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ABSTRACT 

Large, fine-grain data collected from an actual semiconductor supply-demand system can help automated 

generation of its integrated simulation and optimization models. We describe how instances of Parallel 

DEVS and Linear Programming (LP) models can be semi-automatically generated from industry-scale 

relational databases. Despite requiring the atomic simulation models and the objective functions/constraints 

in the LP model to be available, it is advantageous to generate system-wide supply-demand models from 

actual data. Since the network changes over time, it is important for the data contained in the LP model to 

be automatically updated at execution intervals. Furthermore, as changes occur in the models, the 

interactions in the Knowledge Interchange Broker (KIB) model, which composes simulation and 

optimization models, are adjusted at run-time.

1 INTRODUCTION 

Simulation methods are used for modeling and simulation of supply-demand networks for predicting 

operations schedules and costs. For example, optimizing large-scale semiconductor supply-chain systems 

is very complex and the number of configurations of their processes and parameters are many. Therefore, 

there has been interest in using optimization modules for optimizing the operation of simulation. In this 

paper, we consider an actual semiconductor manufacturing supply-demand system (aka supply-chain 

system). Efficiency in the management of such systems can reduce costs by many millions of dollars each 

year (Wu, Erkoc and Karabuk 2005, Kempf 2004). 

 Semiconductor supply-demand networks are a collection of suppliers, inventories, processes, 

transportations, and customers (Kempf 2006). Raw material is processed in sequential and parallel stages 

to produce many different kinds of products to customers. This enterprise can be divided to manufacturing 

processes and decision planning parts. The key variables of interest for discrete processes and logistics 

include stochastic processing times in building products in multiple stages and in different geographies. 

Another important variable is inventory holdings across manufacturing plants and logistics stages. Both the 

scale and complexity in manufacturing requires complex decision making, often supported with linear 

programming where reduced cost and just-in-time (raw material, semi-finished goods, packaging, etc.) 

delivery across the supply-demand is highly sought after. To simulate the operation of such dynamic 

enterprises, we can use discrete event modeling specifications such as Discrete Event System Specification 

(DEVS) and optimization modeling such as Linear Programming (LP) methods. Two important factors in 

creating realistic models of such enterprise systems are scale and model integration. Manufacturing has 

many tens of processes and inventories with alternative source to target routes and shipping modes. 

Similarly, logistics has many inventories and hubs for transportation and delivery to customers in different 

geographies. Simplifying generation of these simulation models is attractive. Considering the optimization 
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model, it uses Bill-of-Materials (BOMs) and the manufacturing/logistics state information to forecast 

desired inventory holdings and shipping routes for materials and products. The optimization model requires 

an abstract model of the manufacturing/logistics supply-chain. The LP model needs to find an optimal 

network configuration of the supply-chain having hundreds of thousands of possible flow paths. Therefore, 

automatic generation of these possible networks is useful. Furthermore, a Knowledge Interchange Broker 

(KIB) model composing DEVS and LP model has a few hundred data transformations that must be executed 

at time intervals the simulation and optimization models interact (Huang, et al. 2009). The KIB concept and 

its use in supply-demand networks are described in previous work (Sarjoughian 2006, Huang, et al. 2009). 

In this paper, we describe our research for creating (instantiation, parameterization, and initialization) 

of DEVS and LP from actual data, supporting the integration of these models with the Knowledge 

Interchange Broker (KIB) model which interacts with the DEVS and LP models, and performing 

experiments using these models. A database containing actual Intel’s supply-demand network dataset is 

integrated into the Optimization, Simulation, and Forecasting (OSF) platform (Sarjoughian, Smith, et al. 

2013). We note that forecast modeling is excluded in this work. In model creation we take on the problem 

of automatically generating manufacturing/logistics processes and formulating decision plans using the 

database and the generated simulation model. The work in this paper was delivered as an Industrial Case 

Study presentation at the Winter Simulation Conference (Gholami, et al. 2013). 

