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ABSTRACT 

Goal-directed reproducible experimentation with simulation models is still a significant challenge. The 
underutilization of design of experiments, limited transparency in the collection and analysis of results, 
and ad-hoc adaptation of experiments as learning takes place continue to hamper reproducibility and 
hence cause a credibility gap. In this study, we propose a strategy that leverages the synergies between 
model-driven engineering, intelligent agent technology, and variability modeling to support the 
management of the lifecycle of a simulation experiment. Experiment design and workflow models are 
introduced for configurable experiment synthesis and execution. Feature-based variability modeling is 
used to design a family of experiments, which can be leveraged by ontology-driven software agents to 
configure, execute, and reproduce experiments. Online experiment adaptation is proposed as a strategy to 
facilitate dynamic experiment model updating as objectives shift from validation to variable screening, 
understanding, and optimization. 

1 INTRODUCTION 

Simulation involves goal-directed experimentation with dynamic models for a variety of purposes, 
including scientific discovery, training, education, and entertainment. Experiment design for simulation is 
a well-developed area with classical references such as (Law and Kelton, 2000) and (Kleijnen, 2005). The 
significance of methodological support for experimentation gave rise to the field of statistical Design of 
Experiments (DoE) to produce objective and unbiased results. DoE allows practitioners to construct well-
defined procedures for sampling experiment outcomes while offering a common framework that can be 
used to repeat and validate those outcomes. 
 Earlier studies in computer assistance in experiment management include support for addressing 
statistical issues in simulation-based problem solving (Tao and Nelson 1994) as well as proposals for 
using expert systems in experiment design (Ören 2001; Wilson et al. 2000). More recently, scientific 
workflow systems have emerged as infrastructures to provide means for specifying, deploying, and 
executing scientific data generation and analysis activities in the form of workflow activities. For instance, 
Taverna (Oinn et al. 2008), myExperiment (De Roure et al. 2009), and the open-source Kepler project 
(Altintas et al. 2004) are major systems that allow users to define computations in the form of activities, 
which are then composed and orchestrated to support computational experiments. However, general-
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purpose workflow systems are not intended to embody either statistical knowledge (e.g., input data 
modeling and output analysis) or experiment design and adaptation expertise needed for continuous 
management of stochastic simulation experiments. The strategies and tactics used in simulation 
experiments are often left implicit.  

Our proposed approach defines simulation experiments in terms of a lifecycle with distinct phases, 
each with specific requirements and opportunities for computational assistance. The features of 
experiments and the governing processes are defined in terms of explicit experiment models, which can 
be made available at run-time and be interpreted by intelligent agents. By closing the loop via an 
experiment life-cycle, we propose online adaptation of experiment models based on feedback received 
from previous iterations. As such, experiment models are used as explicit run-time introspective models 
to assist the experimentation process. Furthermore, experiments are defined at multiple levels of 
abstraction, starting with a feature model that uses the vocabulary of the experiment domain expert. 
Agent-assisted mapping of the feature model onto a more specific experiment domain ontology, followed 
by model transformation, results in executable scripts for batch-mode experimentation.   

The proposed approach is founded on three critical pillars: (1) model-driven engineering, (2) agent-
assisted workflow systems, and (3) design of reproducible experiments. The synergistic interactions 
between these elements are leveraged to improve computational assistance for each phase of the life-
cycle. Ontology modeling is used to specify the structure of the experiment model and to allow the use of 
model transformers to shift the focus in experiment design to high-level features that are then compiled 
into executable experiment scripts. Agents are used to prune the experiment ontology space to relevant 
DoE concepts and attributes that are related to features selected by the experiment designer. Feature-
oriented domain analysis is used to support experiment variability modeling to represent standard features 
in simulation experiments as well as the relationships and constraints among those features. 

The rest of the paper is organized as follows. Section 2 presents the background on the 
aforementioned areas that converge in our framework. These topics include experiment reproducibility 
and replicability, agent-assisted scientific workflows for standardizing experimental procedures, and 
model-driven engineering for simulation experiment management. Section 3 introduces our proposed 
framework and its major components. Section 4 delineates future directions in research, and section 5 
concludes with an overview of the lessons learned. 

