive time periods, which
avoids backorders being carried over several time periods (backorders persistence).

(a) Lost sales model (b) Backorders model

—+Inventory cost

-&-Lost sales cost

—e-Total cost

Average cost [$/period]

Average cost [$/period]

—+Inventory cost
-&-Backorder cost
—e-Total cost

25 3
Base-stock [ton]

Figure 3: Average cost for case 1

(a) Lost sales model

Average cost [$/period]

—+Inventory cost
-&-Lost sales cost
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with different base-stock levels
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(b) Backorders model
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Figure 4: Average cost for case 2 with different base-stock levels

The results of the simulations corresponding to case study 2 are presented in Fig. 4. In contrast to case
study 1, the lost sales model yields a lower cost than the backorders model for all base-stocks in case study
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2. This behavior is explained by the high backorders persistence caused by inventory ineffectiveness. The
asymmetry in the distribution of the production capacity often yields productions that are either significantly
higher or lower than demand. The frequent mismatches between production and demand requires high

base-stock levels that increase inventory cost. However, the values and trends observed in Fig. 4a and 4b
are similar to the corresponding Fig. 3a and 3b.

(a) Lost sales model (b) Backorders model
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Figure 5: Average cost for case 3 with different base-stock levels

Fig. 5 presents the results for case study 3. The effect of autocorrelation in the production capacity
translates in a lower sensitivity of the optimal cost to the base-stock levels. It can be observed that the
slopes in Fig. 5a and 5b are less steep than the corresponding figures for cases 1 and 2. This is explained
by the rapid accumulation or consumption of inventory in consecutive time periods. Autocorrelation in the
production capacity requires higher base-stock levels to buffer production and demand mismatches, which
leads to high inventory costs. The cost for the backorders model presented in Fig. 5b illustrates the high
stockout cost that results from accumulation and persistence of backorders during several time periods.

(a) Lost sales model (b) Backorders model
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Figure 6: Average cost for case 4 with different base-stock levels

Similar trends can be observed in Fig. 6 - 8. The increasing autocorrelation in cases 4, 5, and 6 reduces
the effectiveness of inventory to buffer production and demand mismatches. The lost sales models presented
in Fig. 6a - 8a are affected much less by the increasing variability of the stochastic processes but there is
a clear tendency to increase the average total cost. However, these models attain the minimum cost with
decreasing base-stocks, which illustrates inventory ineffectiveness. The results for the backorders models
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presented in Fig. 6a - 8a have a different trend. In these cases, the impact of backorders persistence is so
strong that high base-stocks with their associated inventory costs are preferable.

(a) Lost sales model (b) Backorders model
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—+Inventory cost —+Inventory cost
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Figure 7: Average cost for case 5 with different base-stock levels
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Figure 8: Average cost for case 6 with different base-stock levels

It is interesting to note that the effect of different characterizations of the production capacity and
demand is moderate in the lost sales model, in contrast to their impact in the backorders model. The
cost function used for the simulations considers a penalty cost four times higher for lost sales than for
single-period backorders. This suggests that high stockout cost in the backorders model is the consequence
of backorders that propagate for several time periods. In general, the backorders model yields lower
inventory costs for any particular base-stock because the inventory level is also decreased by backorders;
however, stockout costs are dominant at the optimal base-stock for all cases.

Table 2 presents the optimal base-stock levels and costs for the case studies under discussion. It can be
observed that the lost sales model yields lower average total cost than the backorders model. Additionally,
the optimal base-stock for the lost sales model is less or equal than the corresponding optimal base-stock for
the backorders model. The cases with autocorrelated stochastic processes show a decreasing effectiveness
of the inventory. In the lost sales model this ineffectiveness produces lower optimal base-stock levels to

reduce the cost of inventory. The optimal base-stocks for backorders models are much higher because of
the dominant effect of stockouts cost.
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Table 2: Optimal base-stock levels and costs with 95% confidence intervals

Case Lost sales Backorders
Base-stock [ton] Cost [$] Base-stock [ton] Cost [$]

Case 1 26 207.76 (£0.16) 26 208.10 (£0.45)
Case 2 23 214.07 (£0.18) 24 238.82 (£0.91)
Case 3 24 227.09 (40.20) 37 280.68 (40.70)
Case 4 23 236.66 (+0.20) 45 374.50 (+£1.21)
Case 5 23 244.70 (£0.21) 46 358.64 (+1.23)
Case 6 14 260.28 (£0.30) 71 562.24 (£2.48)

6 CONCLUSIONS

The impact of uncertainty quantification in production-inventory systems has been analyzed with the use
of discrete-event simulations. The methodology has been implemented for two stockouts models in six
case studies with different characterizations of uncertainty. In particular, the models represent a single
production-inventory system with variability in production capacity and demand; the stationary distribution
of the stochastic processes describing the system’s variability has the same mean and variance in all cases.
The results clearly show that underlying characteristics of the stochastic processes such as skewness, kurtosis,
and autocorrelation have an important influence on the performance of production-inventory systems. These
characteristics of process variability are usually ignored in the analysis of these systems and their impact
had not been quantified before.

The performance of the system evaluated with the lost sales model is much less sensitive to distributions
with skewness, kurtosis, and autocorrelation. The lost sales model has a greater flexibility to balance inventory
and stockout cost. In contrast, asymmetric and autocorrelated distributions have a significant impact in
the backorders model. In this model, the accumulation of backorders during several time periods is the
dominant element of the cost function. The effect of increasing autocorrelation only accentuates this feature.

This empirical study of the effect of uncertainty characterization in production-inventory systems
clearly highlights the importance of appropriately quantifying variability and performance for inventory
management. The discrete-event simulation framework and its flexibility allows studying such important
considerations quite effectively. In future, this work will be expanded to analyze industrial applications
and study the challenges associated with managing inventory in complex integrated process networks.
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