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ABSTRACT

Reliable semiconductor devices are of paramount importance as they are used in safety relevant applications.
To guarantee the functionality of the devices, various electrical measurements are analyzed and devices
outside pre-defined specification limits are scrapped. Despite numerous verification tests, risk devices
(Mavericks) remain undetected. To counteract this, remedial actions are given by statistical screening
methods, such as Part Average Testing and Good Die in Bad Neighborhood. For new semiconductor
technologies it is expected that, due to the continuous miniaturization of devices, the performance of the
currently applied screening methods to detect Mavericks will lack accuracy. To meet this challenge, new
screening approaches are required. Therefore, we propose to use a data transformation which analyzes
information sources instead of raw data. First results confirm that Independent Component Analysis extracts
meaningful measurement information in a compact representation to enhance the detection of Mavericks.

1 INTRODUCTION

In semiconductor industry the demand on functional and reliable devices, commonly known as chips, grows
as they are more and more frequently used in safety relevant applications such as airbags, aircraft control
and high-speed trains. The most delicate period for devices is their early lifetime, where failures are very
likely to occur as visualized by the bathtub curve in Figure 1.

The main reason for device failure during the early life stage results from the manufacturing process,
where hundreds of single steps are performed and interacting with each other. Most of these production
failures can be detected with functionality tests, where mainly electrical connectivity is checked. Beside
this, further tests regarding reliability of the devices, are performed. A generally accepted procedure for
investigating reliability issues is Burn-In (BI) testing, explained in more detail in Section 2.1, where the
devices are tested under elevated stress conditions to simulate the early life. Due to undesirable side effects
of the BI, like high costs and the need for extra equipment, a reduction of devices to be burned is preferable.
More cost-efficient are statistical screening methods which are capable of detecting potential early life
failures. A device which is suspicious compared to the majority represents a risk device, so-called Maverick.
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Figure 1: The bathtub curve describes the life stages of semiconductor devices. After surviving the early life
stage, which is in focus of this paper, a constant failure rate dominates, where failures happen at random,
before they enter the ’wear out’ stage, where devices suffer from aging.

Depending on the classification power of the screening method, detected Mavericks are immediately rejected
or further investigated, e.g. with the BI. Due to the development towards sub-micron technologies, which
are expected to contain new failure mechanisms, a distinction between reliable devices and Mavericks
becomes increasingly challenging, as the threshold between them is less evident. Therewith, commonly
known screening methods are insufficient, which opens the need for advanced methods to reliably detect
Mavericks.

The paper is organized in the following: Section 2 starts with an overview of the main screening
methods used in semiconductor industry. Afterwards in Section 3, a novel approach is presented, using the
Independent Component Analysis to filter informative knowledge from measurement data, introduced in
Section 4. Further, the Negentropy is proposed to classify devices in good ones and Mavericks. Results are
shown in Section 5. Finally, Section 6 summarizes the intermediate results and gives an outlook on future
work. Current investigations show that this is a promising research direction for detecting Mavericks.

2 CURRENTLY APPLIED SCREENING METHODS IN SEMICONDUCTOR INDUSTRY

The detection of Mavericks using screening methods is a well-established procedure. Their main target is
the identification of Mavericks already at an early stage of life. While usual test concepts are designed to
detect functionality failures, the intention of screening methods is the detection of reliability issues. They
are not a question of actual functionality, but of hidden evidence for failures during early life stage at
customer level which is also a safety and warranty issue for some applications. Commonly, BI testing is
performed to detect Mavericks but due to unwanted side effects, screening methods, based on cost-efficient
statistical evaluations are preferable. This section gives detailed information about state of the art screening
methods applied in semiconductor industry.

2.1 Burn-In Testing

An established method to detect Mavericks is the Burn-In (BI), where devices are tested over several hours
under increased, but still close to reality, test conditions, such as high temperature and high supply voltage.
The reliability of this method regarding detection of early failures is satisfactory, but with the drawback
of high costs, including testing time, special equipment requiring routine maintenance and extra trained
employees. Moreover, the pre-damage caused during BI stress implies that the device is no longer ’virgin’,
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which introduces an additional reason to search for harmless testing methods instead. Due to the fact
that BI is well-known and broadly used among semiconductor manufacturers, a reduction of devices to be
tested with BI is more realistic than replacing this method. This can be achieved if a reliable statistical
classification of good devices and Mavericks can be performed beforehand, so that the BI is just needed
for the Mavericks.