2 RELATED WORK 

The significance of automatically generating simulation and optimization models for the entire supply-

demand network for the production of semiconductor is well documented (Missbauer and Uzsoy 2011, 

Fordyce, et al. 2011). Automatic model generation is invaluable for large, complex supply-demand 

networks where many hundreds to thousands of products are manufactured in dynamical settings and stages 

under varying demand forecasts. One of the early works is IMPreSS (Leachman, et al. 1996), an automated 

production planning and delivery quotation system. A more recent work uses mixed-integer programming 

where optimization for a supply-chain  process is driven by heuristics (Denton, Forrest and Milne 2006). 

In another work, discrete-event simulation is used to model manufacturing process and linear programming 

to optimize the operation of the supply-demand network using heuristics forecast modeling (Sarjoughian, 

Smith, et al. 2013). 

 From the standpoint of automatic simulation and optimization model generation, it is useful to generate 

them automatically. This need has been recognized from the early days of simulation (Oldfather, Ginsberg 

and Markowitz 1966). Efforts have been made to increase portability, maintenance, and modifiability of 

models via automatic model generation from databases (Taylor and Taha 1991). If we restrict autonomous 

instantiation to simulation models (as opposed to application instantiation (Stauber, Ambrose and Rothwein 

2003)), there are two common ways to automatically generate simulation models. One is to use a descriptive 

model of a system with pre-built components and then generate simulation models. Second is to generate 

simulation models by parameterized and compose simulation models from pre-built components using data 

collected from an actual system. As an example of first way, automatic simulation model generation is 

proposed and exemplified for a shop floor resource model (Son, Wysk and Jones 2003). The source of 

models for autonomous model generation may be a database or documents supporting ASCII and XML 

formats.  

 Automatic model instantiation, parameterization, and initialization which we have developed follows 

the second way. This is similar to the work in (Jeong and Allan 2004) where simulation models are 

automatically generated from a dataset belonging to a discrete manufacturing system. In our case, data 

gathered from the real supply-demand network along with existing models are contained in a set of database 

tables which are then used to generate coupled simulation models. Actual data is used to parameterize 

atomic and coupled model components. From the standpoint of automatic simulation model generation, the 

difference is in the scale and the complexity of the models (i.e., databases). In our work, we use an 
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optimization model which requires generating network flow graphs for the optimization model. This is 

achieved using the same database that is used for generating simulation models. 

3 SUPPLY-DEMAND SIMULATION AND OPTIMIZATION 

In this section, we summarize the effort made to model an actual supply-demand network in DEVS and 

DEVS-Suite. The modeled network consists of four Fabrications (FAB), two of each: Die Warehouses 

(DW), Assembly Test Model (ATM), and Customer Warehouse (CW). The network also possesses 9 

Vendor Managed Inventories (VMI) and more than 200 customers. A high-level view of the network is 

depicted in Figure 1. 

 

 

Figure 1: A high-level view of the simulated supply-demand system. 

 Each facility in the supply chain is modeled as either an atomic or coupled DEVS model. A coupled 

model may have several atomic/coupled sub-models. Fabrication sites are specified as atomic models which 

produce Fab products. These products are then delivered to DWs (which similar to ATM contain three 

inventories and processes inside them) in which they are split in order to be processed for different targets 

(high performance processors, energy efficient, etc.). ATM sites further split the products and then process 

them into FG (Finished Good), ready to be handed to the customers. These finished goods are stored in 

CWs in big entities and then shipped to VMIs and customers in smaller proportions.  

 Each of the DW and ATM facilities (containing inventories and processes) are coupled models 

containing several internal atomic models for themselves. The internal view of the both facilities are 

presented as coupled models with circles indicating inventories and rectangles indicating processes. All 

inventory and coupled models have control-in port with which receives commands for releasing products. 

These commands may come from a database (historic data) or be generated by an strategic controller as is 

the case in this research. A strategic controller manages the operation of the system by considering the state 

of the network, the future demands/supplies, and penalty costs. It controls the operation of the network by 

sending commands to each individual facility. Notice that commands are for inventories. Inventories store 

products until receiving a command to release them. This is not the case for processes as they immediately 

release the products that are processed and ready.   

Although the high-level view of this network does not seem to be large, however, DEVS adaptation of 

such a system contains 620 atomic and coupled models and more than 1000 couplings between them. 