2 BACKGROUND 

The proposed simulation experiment management framework harnesses the synergies between model 
driven engineering, intelligent agents, scientific workflows, and statistical design of experiments. The 
premise of this work is based on increasing awareness of the emergent credibility crisis in computational 
research in general, and simulation research in particular (Yilmaz and Ören 2013). Knowledge that cannot 
be reproduced and replicated is not considered as scientific knowledge. Therefore, if Modeling & 
Simulation (M&S)  is to sustain its credibility as a scientific discipline, it needs to improve reproducibility 
and replicability.  

Reproducibility refers to the ability to repeat simulation experiments under controlled conditions to 
regenerate results using existing simulation code and data. On the other hand, replicability involves 
independent derivation of results by creating a new implementation. However, the implementation of the 
replicated model differs in some way (e.g., platform, modeling formalism, language) from the original 
model, but should be an executable representation to facilitate conducting the same experiments. Similar 
to other fields within computational science, reproducibility and replicability of simulation experiments 
must involve variation and sweeping of the parameter space, activity management, and the use of a 
software platform. Besides, in computer simulation, there are additional challenges involved in the 
management of simulators and simulation algorithms, the use of different simulation paradigms, and 
poorly documented assumptions about experiments.  
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Scientific workflow systems have emerged as problem solving environments that allow the 
formalization and execution of processes that a scientist follows to derive publishable results from raw 
data (Altintas et al. 2004). Such systems allow scientists to define analysis tasks in terms of an executable 
activity-flow.  To improve reproducibility and replicability, scientific workflows can be reused and shared 
with others, who can then deploy and repeat workflows in their own platforms.  Among the scientific 
workflow platforms commonly used by scientists include Taverna, Kepler, and myExperiment. worMS is 
a workflow system prototype that exclusively targets M&S software (Rybacki et al. 2011). It aims to 
integrate workflow support to M&S software to facilitate simulation set-up, execution. and analysis. 

While workflow systems can be effective in both streamlining the M&S activities and improving their 
reuse,  they have the following limitations: (1) workflows are tightly coupled to a concrete 
implementation over a specific platform, (2) the process and the data are also coupled, making it difficult 
to vary them independently, and (3) workflows do not embody expert knowledge to manage and update 
experiment specifications to enforce experiment design constraints as learning takes place. Furthermore, 
workflow designers need to be aware of algorithmic and computational details pertaining to specification 
and execution of workflows. That is, workflow systems focus on the definition of imperative activity 
specifications, instead of synthesizing them from higher-level computation-independent declarative 
experiment feature and domain models. However, the adoption, reuse, reproducibility, and independent 
replication and extension of existing workflows will be improved if users are shielded from platform and 
computation-specific aspects of workflow management. Instead, end-users should focus on the strategic 
and tactical aspects of simulation experiments. 

As shown in Figure 1, the Model-Driven Engineering (MDE) methodology (Gaševic, Djuric, and 
Devedžic 2009) provides a framework and strategy to move from the platform-independent experiment 
domain space to the technical space involving platform-specific executable simulation experiment scripts. 
The experiment domain is often defined in terms of the terminology of the DoE, whereas the Executable 
Script Language (ESL) such as NIMROD (Peachey et al., 2008) deploys the experiment to batch-run the 
simulation on a specific platform. 

 

 
Figure 1: MDE for Experiment Model Transformation. 

The MDE perspective focuses on the specification of the experiment modeling language as well as 
the transformation rules for mapping experiment conceptualization space to the realization 
(implementation) space. Transformation rules can also be defined to map concepts in one technical space 
(e.g., DoE) to another (e.g., NIMROD). Similar to the way we define simulation models as abstractions of 
a phenomena in the real world, meta-models  are used to conceptualize and define the abstract syntax of 
modeling languages. That is, a meta- model is yet another abstraction that specifies the properties of the 
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model itself. A model conforms to its meta-model in a way that a program conforms to the grammar of 
the programming language in which it is developed.  

An experiment has both structural and dynamic aspects. Dynamic perspective involves systematic, 
iterative processes seeking answers to a set of questions about the system being simulated. The questions 
to be answered determine the objective (or objectives) of the experiment. The unfolding of this process 
can be described in terms of a life-cycle. Hence, as shown in Table 1 we can define an experiment life-
cycle in terms of the steps required to reach the experiment’s objectives. Though it is stated that 
experiments require multiple iterations to reach their objectives, we believe that there has not been 
enough emphasis on this point. Our approach encompasses these phases and stages, while explicitly 
putting them in an experimental cycle, where the experiment itself is computationally modified as it 
progresses towards its objective.  