2.2 Part Average Testing

Part Average Testing (PAT) is a standard method based on the evaluation of measurement data regarding
their distributions. Although a variety of different measurements can be used, electrical tests like diverse
current and voltage measurements are preferable (Automotive Electronics Council 2011). The concept of
PAT is the detection of suspicious devices, which indicate some abnormality compared to the majority
of the devices. These devices are then scrapped and not delivered to the customer. To decide whether a
device is suspicious or not, upper and lower PAT limits are calculated and set, based on the underlying
distribution of the data. To be insensitive against outliers, robust parameter estimation is recommended. In
general, the PAT limits are tighter than the lower (LSL) and upper (USL) specification limit, see Figure 2,
to increase the detection rate.

Figure 2: PAT limits, marked as dotted lines, are more severe than the lower (LSL) and upper (USL) speci-
fication limit. Outliers are detected and scrapped to guarantee the customer more reliable devices.

2.3 Good Die in Bad Neighborhood

Another commonly used method takes spatial dependencies of devices over the wafer into account, known
as Good Die in Bad Neighborhood (GDBN). More accurately, a comparison of each device with its
neighborhood indicates the devices potential risk. It can be observed that devices, which tend to cluster,
often have the same risk behavior and therefore, supposedly good devices surrounded by or next to bad
ones are more likely to fail. An example is given in Figure 3, where supposed good devices (in gray) are
marked because they are in the neighborhood of bad devices (in black). The evaluation of good or bad
can be done e.g. on the basis of the Unit Level Predictive Yield (ULPY) calculation (Riordan et al. 2005),
taking a combination of yield per wafer and yield per lot into account. Again, devices outside specified
limits are marked and scrapped in the next production step.

3 A NOVEL SCREENING APPROACH

Common screening methods like those in Section 2 are expected to work less efficient on future technologies
with smaller structures, which provides the need for advanced screening methods. As it is discussed
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Figure 3: The method of GDBN takes spatial dependencies into account. Good devices in the neighborhood
of bad devices (marked in black) are preventatively scrapped (marked as gray devices).

in (Turakhia et al. 2005), the Independent Component Analysis is proposed to perform a valuable data
transformation, separating informative and non-informative content of measurement data. After a successful
separation, the Negentropy is applied to investigate the output of the transformation.

3.1 Data Transformation with Independent Component Analysis

High dimensional data often mask informative features which may help to explain or discover an underlying
process. Assuming that the measured data are mixtures of sources that want to be recovered, a data
transformation to reveal this information is needed. Independent Component Analysis (ICA) (Hyvärinen
et al. 2001) performs such a transformation of observed data x into a new representation of sources s.
The observed data x are various measurements of each device over the wafer. The transformation can be
obtained by applying a transformation matrix A, called mixing matrix, to reveal latent structures. The
model of ICA can mathematically be written as

x1
x2
...

xn

= A


s1
s2
...

sn

 , (1)

with xi = (xi1, . . . ,xim), si = (si1, . . . ,sim), 1≤ i≤ n and A(n×n),

where xik,1 ≤ k ≤ m, is one measurement per device. With a simple inversion of the mixing matrix A,
the respective source value sik can be calculated, but due to the fact that both, the sources and the mixing
matrix, are unknown, conventional solving of (1) is not possible. Thus, A−1 has to be estimated, leading
to approximations for the sources as well. The best approximation in terms of ICA is achieved when the
sources si are as independent from each other as possible.
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For a successful ICA it is common to start with data-centering (Naik and Kumar 2011), which means the
subtraction of the mean from the data. Ensuing, data-whitening is performed to achieve a decorrelation of
the data by transforming the measurements with known covariance matrix in an uncorrelated representation
of the measurements, xw, with the identity as new covariance matrix:

Var{xw}= E{xwxT
w}= I, with xw = VD−

1
2 VT x, (2)

where the whitened data xw are obtained by the Singular Value Decomposition. V contains the eigenvectors
of the covariance matrix E{xxT} and D is the diagonal matrix of eigenvalues as denoted in (2). This
modifies the mixing matrix A to an orthogonal mixing matrix Aw, with the advantage of a reduction in
computational complexity. This means that the number of variables to be estimated decreases from n2 for
matrix A to

(n
2

)
= n(n−1)

2 for a resulting orthogonal matrix Aw. Henceforth, just a rotation of the matrix has
to be found to get the desired independent sources. Numerical optimization algorithms, like the gradient
descent, can be used and optimized using a quantitative measure of non-Gaussianity, like the kurtosis or
the Negentropy (Comon 1994).