Building such a system statically is not scalable and impractical. Therefore, we leveraged automatic model 

generation to handle instantiation, initialization, parameterization, and coupling of all these models. This is 

further explained in the rest of the paper. The overall view of the simulation/optimization system is depicted 

in Figure 2. The reader can identify 6 major components in this simulation which are further discussed in 

Section 0.  

 The Supply-Demand Network contains all simulation models and their interactions among one 

another. Each component has an outgoing port (status-out port) via which state information of the 

component is sent out. Decision Connector is in charge of receiving state information from the simulation 

models and send them over to the Knowledge Interchange Broker (KIB). Also, it distributes the commands 
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it receives from the KIB and LP module among simulation components. Dataset stores various sorts of 

information for instantiation, parameterization, initialization, and testing the network. This component is 

thoroughly introduced in Section 4. Network Generator is a data structure which provides structured data 

to the LP module. The static structure of the network is formed into a graph and sent to the LP along with 

dynamic information such as the current stock, demand (in the horizon of one several months), etc. 

LP/CPLEX Optimization Module is designed and implemented using CPLEX, this module receives the 

input graph (network generator) and optimizes it (find a solution) which maximizes the profit and minimizes 

the penalty of missing customer demands. The Knowledge Interchange Broker works as a mediator as 

mentioned earlier. The interaction between different parts of the system is modeled and implemented in the 

KIB. These models, in addition to the type conversion, provides time synchronization, aggregation, 

disaggregation, broadcasting, etc. 

 

 

Figure 2: An illustration of the integrated simulation, optimization, and interaction models. 

3.1 Issues and considerations in supply-demand modeling and optimization 

Although Figure 1 may not show the actual size of the simulation model, as described in Section 6 it is 

quite large. Instantiation of a model with this size is tricky especially when scalability and modifiability are 

of importance. Here, we need a scalable method for instantiating, parameterizing, and initializing the 

network which reads the structure and parameters from a database or a configuration file and construct the 

network in run time. For company level supply-demand problems with several hundred components and 

changing topology (from one experiment to the other) we incorporated a similar method. In our case, the 

network is constructed from a dataset and is dynamically parameterized and initialized after instantiating 

its components (see Section 6). 

 Second, is the formulation of the optimization problem from network state variables. In order to 

optimize the operation of the network based on network parameters and state variables, one has to find a 

suitable formulation which can be automatically created and passed on to the LP side. On the reverse 

direction, the optimized operation should be translated back to the supply-demand domain as control 

commands. For this purpose, we need a data structure which is created at run-time, stores all structure and 

state information of the network, and passes them on to the LP module (see Section 0). 
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 As real processes have stochasticity in their operation, the DEVS models must present the same level 

of stochasticity to accurately imitate the behavior of the physical system. Since we aimed at realistic 

modeling of the network, accurate behavior of each site/process/inventory was investigated from real 

historic data and embedded into the model. The stochasticity is formulated as mathematical distribution 

functions and incorporated as processing time or shipping time for related components.  

 Finally, validation of the simulation models should be taken very seriously. If the simulation diverges 

from the plan (expected amounts) it could be because of the errors in the simulation module or the incorrect 

commands that come from the control module. Moreover, when such a divergence occurs the gap gets 

greater over time and it becomes impractical to find the source of the error. Therefore, each simulation 

model must be extensively validated before being used in the system.  

4 SEMI-AUTOMATIC MODEL INSTANTIATION, PARAMETERIZATION, AND 

INITIALIZATION 

Automatic model construction is defined according to the dataset (see Figure 2). The dataset stores the 

structural configuration and parameterization of the network in several tables which are used by the highest-

level coupled model for instantiation and coupling. After that, each model has to be parameterized in terms 

of processing/shipping times (in terms of distribution functions), penalty costs, etc. The most important 

parameter is BOM (bill of material) which specifies how products are converted to one another in split and 

assign processes. In the initialization phase, each component is initialized with products of different types. 

Among all tables in the database, we focus on tables Site, Intransit_tpt, Process_tpt, Products, and BOM. 

