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ABSTRACT 

Semiconductor manufacturers are required to reduce their product cycle times since many product 
embedded semiconductor devices often have a very short life cycle.  One way to reduce cycle time is to 
purchase extra manufacturing tools. However, these tools cost several millions of dollars and facility 
space is limited.  Another way to reduce cycle time is to improve performance of the critical tools.  The 
second option is less costly and provides a significant cost savings for manufactures, which leads them to 
maximize efficiency. In order to determine which tools are critical and require analytical resources to 
optimize their performance, a system is needed to prioritize which are the critical tools.  This paper will 
focus on Kendall’s Classification of Queues, and it will focus on the G/G/m Queue (general distribution 
arrival process / general distribution service process / m servers) (Kendall 1953). 

1 QUEUING FORMULAS 

Queuing theory is the mathematical study of waiting lines or queues.  A facility can be conceptualized as 
a set of products (wafers) traveling through a network of queues whose servers are tools.  Optimizing the 
variation of arriving work in progress (WIP), WIP processing times, tool repair time, and the number of 
qualified tools will improve cycle time for the system and increase throughput of the critical tools.   
 Kendall’s classification of a queuing station (A/B/m) (Kendall 1953), where: 
 
A: Arrival process 
B: Service process 
m: number of machines 
 
and distributions: 
 
M: Exponential (Markovian) distribution 
G: Completely general distribution 
D: Constant (Deterministic) distribution 
  M/M/m 

M/G/m 
M/D/m 
G/M/m 
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Figure 1: Characterization of a queuing station. 

The station in Figure 1 can be described using the following parameters: 
 
ra: Rate of arrivals in job per unit time 
ta: Average time between arrivals (ta = 1/ra) 
ca: Coefficient of variation of inter-arrival times 
m: Number of machines 
re: Rate of the station in jobs per unit time 
ce: Coefficient of variation of effective process times 
u:  Utilization of station (ra/re) 
 
and the following measures: 
 
CTq: Expected waiting time spent in queue 
CT:  Expected time spent at the process center (queue time plus process time 
WIPq: Expected WIP (in jobs) in queue 
WIP:  Average WIP level (in jobs) at the station 
 
with the following relationships: 
 
CT = CTq + te  
WIP = ra * CT  
WIPq = ra * CTq 
 
If CTq is known, WIP, WIPq and CT can be calculated (Kendall 1953).   
 The Kingman’s equation (Kingman 1961) modified for m servers (Hopp and Spearman 2001, Medhi 
1991): 

ܥ ௤ܶ ൌ ܸ ൈ ܷ ൈ ݐ ൌ ቆ
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1.1 The G/G/m Queue 

The G/G/m queue is a completely general distribution of arrival and process times with m servers.  No 
exact performance measures can be written, so approximation is used.  Cases where approximation works 
poorly are where ca and ce are much larger than 1, and u is larger than 0.95 or smaller than 0.1.  In 
addition, the assumptions of the G/G/m queue are First-Come, First-Served, infinite calling population 
and unlimited queue lengths are allowed.  

1.1.1 Notations  

A: Effective availability  
b: Weighted average number of lots processed  
c0

2: Squared coefficient of variation of natual process time  
ca

2: Squared coefficient of variation of arrivals of lots or batches 
ce

2: Squared coefficient of variation of process time 
cr

2: Squared coefficient of variation of repair time 
m: Number of qualified machines 
mr: Average length of mean time to repair (MTTR) 
t0: Average natural process time  
te: Mean effective process time 
u: Average utilization of machines  
 
Step Cycle Time Formula (Hopp and Spearman 2001): 
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1.2 Limitations of Cycle Time Formula 

The Cycle Time Formula is a static model because the model does not run over time.  The accuracy of 
expected moves is very important for an accurate prediction due to the reentrance flow effect seen in 
semiconductor manufacturing.  The formula also assumes that Part-Step (PS) jobs waiting at queue can be 
processed by any of the servers (M) (Hopp and Spearman 2001), Figure 2, which may not be correct if all 
servers are not qualified to process the WIP. 
 