3.2 Negentropy as Decision Criterion for Maverick Detection

In context of ICA, the Negentropy is used as a measure of non-Gaussianity, to optimize the transformation
of measurement data xi towards independent sources si, see (1). Here, too, the Negentropy is used as an
indicator for deviations from a Gaussian distribution, but applied to the final sources, gained by ICA, to
decide, whether a device is an outlier, i.e. a Maverick, or not. Detailed steps can be found in the application
part of this paper in Section 4.

Standard outlier detection methods, like PAT (see Section 2.2), need a predefined threshold (e.g. 6σ

limits) to define a decision boundary between good devices and Mavericks. In this paper a new strategy,
avoiding hard limits, is developed, using the Negentropy J(y) defined by (Hyvärinen et al. 2001):

J(y) = H(ygauss)−H(y) with
{

J(y) = 0 if y is Gaussian
J(y) > 0 if y is non-Gaussian.

(3)

In words, the Negentropy represents the deviation of the data under investigation y from a Gaussian data
set ygauss of the same variance as the data. Beside different approximations for the Entropy H, a general
definition via the probability density function f with support set X, can be given as

H(y) =−
∫

X
f (y) log f (y)dy. (4)

Since the Gaussian distribution has the highest possible value of entropy for a fixed variance, substracting
the entropy of an arbitrary data set always results in a non-negative value for the Negentropy. This property
is used in Algorithm 1, where the data under investigation are each single source si. Therewith, a new
strategy for Maverick detection is provided.

4 APPLICATION OF ICA AND NEGENTROPY ON SEMICONDUCTOR DATA

In this section the previously described approach is applied to a semiconductor data set, consisting of
one wafer containing 443 devices. For each device, 577 IDDQ measurements are available. From the
mathematical point of view, as these measurements are highly correlated and therefore contain redundant
information, the dimensionality is reduced. Also in practice, fewer but representative measurements would
be preferable as an investigation of all measurements during the process chain is not feasible. In addition,
the quality of the ICA transformation is improving when ICA is applied on a subset of the data instead of
using all of them, as this is dependent on the ratio between measurements and devices. Hence, the ICA
is applied to a selected subset of measurements and the resulting sources are investigated by using the
Negentropy as a detector of Mavericks, described in Algorithm 1.
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ALGORITHM 1: THIS PSEUDOCODE DESCRIBES WHETHER A DEVICE IS CLASSIFIED AS MAVER-
ICK OR NOT BY USING THE NEGENTROPY AS DECISION CRITERION.

1. Generate a Gaussian distributed random variable ygauss ∼ N(µ,σ 2
si
)

2. Calculate Negentropy J as defined in (3) and (4) with si as the data under investigation
3. While si is not empty

find arg min
sik

J(si \ sik) for k = 1, . . . ,m

save sik as outlier and delete it from si

end
4. Run step 1 to 3 for multiple times.
5. for l = 1 : m

if outlier sik at position l of all runs is equal then
outlier sik is a Maverick

else
break

end
end

4.1 Data Preparation and Subsequent ICA

Although a variety of conventional measurements are done during the production process, for many
applications IDDQ measurements (Miller 1999), i.e. measurements of the power supply current in the
quiescent state, are assumed to be more informative than e.g. functional voltage tests (Automotive Electronics
Council 2011). The wafer of investigations consists of 443 devices. For each device 577 IDDQ measurements
(x) are collected as shown in the following matrix:


Device 1 Device 2 . . . Device 443

x1 IDDQ1,1 IDDQ1,2 . . . IDDQ1,443
x2 IDDQ2,1 IDDQ2,2 . . . IDDQ2,443
...

...
...

. . .
...

x577 IDDQ577,1 IDDQ577,1 . . . IDDQ577,443


Due to high correlations of the 577 IDDQ measurements, a dimension reduction is recommended as a
pre-processing step for the subsequent ICA. Therefore, a simulation study was performed which supports
the selection of a subset of 5 measurements x1, . . . ,x5, visualized in Figure 4. On the reduced data set
of 5 IDDQ measurements, the ICA is performed using the implemented MATLAB R© function FastICA
(Hyvärinen et al. 2001). The mixing matrix A(5×5) and de-mixing matrix A−1 are calculated and applied
to each of the 5 measurements xi (cf. Section 3.1). The resulting 5 sources, s1 to s5, are visualized in
Figure 5.