Each record in the Site table specifies one facility of the network. So, instantiation of simulation components 

is done with the assistance of this table. The coupling of these facilities are determined by the Intransit_tpt 

table. This table specifies a shipping (which is a component in the simulation model) by recognizing its 

source/destination facilities and a random distribution function (specified by a string representing the type 

of the distribution and at most five number parameters) for the shipping time. Based on the type of the 

distribution, any number of parameters may be used; for example, a triangular distribution uses 3 

parameters. The facilities and their connections fall into the category of static structure of the network. For 

parameterization, in addition to Intransit_tpt (which parameterizes shipping components), we have 

Process_tpt and BOM which specify the processing times and bill of material (product split and assign 

processes), respectively. Both of these tables need references to the Products table which stores all product 

names and their stage in the chain. Each record in Site is associated with several records in Process_tpt 

which specify the processing times (distribution functions) for each type of product. 

For instantiating, several methods have been developed and used. Coupled models such as ATM and 

DW are constructed using makeATM and makeDW methods which not only instantiate all inner elements 

of ATM and DW in the coupled model but also couple them together and connect the control_in and 

control_out ports to those of the coupled model. The novelty of this kind of model generation is the level 

of flexibility it provides. For creating a network with a completely different topology or parameters, one 

needs only to deal with a database (provided by the company owning the supply chain) which is much more 

convenient than a flat file or changing the code. In addition, the stages inside coupled models can also be 

determined from the dataset. In other words, there is no need to define configuration of the internal 

components of DW and ATM (i.e., composition of model components)as these can be identified from the 

dataset. It is assumed the dynamics of the model components are well-defined in terms of creating coupled 

models. As for parameterization of the models, a method goes over all parameter records in the dataset, 

find its associated model (by name), and set the parameter  inside the simulation model.  

One benefit of our approach for dynamic model instantiation, parameterization, and initialization is that 

the topology or parameters can be changed over time. These topology/parameter changes are then 

dynamically applied to DEVS models (which can be modified at runtime). Therefore, the simulation can 

change its most fundamental foundations in runtime. Although we are not using such a capability for 
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supply-demand networks, one can certainly find suitable applications for it. The dataset holds various 

product types, processing configurations, historic data, and structural information.  

5 OPTIMIZATION PROBLEM FORMULATION 

In order to transform structure and state information into LP format (for optimization) we require an 

efficient and dynamic data structure which can be manipulated at every cycle and sent to the LP. The static 

structure encapsulates all the static characteristics of the network such as topology, BOM, product types, 

etc. A graph is designed with weights on its arcs to represent the static structure. Later the state information 

will be added to this graph. In order to provide the structure (static) to the LP, several methods are 

implemented which encode the network into the graph. Since each facility (FAB, DW, ATM, CW, and 

Shipping) has its own characteristics and formulation each one of them has its own structure encoder 

method. The pseudo code presented in Figure 3 are for adding the static structure of those facilities. 

  

 

Figure 3: Adding static structure for Shipping, ATM, DW, FAB, and CW. 

For all components in the network except FAB, we need two nodes as in and out. These nodes are 

connected to upstream and downstream nodes via Shipping. In ATM, DW, and CW the two nodes are 

connected to a middle node. Furthermore, ATM and DW specify the percentage of product conversion 

on the arc. Figure 4 provides a visual example on how the structure information of a DW is transformed 

into the graph. This process receives wafers as input products (W1 or W2) and outputs six types of dies. 

For splitting the wafers it has n different BOMs (or recipes). Therefore, a graph is generated with two 

starting nodes (W1 and W2), each of the connected to n different BOMs. The BOMs are then connected 

to the output products based on their split configuration. For example, consider BOM1 which converts 

2515



Gholami, Sarjoughian, Godding, Peters, and Chang 

 

 

 

W1 to DP1, DP3, and DP4 in 40%, 40%, and 20% proportions, respectively. So, BOM1 node is connected 

to DP1, DP3, and DP4 with their split percentage set as the weight of the outgoing arc (the thick lines). 

 The dataset we are currently using contains 460 product types, 400 BOMs, 800 various processing 

times, 250 sites, 340 shipping elements, and more than 50000 demands for a full year. Translating this 

into a optimization problem (using the approach described above) results in extremely large graphs, each 

containing few hundred thousand nodes. The entire graph is handed to the CPLEX/LP module for 

optimization.  

