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ABSTRACT

In semiconductor manufacturing, early life failures have to be screened out before delivery. This is achieved
by means of burn-in. With the aim to prove a target reliability level and release burn-in testing of the
whole population, a burn-in study is performed, in which a large number of items is investigated for early
life failures. However, from a statistical point of view, there is substantial potential for improvement with
respect to the modeling of early life failure probabilities by considering further available information in
addition to the performed burn-in studies. In this paper, we provide ideas on how advanced statistics
can be applied to efficiently reduce the efforts of burn-in studies. These ideas involve scaling the failure
probability with respect to the sizes of the different products, as well as taking advantage of synergies
between different chip technologies within the estimation of the chips’ failure probability level.

1 INTRODUCTION

With the usage of semiconductor products in many safety-critical applications like personal and public
transportation systems (cars, planes, trains, etc.) or environmentally friendly energy generators (offshore
wind parks, photovoltaics, etc.), there is an increased focus on the reliability of semiconductor devices.
Deviations caused by weak semiconductors produce huge direct and total economic costs.

The bathtub curve as depicted in Figure 1 is the most widely accepted model for describing the
development of the chips’ hazard rate λ (t) over time (Wilkins 2002). Based on that, the lifetime of
electronic devices can be divided into three different periods of life:

• the early life phase, which starts with an increased λ (t) and ends up with a reduced hazard rate
(that is, the majority of latent defects is assumed to fail within the early life phase),

• the useful life, in which λ (t) is constantly low, and
• the wear-out phase, in which λ (t) is increasing.

With the aim to reduce the hazard rate of the produced devices already before the delivery, the chips’ early
life has to be eliminated. This is done by putting the final chips under accelerated temperature and voltage
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Figure 1: Bathtub curve describing the behavior of the hazard rate of semiconductor devices over time.

stress conditions for a certain period of time. We refer to this as burn-in (BI), see (Gerstle and Lee 2005),
(Kuo et al. 1998), (Jensen and Petersen 1982). Note that the actual time of the BI process for a chip
depends on the application. Typical values are:

• up to 10 hours for consumer products,
• up to 48 hours for automotive devices and
• up to 96 hours for aviation modules.

However, the whole population of a product has to be put under BI stress (100% BI), which involves high
efforts in terms of costs, time and engineering resources. For that reason, it is essential to optimize the
handling of BI (Riordan et al. 2005), (Kuo and Kuo 1983).

From a statistical point of view, BI time can be reduced by investigating a sample of the devices for
an evidence of a reduced failure rate within a certain time point of early life. In general, we distinguish
between two approaches for reducing the BI duration (Barlow and Proschan 1975).

The first approach aims at fitting a probability distribution (e.g. a Weibull distribution Wb(a,b) (Weibull
1951) with scale parameter a > 0 and shape parameter b < 1) to (censored) failure times recorded from
the BI analysis. In this way, BI duration can be lowered given an evidence of a reduced failure rate (Ooi
et al. 2007), (Reliability 2007).

The idea of the second approach is to demonstrate a target failure probability level ptarget for the
produced devices in a BI study. As long as ptarget is not met, the rest of the produced devices undergo
100% BI screening. Once ptarget is reached, 100% BI screening is released. To retrieve information on
the devices’ early life failure probability level p, we investigate a large sample of the stressed devices
for BI relevant failures (e.g. metalization residues, particles in oxide, crystal defects, etc.). Based on the
number of observed failures in the BI study, the product’s failure probability level p can be estimated.
If this estimation is below the predefined target failure probability level, full BI testing is released and a
BI monitoring procedure is initiated. The interested reader finds further information on how to assess the
lifetime distribution of early life failures given the outcomes of a BI study in (Kurz et al. 2014b).

Since all produced items have to be put under BI stress until the target failure probability level has
been verified, it is of particular importance to reach ptarget before the start of the product’s ramp-up phase.
Thus, an efficient handling of BI studies is required (e.g. to avoid a restart of a BI study in case of occurred
failures). This is directly related to the need of an efficient modeling of the devices’ failure probability p.
In this paper, we provide an overview on novel estimation methods for the chip failure probability p, which
include further available information for improving the efficiency of BI studies. These methods involve

• a model for BI failures, which are tackled by countermeasures implemented in the chip production
process (Kurz et al. 2014c),
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• an estimation concept for the failure probability p, which takes advantage of synergies (e.g.
comparable chip layers) among the different chip technologies (Kurz et al. 2014e),

• an approach for handling BI studies on multiple reference products with different chip sizes (Kurz
et al. 2014d), and

• a novel area scaling model, which is capable of scaling differently reliable chip subsets separately
from each other (Kurz et al. 2014a).

