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ABSTRACT

In automotive industry end-of-life tests are necessary to verify that semiconductor products operate reliably.
Due to limited test resources it is not possible to test all devices and thus, accelerated stress tests in combination
with statistical models are commonly applied to achieve reliable forecasts. Challenging thereby is the highly
complex data that shows mixture distributions and censoring. For the main purpose, the extrapolation to
other test conditions or designs, neither frequently used acceleration models like Arrhenius, nor complex
models like Bayesian Mixtures-of-Experts or Bayesian networks give accurate lifetime predictions, although,
the latter two are precise in case of interpolation. To compensate the limitations of ordinary linear based
regression models, we propose the application of a Gaussian process prior. The proposed model shows a
high degree of flexibility by exploiting sums or products of appropriate covariance functions, e.g. linear
or exponential, and serves as a reliable alternative to currently applied methods.

1 INTRODUCTION

The development in automotive industry increases fast due to new advances in material science and extensive
use of smart power semiconductor devices in daily life. At the same time reliability has to be guaranteed
since in automotive applications the developed devices are used for passengers’ safety. Therefore, extensive
lifetime testing and modeling based on known physical relationships, e.g. Arrhenius or Coffin-Manson
(NIST 2010), was performed in the past for each device type to cover these requirements. Due to steadily
increasing demands on device lifetime, the testing time continues to grow immeasurably, but based on
limited resources, it is neither possible to test, nor to inspect all devices anymore. Thus, reliable forecasts
for the lifetime are needed.

Nowadays, accelerated stress tests in combination with statistical models are commonly applied to
model the lifetime of semiconductor devices. Frequently used acceleration models like Arrhenius are
insufficient since the lifetime behavior of today’s semiconductor products is highly complex, showing
different failure mechanisms resulting in a mixture distributed lifetime (Bluder et al. 2012). The application
of a Bayesian Mixtures-of-Experts (MoE) Norris-Landzberg (Bluder 2011) or a Bayesian network (BN)
model (Plankensteiner, Bluder, and Pilz 2013) leads to a satisfying interpolation quality, but their performance
is insufficient in case of extrapolation.

It is assumed that ordinary linear based regression models cannot capture the complex behavior of the
observed data. Therefore, a Gaussian process (GP) prior is proposed to model the mean lifetime of each
mixture component. Therewith, a new approach to model semiconductor lifetime is gained.
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2 TEST PARAMETERS, ELECTRO-THERMAL & THERMO-MECHANICAL EFFECTS

The analyzed data was obtained under different electrical and thermal stress conditions produced by a cycle
stress test system (Glavanovics et al. 2007). To stress the semiconductor devices, a combination of five
test parameters is defined by the operator:

1. the ambient temperature (Tamb),
2. the stress pulse shape (triangle or rectangle),
3. the induced peak current (I),
4. the pulse length (tp), and
5. the repetition time (trep).

Another significant factor is the clamping voltage (V ), which is a property of the device itself and cannot
be adjusted by the operator. An example of an oscilloscope measurement during a repetitive stress test is
shown in Figure 1, with measured V in magenta and induced I in green. As illustrated, the main stress
pulse is defined by the shape, the length (tp), and the height (I) of the pulse as well as the time between
two stress pulses (trep). The combination of these four factors with Tamb defines one test setting (test condition).

Figure 1: Oscilloscope measurement of I and V on different y-axes during a test.

Based on the definition of these test parameters, the Device Under Test (DUT) heats up during the
first minutes to a stable case temperature (Tcase). Further, caused by electric power dissipation the DUT
heats up and cools down during each stress pulse. The thereby induced temperature rise (∆T ) can either
be simulated with the Finite-Element-Method (FEM) (Kosel et al. 2007, Riccio et al. 2009) or it can be
approximated analytically (Glavanovics and Zitta 2001). Given this temperature rise, the corresponding
peak temperature (Tpeak) can be calculated by Tpeak = Tcase +∆T .

Since the DUT is built of various metal layers with different thermal expansion coefficients, the
temperature cycling causes, additionally to electro-thermal, also thermo-mechanical effects. Similarly, the
thereby induced mechanical stress can either be simulated using FEM (Kravchenko et al. 2014) or it can
be analytically determined by approximation formulas (Chen and Neson 1979, Suresh 1998).

Summarized, the observed lifetime is the result of interacting electro-thermal and thermo-mechanical
effects.