 

Figure 2:  G/G/m job waiting queue. 
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2 VALIDATIONS OF INPUT PARAMETERS 

Accuracy of cycle time estimation using G/G/m queue heavily relies on the input parameters. One way is 
to aggregate all variations (lot variation, equipment variation, and processe time variation) into one single 
parameter Variability ஻ܸ (Schelasin 2013b). A backward calculation method is used with formula 

஻ܸ ൌ
ܥ ௤ܶ

ܷ ൈ ௘ݐ
 

Where ܥ ௤ܶ, U, and	ݐ௘ are all historical data. 
 This paper adopts a different approach to determine the input parameters. All input parameters 
without aggregation used in G/G/m queue are generated based on historical data with time span of 1~3 
months, namely A, ca, co, cr, m, te, and b. Certain filtering criteria is required to remove outlier data. When 
upstream tool has long term down, during that time period, time between lot arrivals will be peak points 
as shown in Figure 3. Thus ca value will go up significantly. Another example is MTTR value. Due to 
system setup, certain tools log have large number of down event <1 minutes, which is not correct as tool 
is processing wafers during that time. These kind of filtering criteria has to be build on continuous 
monitoring of the parameters and help from area experts like tool engineers. Furthermore, the filtering 
criteria can be different across fabs. For this purpose, Best Known Methods (BKM) process has been 
widely used. 
 

 

Figure 3: mean of lot interarrival time by day. 

3 RESULTS – AREAS OF IMPROVEMENT 

The first step is to identify which workstation needs to be optimized to decrease cycle time in the facility.  
Any method can be used to identify the bottleneck and near-bottleneck of the system.  Bottleneck and 
near-bottleneck workstations should a have direct impact on facility loading or impact the Coefficient of 
Variation of the various operating curves for the facility.   
 The second step taken was to identify which variables within the Cycle Time formula will decrease 
cycle time for each workstation, and how much those variables need to be improved to achieve the 
desired reduction of cycle time for each workstation.  The charts in Figures 4 to 6 show the values before 
optimization of the Photo Clusters, the Goal values based on expected gains for the Photo Clusters, and 
the In Progress values based on actual gains made by the Photo Cluster workstation.  The circle on the 
chart shows where on the operating curve the Photo Clusters have been operating.   
 Figure 4 shows how Percent Downtime was improved on the Photo Clusters.  Aggressive goals for 
reducing unscheduled and overall downtime was targeted for many workstations, including the Photo 
Clusters.  Reduction of downtime has varied between the workstations, and the Photo Clusters have 
achieved ~20% reduction in downtime, with additional projects still being worked on for further cycle 
time improvement.   
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Figure 4: Photo cluster - % downtime improvement. 

 Figure 5 shows improvement to MTBF and Percent Downtime for the Photo Clusters.  As Percent 
Downtime was decreased, the MTBF was increased for the Photo Clusters.  The unscheduled downtime 
was reduced by ~55%, while scheduled downtime was increased by ~10%, resulting in a net reduction of 
~20% for the Photo Cluster.  By improving Preventative Maintenance procedures, a substantial gain was 
achieved in unscheduled down.   
 

 

Figure 5: Photo cluster - % downtime and MTBF improvements. 

 Figure 6 shows improvement to Repair Time Variability, MTBF and Percent Downtime for the Photo 
Clusters. In addition to improving MTBF and Percent Downtime, improvement of the Repair Time 
Variability was also achieved.  The majority of this gain was achieved through the reduction of 
unscheduled downtime on the Photo Clusters.  In addition, improvements to Preventative Maintenance 
also reduced repair time variability, even though scheduled downtime did increase for the Photo Clusters.  
Overall, these improvements resulted in less troubleshooting of unscheduled issues and  allowed the 
technicians to focus on preventative maintenance to improve workstation availability.   
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Figure 6: Photo cluster - % downtime, MTBF and repair time variability improvements. 