 The state information (current stock, currently under process, supply, and demand for the next 30 

days) are added to the graph as weighted arcs between nodes. Supply information are added to the 

outgoing arc from FAB to DW. Similarly, current stock in every inventory is added as weighted arc 

between the inventory and the following process/inventory. Therefore, the addition of state information 

to the graph does not change the structure of the graph; instead it adds new arcs to it. 

 

 

Figure 4: Transformation of a process with input and output products with BOMs into a flow graph. 

6 SIMULATION MODEL AND OPTIMIZATION MODULE INTEGRATION 

Our ultimate product in this research is an integrated simulation/optimization platform in which the 

optimization module manages the operation of the network. For this purpose, automatic simulation model 

instantiation and parameterization was designed and developed. Also, formulating the LP problem from the 

parameters and state variables of the simulation was another problem that was addressed in this research. 

This optimization module receives general information from simulation components and optimizes their 

operation by sending control commands to each facility via their control-in port. In addition to the 

simulation and optimization modules, a mediator must model and manage the interaction between the two. 

This module is called Knowledge Interchange Broker (KIB).   

 The discrete event simulation contains supply-demand models (e.g. Fabrication, Assembly Test, 

Customer, Warehouse, etc.). The optimization module (e.g. control strategy) receives information such as 

the supply, customer demand, current stock of each inventory, penalty costs, etc. as input and optimizes the 

operation of the supply-demand network by running a CPLEX optimization program on the state 

information it received. Commands are generated and sent back to the simulator to control the operation. 

All these interactions have to go through the KIB. The KIB receives state and structure information from 
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the simulation module and formulates it as an LP problem. In Figure 2, we can identify six major 

components for this integrated environment. The supply-demand network simulation, automatic model 

construction via the dataset, and the optimization module (along with the network generator) are described 

in Sections 3, 4, and 5. In addition to these, the Decision Connector component is in charge of receiving 

state information from the simulation models and sending them to the KIB. Also, it distributes the 

commands it receives from the KIB among simulation components. It has logic to aggregate or disaggregate 

state information and commands when needed. The concept of the KIB comes from poly-formalism in 

which the KIB (as a separate formalism) defines and manages interactions between two other formalisms. 

Each interaction specifies how to transform data from one model type to another model type. Some or all 

interactions are executed with respect to time and under a control scheme instructing the order in which any 

two distinct model types can execute with respect to one another. With all these components implemented 

and integrated with each other, our platform is ready. In the following section selected experiments 

conducted using this platform are described.  

7  EXPERIMENTATION 

We conducted 3 sets of validating experiments on this platform: Single-chain, historic data, and system-

wide. In the single-chain experiment, we intend to test facilities under the most simplistic scenarios to make 

sure their logic is implemented correctly. In historic data experiment, we validate the operation of the 

simulation models by testing and comparing them with historic data. We expect to see rough consistency 

between the output of our simulation and the historic data. Finally, in the system-wide experiment, all 

components of the system are included and we carry out end-to-end testing. The results are provided below. 

Please notice that due to the sensitivity of the data, details are taken out (product names, site names, 

quantities, and timestamps).   

7.1 Single-chain validation 

To simplify the simulation as much as possible, we manually modified the dataset to instantiate a single 

chain of facilities (one of each Fab, Process, Assembly, CW, and VMI) with shipping between them. Also, 

we made all processing and shipping times deterministic. In addition to all these, this experiment is done 

in a simulation standalone mode; meaning there is no optimization, KIB, or network generator. All 

commands are read from the database with stochasticity removed.  

 Then, the experiment is based on a single demand forecast and supplying enough raw material for 

meeting the demand. We make sure that the demand is supplied on time and the flow of semi-finished and 

finished goods in the chain occurs at right timestamps and with correct amounts. In the single chain supply 

network there is only one customer and one of each other facility. Also, a clock module synchronizes the 

time between all simulation models and an experimental frame (EF) collects data from all models. We 

validated the basics of our simulation model with this experiment and observed that all events happen at 

the right time, quantities are as expected, and the product split and conversions are done without error.  

7.2 Historic data validation 

In this experiment, we include stochasticity in the simulation model but without integrating it with  the LP 

and the KIB models. Instead, even the release commands are read from the dataset (regardless of the current 

state). Also, for this experiment, the complete network is used instead of a single chain as in the previous 

example. The results are then gathered using a EFG and reported in by-product by-site basis. These results 

are compared with the expected outcome (the data gathered from the real world again in the dataset) and 

can be reported in terms of plots as is done in Figure 5. 