3 OBSERVED DATA & CHALLENGES

During the repetitive stress test, the system counts the number of applied stress cycles. If the DUT
fails during the test, the exact lifetime, measured in cycles to failure (CTF), is logged by the test sys-
tem. Whenever a DUT does not fail by the end of the test, it gets the status survivor (SURV) and the
total number of applied stress cycles is logged for this DUT. In this case, the lifetime for the DUT is censored.
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The logarithmic transformed CTF (logCTF) follow a mixture of two normal distributions (Bluder
2011, Plankensteiner 2011). Figure 2 shows the outcome of three tests in a normal probability plot with a
logarithmic x-axis. Each stress test consists of 16 DUTs, illustrated by blue triangles (a high-stress test),
green circles (a moderate-stress test) and red squares (a low-stress test). As expected, increasing the stress
level leads to a significantly shorter lifetime on average, cf. 50% quantiles. Taking a closer look at the
lifetime of DUTs tested with the moderate-stress level, a double distribution with CTF < 106 for the first
component and CTF > 106 for the second component is evident. The DUTs of the other two tests follow
a single component distribution. For the high-stress test, all DUTs fail within the first 104 stress cycles,
whereas for the low-stress test the first fail does not occur before 106 cycles and moreover, three DUTs of
the low-stress test even survive, highlighted by the black rectangle.

Figure 2: Semiconductor lifetime probability plots from three stress tests.

The physical failure inspections after testing indicate that the mathematically identified mixture compo-
nents represent different physical failure mechanisms. Pictures of a Scanning Acoustic Microscopy (SAM)
and a Focused Ion Beam (FIB) cut of stressed DUTs can be taken from Figure 3. DUTs failing before
106 stress cycles neither show any degradation (e.g. cracks or voids) nor delamination effects, whereas
the physical failure description of DUTs failing after 106 stress cycles is characterized by degradation and
delamination. A detailed discussion of the FIB cuts is given in (Nelhiebel et al. 2011).

For the investigation in this paper lifetime data from five different device types, A, B, C, D, and E,
are available. Device types A to D are similar devices, only differing in the size and shape of the active
DMOS area, whereas device type E belongs to another device technology. With this data set, not only the
model and interpolation quality is investigated, but also the prediction power to another device type.

Since logCTF are a mixture of two normally distributed components representing two different physical
failure mechanisms, the data set is divided into two subsets. Based on the fact that it is neither possible
to inspect all DUTs nor to identify the actual physical failure cause in each of them, this separation is
based on the characteristics of the measured lifetime distribution and the physical inspection of some
representative DUTs from each mixture component. Thereby it is assumed, that within one component
always two different (competing) failure mechanisms are present. One of them is dominant and leads to the
DUT’s failure. With this, the statistical problem of group identification and allocation is derived, which is
modelled by so called mixture weights related to switching regression models (Frühwirth-Schnatter 2006).
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(a) SAM of DUT failed before 106 CTF. (b) SAM of DUT failed after 106 CTF.

(c) FIB cut of DUT failed before 106 CTF. (d) FIB cut of DUT failed after 106 CTF.

Figure 3: Physical failure inspection reveals different failure mechanisms for DUTs that fail in the first
and second mixture component.

The mean lifetime of the first and the second mixture component is 3.5 logCTF and 7.5 logCTF,
respectively. On average, the variance of the first subset is higher than the variance of the second one.
The first and second subset contain 169 and 867 data points, respectively, tested under 65 different
stress conditions. Table 1 shows the partition for all five device types, e.g. for device type A data of 34
different stress conditions with 485 data points are available. In total, 110 censored observations are included.

Table 1: Partition of 65 test conditions for five device types.

Device type A B C D E
# stress condition 34 11 9 5 6
# lifetime data 485 169 214 72 96
# censored data 110 142 142 18 0

4 GAUSSIAN PROCESS PRIOR

To compensate the limitations of ordinary linear regression models, we propose the application of a GP prior
(Gelman et al. 2014, Shi and Choi 2011) to model the mean function of the smart power semiconductor
lifetime data of each mixture component. In this investigation a standard GP with zero mean function
is used. Therefore assume that n observation pairs (xxx1, logCT F1), . . . ,(xxxn, logCT Fn) are available, where
xxxi denote the vector of d covariates (xi1, . . . ,xid). Since data is a mixture of two normally distributed
components, ηηη = (η1,η2) with η2 = 1−η1, fff = ( f1, f2) and σσσ = (σ1,σ2) define the mixture weight, the
mean function and the standard deviation of the first and second component, respectively. With this, the
model for the data of interest is defined by (Vanhatalo et al. 2013)

observation model: lllooogggCCCTTT FFF |ηηη , fff ,σσσ , ∼
n

∏
i=1

[
2

∑
k=1

ηk p(logCT Fi| fk(xi),σ2
k )