 The third step is where potential improvements can be further analyzed to achieve the Goal for the 
workstation that was set by the facility.  As improvements were being made to the Photo Clusters, similar 
improvements to the upstream workstations affected interarrival times of WIP to the Photo Clusters, 
resulting in an ~18% decrease of interarrival time variation. 
 In addition to the improvments to interarrival times, there was also an improvement to the variation of 
process times on the Photo Clusters.  The reduction in unscheduled downtime improved the consistency 
of the Photo Clusters, resulting in an ~8% decrease in process time variation.  The improved consistency 
of the tools resulted in improved load balancing, which has resulted in more consistant throughput from 
each tool in the Photo Cluster workstation. 
 The fourth step is to combine all the analyzed data together and develop Squared Coefficient of 
Variance (SCV) curves.  The SCV curves show the curve where the facility is currently at (Default), the 
target curve for the facility (Target) and the best case curve for the facility (Best).  In addition to 
identifying these curves, there are four questions that need to be answered to help the facility achieve the 
goal of moving to a more desirable curve.  The questions are:  Where am I at?  Where am I heading if I do 
not change anything?  What is the best I can do in the future if I make improvements as planned?  Do I 
need to make more improvements in order to hit my cycle time target? (Schelasin 2013a) 
 Where am I at?  This question is asking what curve the facility is currently on and where is the 
facility on that curve.  The question is important because it is the first read point for the facility.  It gauges 
the facility’s cycle time vs. the facility’s current loading based on the (SCV) curves. 
 Where am I heading if I do not change anything?  This question is asking where the facility is 
heading if the facility remains on the same curve.  Increasing Fab Loading on the same curve will result in 
higher cycle time, and decreasing Fab Loading will decrease cycle time until the knee in the curve is 
surpassed and cycle time decreases will not keep up with Fab Loading decreases. 
 What is the best I can do in the future if I make improvements as planned?  This question is asking 
which curve the facility can jump to if planned improvements are achieved.  By jumping to another curve, 
the facility has the ability to keep cycle time constant and increase Fab Loading %, decrease cycle time 
and WIP while keeping current Fab Loading %, or any combination between.  Attempting to achieve Best 
case shows where the facility can move towards if enough improvements are identified to hit this curve. 
 Do I need to make more improvements in order to hit my Cycle Time Target?  This question is asking 
how close is the facility to hitting its Cycle Time Target.  If additional work is required, opportunities will 
need to be identified, expected gains need to be verified by the cycle time formula, and projects need to 
be tracked and measured. 
 After the targets have been approved, the fifth step is to develop projects to achieve the desired cycle 
time based on Fab Loading %.  Cycle time gains from the projects can be estimated through the Cycle 
Time Formula, and the projects can be tracked through any Program Management system.   
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 Not all projects need to be identified at this stage.  Future projects can be developed as spin-offs from 
current projects that do not fall within the scope of the project, or as independent projects that are 
identified at a later date.  Achieving these cycle time improvements can take many months of work to 
achieve, so there is no rush to identify all potential projects to achieve target cycle time before starting the 
work to optimize cycle time.   
 As new projects are identified and scoped out, the process defined in this paper is repeated.  The 
projects are analyzed to determine if they will generate a measurable impact to cycle time, the SCV 
curves are updated to measure how close to Target the facility is towards that goal, and the Waterfall 
chart is updated to measure the march to Target. 
 In addition, as projects are completed, the same process is applied as well.  Actual data can be used to 
measure the cycle time impact on the workstation, and actual cycle time gains are measured against 
projected cycle time gains to ensure that the waterfall chart is accurately reflecting cycle time. 

Finally, just because a project is completed does not mean that the issue is permanently fixed.  In 
order to maintain the cycle time gains, routine work must be completed to keep the cycle time gains 
locked in.  ignoring the workstation after the work is completed could lead to cycle time creep, which will 
cause the facility to miss its Target. 

4 CONCLUSION AND FUTURE DEVELOPMENT 

The processes discussed in this paper have been implemented at our facility and cycle time has been 
reduced by >10%.  Since the project was started, the process areas are using the cycle time formula to 
help them identify the area bottleneck and near bottleneck, and work on methods to improve those 
workstations.  Silo area project work is held to a minimum due to an alignment of process areas that 
naturally work together based on the process flow.  This synergy is helping reduce variability in the line 
through better communication and a stronger understanding of the impact that line variation has on cycle 
time.   
 By understanding the components that go into cycle time, if becomes easier to understand how our 
previous actions have impacted cycle time.  The process of understanding the complexities and 
interrelatedness of the various components that makeup cycle time is allowing for changes in behavior 
that have negatively impacted cycle time in the past.  It also drove home the point that regular feedback 
was necessary to ensure cycle time does not get out of control in the future.   
 The Cycle Time operating curves show how throughput, utilization and cycle time are connected, but 
WIP levels still needs to be calculated from these values.  Intel developed a method based on the 
operating curve and Little’s Law (Hopp and Spearman 2001) to sow this relationship called O_L Graph 
(Li et al. 2005).  The methods and formulas described in the Intel paper are being explored to determine if 
and how they can be used to help improve cycle time without decreasing facility output.   
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