All of these models then contribute to a reduction of the efforts of BI testing (e.g. less burnt devices,
reduced BI equipment, less engineering resources, etc.), and lead to a faster closure of the BI study.

2 EXACT ESTIMATION OF EARLY LIFE FAILURE PROBABILITIES

In a BI study, a large number of n items is randomly selected from a product’s population and inspected for
early failures. From a statistical point of view, this random experiment can be described as a Bernoulli trial
assuming a sufficiently large number of items in the underlying population. Therefore, the random number
of failures X within the drawn sample can be modelled to follow a binomial distribution, X ∼ Bi(n, p).
The aim of a BI study is then to demonstrate (with high certainty) that the true p is below a target failure
probability level ptarget . This requires to assess an upper bound for p at a certain confidence level (CL)
given k failures out of n inspections in the BI study.

In general, there are two groups of methods for assessing an upper bound p̂ at the (1−α) ·100% CL: the
group of exact methods ensuring a coverage probability P(p < p̂)≥ 1−α and the class of approximative
methods generally providing a lower p̂, while having a coverage probability smaller than 1−α for selected
values of p (Brown et al. 2001), (Brown et al. 2002). With regard to the assessment of the reliability of
semiconductor products, an underestimation of p is seen as much more critically than an overestimation.
For that reason, we prefer the application of an exact method for assessing an upper bound for p.

The Clopper-Pearson (CP) estimation model is the most widely accepted method for assessing an
exact estimator of p at the (1−α) · 100% CL (Clopper and Pearson 1934), (Thulin 2013). We find the
CP estimator of p under the condition that P(X ≤ k|n, p̂) = α . With regard to the computation of p̂, we
exploit that P(X ≤ k|n, p̂) = P(p > p̂|k,n) with (p|k,n)∼ Be(k+1,n−k) as derived in (Kurz et al. 2014b).
Hence, the CP estimator of p is computed as the (1−α) ·100%-quantile of a Be(k+1,n−k)-distribution.
Supposing k failures in the BI study, we can then determine the required number of inspections for reaching
a predefined target failure probability level ptarget by solving P(X ≤ k|n, ptarget) = α with respect to n.

3 BI STUDIES AND COUNTERMEASURES

In general, a sample with zero failures out of n devices is required in order to reach the target failure
probability level and therefore, to release 100% BI testing. The classical procedure in case of failures in the
BI study is to implement countermeasures (CM’s) (e.g. optical inspections, process and design measures,
increase of the test coverage at electrical testing and post-processing, etc.) in the production process and
to repeat the BI study.

However, the implemented CM’s reduce the likelihood for early life failures. Therefore, our new
approach is to consider the effectivenesses of the CM’s (which are determined together with the quality
department to avoid an overestimation) within the assessment of the early failure probability level p,
see (Kurz et al. 2014c), (Lewitschnig and Lenzi 2014). In this way, the required number of additional
inspections nadd for reaching the target failure probability level ptarget can be essentially reduced and
therefore, a restart of the BI study is not necessary any more. This further means to earlier release full BI
testing of new products and thus, to reduce the overall effort of BI.

Example. Suppose a target failure probability level of ptarget = 23 ppm at 90% CL, which at least requires
n≈ 100k inspections (with zero failures). Let us further assume to have k = 1 failure out of n = 100k tested
devices, which would actually demand the BI study to be restarted. More efficiently, a CM is introduced
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Figure 2: Illustration of data situation after integrating synergies among different chip technologies.

in the production process, which we further assess to be 80% effective in detecting the observed failure
mode already before the BI. Based on the model in (Kurz et al. 2014c), we can then reestimate the failure
probability level and determine the required number of additional inspections for reaching ptarget . In this
example, we obtain p̂ = 27.39 ppm at 90% CL taking account of the effectiveness of the CM and therefore,
just have to burn additional nadd ≈ 19.1k devices (with zero failures) to reach ptarget , instead of burning
100k pieces again. This leads to less BI efforts.