]
(1)

GP prior: fk|xxxi,θθθ k ∼ GP(0,k(xxxi,xxx′i|θθθ k)) (2)
hyperprior: θθθ k,σ

2
k ∼ p(θθθ k)p(σ2

k ), (3)
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where GP defines a standard Gaussian process with parameter vector θθθ k and k(xxxi,xxx′i|θθθ k) characterizes
the correlation between xxxi and any other input location xxx′i. Evaluating the combinations of appropriate
covariates, using a Norris-Landzberg relationship gives the best fit according to the Bayesian Information
Criterion (BIC) (Held 2008), where models with smaller BIC values are preferred. Therewith, the covariates
are defined by xxx = (log trep, log∆T,T−1

peak).
The application of flexible covariance functions like squared exponential or Matern (Shi and Choi

2011) leads to non linear interpolations of the lifetime logCTF as shown in Figure 4. Based on the used
covariates, trep, ∆T and T−1

peak, Figure 4 shows that increasing trep (e.g. from 36ms to 60ms, red dashed
line) at Tcase = 150◦C and ∆T = 250◦C leads to a shorter lifetime on average. Since increasing trep at
constant Tcase and ∆T means a reduction in stress, this does not fulfill expectations gained from previous
device technologies and thus, only combinations of constant and linear covariance functions need to be
considered for this model.

Figure 4: Lifetime prediction for the second mixture component at Tcase = 150◦C using a standard GP with
squared exponential covariance function.

For the investigation of appropriate combinations of covariance functions (single, sum or product) the
BIC is again used. Results are listed in Table 2, where BIC1 and BIC2 denote the BIC value for the
first and second mixture component, respectively. It turns out that for the first mixture component, the
application of a linear covariance function provides the best fit, whereas for the second mixture component
the sum of a constant and a linear covariance function is more appropriate. For the purpose of a common
model assumption, the sum of a constant and a linear covariance function is used for both mixture components.

Table 2: BIC values for combinations of constant (c) and linear (l) covariance functions.

covariance function c l sum(c, l) prod(c, l)
BIC1 182.2 172.6 177.7 177.7
BIC2 453.0 356.8 355.9 361.9
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With this, k(xxx,xxx′|θθθ kkk) is defined by

k(xxx,xxx′|θθθ kkk) = Iσ
2
const,k + xxxT

Σlin,kxxx′,

where θθθ kkk = (σconst,k,σlog trep,k,σlog∆T,k,σT−1
peak,k

), I denotes the unity matrix with dimension three and Σlin,k =

diag(σ2
log trep,k,σ

2
log∆T,k,σ

2
T−1

peak,k
) is the diagonal matrix containing the prior variances of the linear model

coefficients. Based on missing prior knowledge, standard priors following log-uniform distributions for the
data variance (σ2

k ) and function parameters (σ2
const,k,σ

2
log trep,k,σ

2
log∆T,k,σ

2
T−1

peak,k
) of each mixture component

are applied.
Bayesian inference is performed in MATLAB R© using the statistical toolbox GPstuff (Vanhatalo et al.

2013). This toolbox was extended to handle mixtures of log-normally distributed components where data
can be censored. For parameter estimation a combination of surrogate slice sampler for the latent variable fff
(Murray, Adams, and MacKay 2010) and elliptical slice sampler for the parameter vector (θθθ k,σσσ

2
k) (Murray

and Adams 2010) is applied.

5 MODELING & PREDICTION RESULTS

In this section the modeling and prediction results given by the GP prior are compared with the currently
applied MoE Norris-Landzberg model, also called modified Coffin-Manson (NIST 2010), where the
expectation of (2) can be modelled by

E[ fk|xxxi,θθθ k] = logAk +αk log trep,i +βk log∆Ti +
∆Hk

BTpeak,i
k = 1,2, (4)

with θθθ k = (logAk,αk,βk,∆Hk). Thereby, ∆H and B denote the activation energy and the Bolzmann constant,
respectively. For this model prior information is available (Plankensteiner 2011), which is included via a
Normal-Inverse-Gamma prior (Frühwirth-Schnatter 2006). To provide a direct comparison between the two
models, the mixture components are modeled independently from each other and then they are mixed by the
estimated mixture weight ηi, where ηi is modeled by a cumulative Beta distribution function (Plankensteiner
2011). To evaluate the interpolation and extrapolation quality, only a subset of device type A (data of 20
test conditions) is used to train the model. The remaining data is used for model and prediction validation.