While each of the measurements seems to contain the same information, indicated by high correlations,
see Figure 4, the ICA transformed measurements show clearly separated sources si, as visualized in Figure 5.
In contrast to other applications of ICA, e.g. investigations of EEG signals, where the pathway of the
desired sources is known, there is no reference signal for transformed IDDQ measurements which can be
used on a comparative basis. Without this knowledge yet, each resulting source has to be investigated
regarding its information content. Results are given in Section 5.
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Figure 4: Each IDDQ measurement xi can be visu-
alized as a signal over all devices. This figure shows
5 (superimposed) IDDQ measurements taken from
overall 577 available, used as a dimension-reduced
basis for subsequent ICA.

Figure 5: With a quadratic de-mixing matrix A−1

single sources can be revealed from initially super-
imposed measurements, see Figure 4. Compared to
the remaining sources, Source 2 (green) has a con-
spicuous offset.

4.2 Investigation of ICA Sources based on Negentropy

The Negentropy as a measure of non-Gaussianity is used to detect the Mavericks provided by each source
si, visualized in Figure 5 or plotted as probability plot for a Gaussian distribution in Figure 6. Therefore, the
pseudocode in Algorithm 1 was applied to each source: Iteratively, one device after each other is rejected,
to lead the distribution of the source towards Gaussianity. Theoretically, the rejection of devices is stopped,
when hardly any further improvement is achieved. In other words, devices are classified as outliers, as
long as the pathway of Negentropy values converges to zero. Here, step 3 from the algorithm is repeated
for 10 times (see Figure 7). The pathway of the Negentropy values differs from run to run. This results
from step 1, where for each run a new Gaussian distributed random variable is generated and needed for
calculating the Negentropy. To make a decision whether an outlier is a Maverick or not, from the 10 runs
just the devices in common and in the same selected order are classified as the final Mavericks (cf. step 5
in Algorithm 1). For instance, in Source 2, 12 devices fulfill this criterion and are therewith classified as
Mavericks. Results for all sources are given in Section 5.
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Figure 6: The probability plot for each source illus-
trates devices, which deviate from a Gaussian dis-
tribution. Obviously there is one outlier in Source 1
and 3 and multiple outliers in Source 2.

Figure 7: Following the pseudocode in Algorithm 1,
10 runs of Negentropy calculation for Source 2 are
performed and 12 devices are classified as Maver-
icks.

5 RESULTS

In the previous section, Mavericks have been detected by applying the ICA on a subset of semiconductor
measurement data to reveal informative sources. Afterwards, each source has been investigated regarding
Mavericks, using the Negentropy from Section 3.2 as decision criterion, following the pseudocode in
Algorithm 1. However, to finally judge if the devices are correctly classified as Mavericks, they have to
be compared to the results from the corresponding BI study, which provides the true information about the
behavior of all devices during their early life stage (cf. Section 2.1). The results are provided in Table 1.

Table 1: Classification power of sources: For each source the Mavericks are figured out by applying the
Negentropy as decision criterion. Subsequently, the results of the BI Study are used to evaluate the clas-
sification power of the sources. Source 2, which differs from the remaining sources, provides remarkable
results. Source 1 and 3 reveal two further Mavericks, but cannot ensure a BI failure.

# of detected devices
with measure of Negentropy

correctly classified
(according to BI)

Source 1 1 0
Source 2 12 12
Source 3 1 1
Source 4 0 0
Source 5 0 0

Summarized in Table 1, Source 2 detects the most Mavericks and, in addition, all of them are correctly
classified. For the remaining sources hardly any Mavericks are detected as expected from the probability
plot in Figure 6. They are already close to a Gaussian distribution and therefore may be negligible as the
aim is to concentrate important information in one source, which then finally needs to be screened for
Mavericks.
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6 SUMMARY AND FUTURE WORK

State of the art screening methods are expected to be less reliable regarding Maverick detection for sub-
micron technologies. This opens the need of advanced screening methods to guarantee the customer a
reliable product. In this paper the method of ICA is proposed to filter information about risk devices from
measurement data which then provides a basis for subsequent Maverick detection. After transforming the
measurement data in sources by applying the ICA, the measure of Negentropy is used as a new concept
of outlier detection. First results confirm that a closer look in this direction is valuable.

For future work, investigations on Negentropy are planned, because the classification results differ
dependent on the applied approximation for the Entropy. In addition, analysis regarding an optimal number
of runs, used in Algorithm 1, will be done. Further room for improvement provides ICA itself as this
method is an optimization problem. Additionally, verification tests on different data sets will be performed.
With a reliable approach to detect Mavericks, the effort spend on BI could be reduced significantly, since
just the Mavericks have to be burned, and therewith a relevant amount of time and money can be saved.
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