Table 1: Phases and stages of the experiment life-cycle (Lorscheid, Heine, and Meyer 2012). 

Phase Stage Output 
I: Experiment 
Preparation 

1. Experiment objective formulation List of experimental objectives 
2. Variable classification Variable classification table 

II: Experiment 
Execution 

3. Definition of response variables and 
factors 

Response list, Factor table (including 
levels and values) 

4. Design selection Experiment design matrix 
5. Estimation of experimental error 
variance 

Number of required replications for 
statistical reliability 

6. Experiment execution Final effect matrix 
7. Analysis of effects ANOVA table, Effect strength and 

direction table, Factor and interaction 
significance table 

III: Analysis 
of Experiment 

8. Outcome analysis with respect to 
experiment objective 

Updated response and factor list 

 
The importance of strategic issues on proper design of experiments, as well as the tactical issues in 

collecting and analyzing data are highlighted in (Donohue 1994; Himmelspach et al. 2008; Kleijnen 2005; 
Kleijnen et al. 2005; Sanchez and Wan 2009; Kelton 2000; Lorscheid, Heine, and Meyer 2012). There 
also exist tools that support experiment management (Ioannidis et al. 1997; Perrone, Main, and Ward 
2012; Leye and Uhrmacher 2012), but their focus is not the entire life-cycle of an experiment. 
Furthermore, prior work does not take full advantage of the synergies between MDE, agent technology, 
and workflow management systems to advance the state of the art and practice of experiment 
management. 

3 CONCEPTUAL FRAMEWORK 

Simulation experiments often consist of multiple iterations. At each iteration, to account for the 
observations, the experiment’s structure and goals could change. To embody iterative nature of 
experimentation, we divide the experiment life-cycle into three steps: design of the experiment, execution 
of the experiment and adaptation of the experiment as learning takes place. The first step corresponds to 
stages 1 through 5 as shown in Table 1. The second step corresponds to stages 6 and 7. In the third step 
(corresponding, in part, to stage 8), the results of the previous step are used to determine whether the 
experiment objectives are met; if not, adjustments to the experiment design are recommended and the 
cycle is restarted with the design step. This section describes this framework in greater detail, starting 
with a high-level, conceptual view of the framework.  
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3.1 Components of the Simulation Experiment Management Framework 

Our framework is based on the MDE principles. This is reflected in an abstraction layer where multiple 
abstract domain models define the operation of the framework along with the structure of the data 
elements. This additional layer facilitates the inclusion of intelligent agents that guide the process and 
assist the user, while ensuring the integrity of the data being generated. The framework architecture is 
shown in Figure 2. The three basic steps of an experiment life-cycle are shown enveloping the system 
components. These are ontology-assisted experiment design, experiment synthesis and execution, and 
experiment model adaptation.  

 

  
Figure 2: Simulation Experiment Management Framework Architecture. 

3.2 The Experiment Life-cycle Process Model 

The experiment life-cycle process model orchestrates the elements of our framework. It drives the design, 
execution, and adaptation of an experiment. Figure 3 depicts the UML-based activity-flow specification 
of the process model, including the produced and consumed data in each step. Though most of the 
activities in the diagram correspond to the phases and stages found in Table 1, the loop makes the 
iterative nature of the process explicit. The process model presents the activities that take place 
throughout the entire life-cycle of an experiment. Next, we examine what takes place in each step of the 
proposed design-execute-adapt cycle.  
 Following the determination of experiment objectives, goals, and questions of interest driven by a 
feature-model, the system categorizes the parameters into dependent, control, and independent variables. 
This classification facilitates specification  of an experiment design. Following the synthesis and 
execution of the experiment, results are aggregated to a dependent variable specification defined in 
MathML. After the analysis of effect and determination of significant factors, experiment adaptation 
continues by re-classifying variables by categorizing insignificant factors as control variables. 
Furthermore, for optimization experiments, the adaptation agent can utilize a heuristic search or 
optimization method such as Genetic Algorithms to determine optimal values of dependent variables. 
Adaptation of the experiment model facilitates shifting the focus from variable screening to full factorial 
design, followed by optimization, or sensitivity and robustness analysis.  
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3.3 Design of the Experiment 