4 BI STUDIES WITH SYNERGIES BETWEEN DIFFERENT CHIP TECHNOLOGIES

BI studies are performed individually for each chip technology. However, if we partition the devices into
several chip subsets (e.g. logic and DMOS, or package and die, etc.), one often observes synergies among
the different technologies (that is, the technologies are comparable with respect to selected parts of the
chips). Thus, the idea is to exploit these synergies by merging the BI information of the comparable chip
subsets, which finally means to obtain a certain number of failures and a certain number of inspections for
each partition of the product, see Figure 2. We then apply the model as presented in (Kurz et al. 2014e)
to compute an estimate of p at the (1−α) ·100% CL given the data in Figure 2, and finally, to determine
the required number of additional inspections for reaching the target failure probability level (in case of
occurred failures). Moreover, an extended version of the model in (Kurz et al. 2014e) enables to combine
synergies with CM’s implemented in the chip production process.

Example. Let us again suppose a target failure probability level of ptarget = 23 ppm at 90% CL and a
BI study with k = 1 failure out of n = 100k tested devices. Classically, the BI study has to be restarted.
However, we observe that the failure is located in a chip subset, which has been inspected for 500k times
with no failures in the course of BI testing of some related technology. This eventually means to have
k1 = 1 failure out of n1 = 600k inspections for the first subset and k2 = 0 failures out of n2 = 100k tests
for the second part of the product. Applying the estimation concept of (Kurz et al. 2014e), we then find
that p̂ = 26.71 ppm at 90% CL and that we just have to burn an additional number of nadd ≈ 18.5k devices
(with zero failures) for finalizing the BI study. If the failure is additionally tackled by a CM with 80%
effectiveness, we can again reestimate the failure probability level based on (Kurz et al. 2014e) and find
that we just have to extend the running BI study by nadd ≈ 3.6k items in order to reach ptarget . Briefly, a
restart of the BI study is not necessary any more, implying less efforts associated with BI.

5 AREA SCALING OF EARLY LIFE FAILURE PROBABILITIES

5.1 Classical area scaling

Products from the same chip technology typically just differ with respect to their chip sizes. To avoid
BI studies for all of these products, the idea is to assess the technology’s failure probability level on a
reference product with chip size A [mm2] and scale the estimated failure probability level to a follower
product with chip size A′ [mm2]. Modeling a chip as a serial system of equally reliable chip areas, this
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means to compute

p̂′ = 1− (1− p̂)A′/A, (1)

where p̂ and p̂′ are the estimates of the failure probability of the reference and the follower product. Thus,
if ptarget is met for the reference product, full BI testing can be skipped for follower products with size
A′ ≤ A. However, if A′ > A, the additional number of tests nadd in the BI study of the reference product
required for reaching ptarget for the follower product is given by

P
(

X ≤ k|n+nadd ,1− (1− ptarget)
A/A′
)
= α . (2)

Example. Suppose to have a reference product with chip size A = 12.64 mm2, for which the target failure
probability of ptarget = 23 ppm at 90% CL is reached with k = 0 failures out of n≈ 100k devices. Referring
to Eq. (1), the failure probability of a follower product with size A′ = 15.42 mm2 is then estimated as
p̂′ = 28.06 ppm at 90% CL and therefore, nadd ≈ 22.5k additional inspections are required in the BI study
of the reference product for reaching ptarget for the follower product.

5.2 Area scaling with multiple reference products

In the classical situation, there is a single reference product for which a BI study is performed. However,
there are also cases, in which we have to deal with multiple reference products with different chip sizes.
For each of the reference products, a BI study is performed. The idea is then to use the information of
all the BI studies when scaling the failure probability to a follower product (as introduced in Section 5.1).
This requires a model for adding failures on the differently sized reference products. Such a model is
presented in (Kurz et al. 2014d). The main idea of this model is to treat multiple reference products as
being built up of a different number of equally sized parts with equal failure probability, which is then
estimated according to the BI information of all of the reference products. In this way, exact estimates
of the failure probability of the follower products can be obtained. Moreover, the model in (Kurz et al.
2014d) enables to determine the required number of additional inspections in each of the BI studies for
reaching the target failure probability level for the follower product.

Example. Suppose that there are two reference products with chip sizes A1 = 5 mm2 and A2 = 7.5 mm2.
Let us further assume that the performed BI studies show k1 = 0 failures out of n1 = 100k and k2 = 1
failure out of n2 = 100k, respectively. We then treat the two reference products to be built up of two and
three parts of size 2.5 mm2 with equal failure probability p2.5mm2 , respectively. According to (Kurz et al.
2014d), we find that p̂2.5mm2 = 7.80 ppm at 90% CL. Using Eq. (1), the failure probability p′ of a follower
product with chip size A′ [mm2] is then estimated by using p̂′ = 1− (1− p̂2.5mm2)A′/2.5. Therefore, for

A′ ≤ 2.5 · log
(
1− ptarget

)
/ log

(
1− p̂2.5mm2

)
, (3)

we obtain p̂′ < ptarget and therefore, we can skip full BI testing of the follower product. Taking e.g.
A′ = 10 mm2 and ptarget = 23 ppm at 90% CL, we again make use of the model in (Kurz et al. 2014d) to
find that additional nadd ≈ 59k items in the BI study of the larger reference product are needed to reach
ptarget for the follower product.