For the Goodness-of-Fit (GoF) evaluation, the BIC for each mixture component and model assumption
is determined and listed in Table 3. Based on the BIC values, the GP model provides the better fit for
both mixture components. Using the BIC approximation for the log marginal likelihood (Held 2008),
additionally the Bayes Factor (BF) (Held 2008) can be listed. For the first and second mixture component
BFs of 1.9 and 10.6 are achieved, respectively. Based on the fact that a BF > 3 indicates a significant
improvement in model quality, the improvement by the GP model is barely worth mentioning for the first
mixture component, but substantial for the second one. Therewith, it is hypothesized that the GP prior
leads to a significant improvement in prediction quality.

Table 3: BIC and BF values for both models.

GoF MoE GP BF
BIC1 179.02 177.7 1.9
BIC2 360.62 355.9 10.6

To evaluate the prediction quality, the Sum of Squared Errors of Prediction (SSEP) for each test setting
is determined. Since this evaluation is only of importance for failed data, data sets with no fails are excluded
at this point. With this the amount of available data sets reduces to 51. For the training set, leave-one-out
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Cross-Validation (CV) (James et al. 2013) is performed. Then the whole training set is used to develop the
lifetime model, which is used for prediction of the validation data sets. The means of SSEPs are listed in
Table 4. For device types A, B, C, and E the results are almost identical, whatever model is taken. With
respect to device type D, the MoE model gains slightly better results. On average, a mean SSEP of 1.95
for the MoE and 2.08 for the GP model are achieved.

Table 4: Means of SSEP for device types A, B, C, D, and E.

Mean SSEP CV A A B C D E
MoE 1.40 2.27 4.19 0.89 2.47 0.50
GP 1.56 2.12 4.28 0.94 3.08 0.47

For a detailed evaluation of SSEPs, Figure 5 shows the SSEP for each data set and model. Precisely,
Figure 5(a) shows the results of the CV and Figure 5(b) illustrates the evaluation of the validation sets.
In total, both models lead to comparable results, regardless which device type is considered. All data sets
with high SSEPs for the GP model, e.g. data set 17 in Figure 5(a) or data set 10 in Figure 5(b), also show
high SSEPs for the MoE model. The high SSEPs indicate that either

(1) the model for the mean lifetime of the mixture component or/and
(2) the model for the mixture weight

lacks accuracy and thus, data is predicted insufficiently. Since the effect of changing test settings on the
mixture weights is well understood (Plankensteiner 2011), the main focus lies on an accurate prediction
for the mean lifetime of each mixture component.

(a) Means of SSEP evaluation for the training sets. Sets 1 -
20 contain data from device type A.

(b) Means of SSEP evaluation for the validation sets. Sets 1
- 13, 14 - 16, 17 - 21, 22 - 25, and 26 - 31 contain data from
device type A, B, C, D, and E, respectively.

Figure 5: Means of SSEP for training and validation data sets.

To evaluate the prediction quality, the observed mean lifetime is compared with the corresponding
95% HPD regions (Robert 2001), illustrated in Figure 6. The broad 95% HPD regions for the first mixture
component are thereby eye-catching, shown in Figure 6(a). This indicates a high uncertainty in both models.
Moreover, five data sets (1, 12, 16, 21, and 28) lie below the predicted 95% HPD regions of both models.
It is suspicious that even 3 of them (1, 12, and 16) belong to device type A, although data from this device
type has been used for model development and thus, this data should give accurate results. Even more
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surprising is the fact, that almost the half of the observed data lie above the predicted 95% HPD regions,
where again a lot of data sets of device type A are included. The widths of the intervals as well as the lacking
accuracy leads to the conclusion that the first mixture component is itself a mixture of different effects
which cannot be captured by a single model representing only one physical failure mechanism. It might be
more appropriate to use a mixture of overlapping distributions characterizing different failure mechanisms.
These results also show that at this high stress level, close to the destruction, different mechanisms start
to interact and make an accurate lifetime predict extremely challenging.