We expected to see small difference in the plots (as it can be seen in the left plot) because of the 

stochasticity in shipping and processing times. We gathered the data for all products and sites for a year of 
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simulation (with historic data records for one year) and compared the results. Similar to the examples shown 

in Figure 5. 

 

 

Figure 5: Validating simulated outputs measured against historical data by product and site . 

 

7.3 System-wide validation 

In this set of experiments, we used the system shown in Figure 2. Instead of receiving release commands 

from the dataset, state information is sent to the LP side (via the KIB) and then release commands are 

generated and sent to the simulation models. For such system, several validation scenarios were necessary. 

In one set of experiments, the overall operation of the system is test by comparing LP expectations and 

simulation outcomes. Results for all of these experiments are provided below.  

KIB validation: the KIB is validated by conducting several experiments with and without the KIB and 

comparing their results. Validation of the KIB serves to show that the data transformations, timing and 

scheduling are correct. In a simulation without the KIB, the transformation of data and time is done 

manually (not scalable and static). Among those conducted we include one of them (specific to one product 

and one site) here (see Figure 6). The cumulative view is presented in the top right corner.  

  

 

 

Figure 6: Per period and cumulative release quantities for product x at site y with and without the KIB.  

Overall operation of the platform: in this set of experiments, we compare the actual output with the 

excepted output of the LP. This would give us a rough estimate of how the system components work 

together and whether the harmony required to be established by the KIB exists in the system or not. Again, 

the simulation was executed for a full year and extensive amount of data was gathered. The data is then 
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analyzed both with R and Excel to compare LP expectations and simulation outcomes. Figure 7 is the plot 

generated from our data. 

Figure 7 shows the expected and actual release of product x at site y and their absolute difference (top 

right corner). This experiment, along with many more, demonstrates that the overall 

simulation/optimization platform has the required accuracy to be used in practice.  

We developed this simulation environment depicted in Figure 2 in Java, using DEVS-Suite 2.1.0 simulator, 

IBM ILOG CPLEX Optimization Studio 12.5, and Microsoft SQL Server 2012. All the above experiments 

are carried out on 64bit OS using Java 7. The platform uses Windows 7 with a 2.9GHz Intel Core 2 Duo 

processor and 8GB of DDR3 physical memory. The minimum, average, and maximum execution times for 

simulating one week are 8.61, 62.29, and 28.30 seconds. The total execution time for 59 weeks is 131.8 

minutes. 

   

 

Figure 7: Simulation output (actual) vs. optimized expectation (expected); Absolute difference between 

simulated output vs. optimization expectation.  

8 CONCLUSION 

Developing realistic models for supply-demand systems is time consuming. This is particularly true when 

the goal is to produce high-fidelity simulation studies based on fine-grain characteristics and dynamics of 

discrete processes and logistics. Equally important to such studies are use of actual decision models that 

can optimize dynamics of manufacturing over long time horizons. A well-known, common challenge for 

both of these modeling efforts is scale of the system. This severity of this problem can be reduced if the 

models can be generated with help from data collected from an actual enterprise.  Assuming we have access 

to models developed for the atomic parts of the manufacturing supply-demand system from which data is 

available, then very large system-wide models can be automatically generated.  We extended the DEVS-

Suite simulator with algorithms and database connectivity to generate system-wide simulation models from 

actual data. Although such models are created prior to simulation, this is not necessary  provided changes 

in the topology of the supply-demand is available in the database. For the optimization model, algorithms 

were developed to generate product flow networks. This capability is important as it allows the optimization 

model to account for changes in Bill-of-Materials that can occur, for example, in weekly intervals. 

Regularly updated LP models may reduce computational time for finding optimal inventory holdings and 

shipping routes. Finally, bi-directional interactions between DEVS and LP models via the KIB model is 

also updated which can improve efficiency of the simulation experiments. Current research includes 

extending our simulation/optimization platform to support customer demand forecasting (Sarjoughian, 

Smith, et al. 2013) with diagnostics capability.  
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