5.3 Area scaling with differently reliable chip subsets

Classically, area scaling is done assuming each chip subset (e.g. logic, DMOS, analog, etc.) to have the
same failure probability per mm2. However, the different chip subsets show individual production and
testing conditions (e.g. different test coverage). Thus, the assumptions of the classical area scaling might
not be reflected by the number of failures on each of the chip subsets. In this case, the chip subsets have
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AL = A′L

AD

A′D

Figure 3: Illustration of separate area scaling of logic and DMOS.

to be treated separately within the failure probability scaling. This means to generalize the classical area
scaling as defined by Eq. (1) using (Kurz et al. 2014a)

p′ = 1−
m

∏
i=1

(1− pi)
A′i/Ai , (4)

where Ai [mm2] and A′i [mm2] are the sizes of the i-th chip subset on the reference and the follower product,
and pi denotes the failure probability of the i-th chip subset, i = 1, . . . ,m. In (Kurz et al. 2014a), we then
show how to assess estimators of the subset failure probabilities pi given the number of failures in each
of the chip subsets. By scaling the subsets separately from each other, we finally achieve a more efficient
estimation of the failure probability of the follower product, especially if the reference and the follower
product are only different with respect to the sizes of some of the subsets. In this way, the required number
of inspections needed for reaching the target failure probability for the follower product can be essentially
reduced in comparison to the classical area scaling.

Example. Suppose that we partition a reference product into logic and DMOS areas with sizes AL = 2.5 mm2

and AD = 5 mm2. Let us further assume to have a low-ohmic follower product with a larger DMOS of
size A′D = 10 mm2 and equal logic, i.e. A′L = AL = 2.5 mm2. The situation is illustrated in Figure 3. In the
BI study of the reference product, we observe k = 1 failure out of n = 100k tested devices. In this case,
the classical area scaling as defined by Eq. (1) assesses the failure probability of the follower product as
p̂′ = 64.82 ppm at 90% CL assuming an equal failure probability level per mm2 for logic and DMOS.
However, by having a more differentiated look on the observed failure, we find that the failure is in the
logic, which provides strong evidence that the logic has a higher ppm-level per mm2 in comparison to the
DMOS. This further means that the classical area scaling overestimates the failure probability of the DMOS
and in the same way, the failure probability level of the follower product. With the model in (Kurz et al.
2014a), we overcome this drawback by inferring estimates of the failure probabilities of logic and DMOS
according to the given failure constellation (i.e. one failure in the logic and no failures in the DMOS) and
scaling the DMOS separately from the logic. In this way, we obtain p̂′ = 51.96 ppm at 90% CL, which
is significantly lower than the original estimate. This further means that a reduced number of additional
inspections is needed to reach the target failure probability for the follower product.

6 CONCLUSIONS AND OUTLOOK

6.1 Conclusions

In this paper, an overview on novel statistical models for assessing the early life failure probability of
semiconductor devices has been provided. These models take account of additionally available information,
including effectiveness values of countermeasures implemented in the chip production process, synergies
between different chip technologies and the chip sizes of the tested products, in order to efficiently estimate
the chips’ failure probability level. In particular, these methods ensure a more efficient handling of BI
studies and therefore lead to reduced efforts associated with BI.
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Figure 4: Illustration of possible model interactions.

6.2 Outlook

Originally, the presented models have been developed separately from each other. Nevertheless, in future,
we plan to further investigate possible combinations of the proposed methods. For instance, the modeling of
synergies between different chip technologies, which do not match in the size of the synergetic components,
would require a combination of the model for chip synergies and the model for multiple differently sized
reference products. Figure 4 summarizes the possible model interactions.

Apart from that, another aim in the future is to investigate the influence of the production process onto
the occurrence of early life failures. Data from various process steps are recorded and can therefore be
used to identify those levers in the production process, which significantly contribute to early life failures.
In this way, failures can be detected already before the BI, which eventually reduces the risk of failure
occurrences in a BI study.
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