(a) Comparison of empirical and predicted data using GP and
MoE model for the first mixture component. Sets 1 - 20, 21
- 22, 23 - 24, 25 - 28, and 29 contain data from device type
A, B, C, D, and E, respectively. Sets 3 - 14 have been used
for model development.

(b) Comparison of empirical and predicted data using GP and
MoE model for the second mixture component. Sets 1 - 28,
29 - 30, 31 - 35, 36 - 38, and 39 - 43 contain data from
device type A, B, C, D, and E, respectively. Sets 6 - 24 have
been used for model development.

Figure 6: Observed data and predicted 95% HPD regions for GP & MoE model.

With respect to the second mixture component, visualized in Figure 6(b), the relationship between
the empirical and predicted data shows an evident trend. For device type A, only the lifetime of data set
21 is on average significantly shorter than predicted by both models. It turns out that this data set has a
high Tcase with a long tp - a fatal combination of test settings leading to a significantly shorter lifetime
on average. For data sets 7, 25 and 26 the mean lifetime is underestimated by both models. For all other
data sets of device A and all data sets of device B the predicted 95% HPD regions overlaps the empirical
data, which indicates a good prediction quality. For device types C, D and E the predicted lifetime is for
all data sets, except data set 34, significantly higher than observed. One reason for this inaccuracy might
be the fact that the shape of the active DMOS area differs between device types A, B and device types C,
D, and E. For the first two device types, the active DMOS area is L-shaped, whereas the active DMOS
area for the latter ones are rectangle-shaped. With this, it can be concluded that the information about the
active DMOS area needs to be considered as well for an accurate lifetime prediction, especially in case of
extrapolation to other device designs.

Summarizing the results, the MoE Norris-Landzberg and GP models are comparable and show the
same level of accuracy regarding the predicted 95% HPD regions and the SSEPs.

6 SUMMARY & OUTLOOK

In this paper a GP prior is used to model complex lifetime data from five different device types. The
data follows a mixture of two log-normally distributed heteroscedastic components and contain censored
observations.

For model development MCMC simulations are exploited. For this purpose, the statistical toolbox
GPstuff in MATLAB R© has been extended. Based on the BIC evaluation, the GP model indicates a promising
improvement to the currently applied MoE Norris-Landzberg model.

To evaluate the prediction quality, posterior predictive distributions for the validation sets were de-
termined. Additionally a CV for each training set was performed. Although the BIC of the GP model
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indicated better results than applying the MoE model, SSEPs and 95% HPD regions show that the models
are comparable and that the GP model does not provide a significant improvement in prediction quality.
Thus, the GP model serves as a reliable alternative to currently applied methods.

Summarizing the research work of the last years, the model and prediction accuracy gained by modeling
smart power semiconductor lifetime data with MoE, BN and GP priors fall below expectations. Thus, it is
assumed that, in general, regression based models can capture only a part of the complex lifetime behavior
of the observed data. Consequently, it is unavoidable to consider alternative hypotheses:

• Only modeling the mean lifetime is insufficient because the observed data indicates test setting
dependent and DUT specific variances. Moreover, the mixture weights also differ for the investigated
device types. Thus, including a model for the data variances and improving the model for the
mixture weights is indispensable.

• The currently used input parameters cannot capture the whole lifetime behavior, meaning that a better
representation of the geometric design (e.g. size/ shape of the active DMOS area), electro-thermal
and thermo-mechanical effects is needed. To include these substantial parameters into the lifetime
model, improvements in simulation models as well as used material properties are obligatory.

• The lifetime cannot be explained by a monotonic and continuous function. There are different,
superposed and interacting degradation effects, that make a regression tenuous. More realistic
approaches like modeling the internal damage and degradation with (interacting) stochastic processes
need to be considered, e.g. change point for failure mechanisms. It is assumed, that this leads to
more accurate results than modeling the observed lifetime data directly (Meeker, Escobar, and Lu
1998).

• What if the investigated data suffers from inconsistencies that are not evident? Consequently, the
model and prediction inaccuracy can not be given by used methods’ properties, but depends on
devices and observed data. This might call the existence of an appropriate and sufficiently precise
model, e.g. for extrapolation tasks, into question. Especially this consideration should be kept in
mind and requires a detailed investigation in the future.
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