The experiment life-cycle starts with the design of the experiment. In this step, the user is guided by an 
intelligent agent that interprets the experiment ontology to determine what inputs are required from the 
user to complete the selected design feature. At the end of this step, an experiment description—including 
experiment meta-data such as experimenter’s name, experiment date, experiment design structure, data 
structures for the experimental results and the type of desired graphical output—is passed on to the next 
step and can be saved for future use. 

 

 
Figure 3: Top-level Experiment Activity Model. 

3.3.1 Feature-Oriented Experiment Modeling 

In designing the experiment, we distinguish between the goals, strategies, and tactics. The goals 
(questions) and the high-level of features of an experiment are driven by Feature-Oriented Domain 
Analysis. A feature model (Batory 2005) represents a family of experiments by allowing explicit 
specification of variability in the configuration of experiments. From the feature model, experiment 
designers can select configurable requirements to specify the features of the experiment. In effect, 
features serve as views into the experiment ontology, which specify the strategies and tactics necessary to 
implement the features. Features are categorized into two groups; simulation-based features (related to 
aspects such as model type, random number generation method, etc.) and DoE-based features (objective, 
number of factors, analysis method, etc.). In this paper we will focus exclusively on the DOE-based 
features: 
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• Objective refers to the goal of the simulation experiment and influences the execution and 
analysis of the experiment. In general, there are three types of objectives. Comparative designs 
seek to compare the factor effects and are used for choosing between alternatives. Screening 
designs are used for monitoring the effects of one or more factors. Response surface design aims 
to reduce variation of results in a specific value range. 

• Number of factors – given that computational resources are limited, the number of factors are key 
to designing efficient experiments. 

• Sampling Method decides the values of factors for all design points. 
• Analysis Method  –  the standard analysis method in DoE is analysis of variance (ANOVA). The 

design of the experiment, however, influences the specific application of that method. For 
instance, if there exists more than one response variable, MANOVA (Multivariate Analysis of 
Variance) is used. One-way ANOVA is used if there exists only one factor. Factorial ANOVA is 
used to study more than one factor with a single response variable. 

 

 
Figure 4: Provisional Feature Model for Simulation Experiment Design. 

A provisional feature model, including the simulation-based features and constraints, is shown in 
Figure 4. In this model, abstract features are used to support the understanding of different concrete 
features, so they are not mapped to an implementation artifact. Concrete features, on the other hand, have 
specific mappings onto experiment implementations. For example, “Analysis Method” is mapped to the 
implementation of typical DoE plots (main effects mean or interaction plots) while the function of the 
“Objective” feature is simply to group the sub-features. 

3.3.2 Experiment Ontology 

The experiment description is constructed based on an experiment ontology. A provisional ontology is 
shown in Figure 5. The ontology encompasses the structural elements of an experiment, including the 
experiment’s evolving objectives through one or more iterations. Each iteration contains an experiment 
design, its results, and the outputs. The experiment’s design is defined in terms of a set of responses, 
factors, and factor levels. These are defined by the user during the design step and are updated, if needed, 
during the adaptation step. Based on the design of the experiment, as well as the experiment’s objectives 
and the user’s input, multiple data structures are created that are for use in subsequent steps of the 
experiment life-cycle. These structures contain the outcome of the experiment execution and the results of 
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the statistical analyses performed on that outcome. These structures include a variety of result tables, 
statistical analysis results and charts. 
 Since not every computer simulation practitioner is formally trained in statistical design of 
experiments, the framework would be enhanced significantly by including an intelligent agent providing 
the know-how and expertise required for designing experiments. The model-based approach provides us 
with the necessary infrastructure so that the agent’s logic engine can make inferences and decisions based 
on the user’s input and the expert knowledge it possesses. The agent navigates the ontology and 
recommends relevant concepts applicable for the selected features and objectives. 

 

 
Figure 5: Provisional Experiment Ontology. 

 Consider the simulation model of a simple hypothetical queuing system shown in Figure 6. It is 
assumed that a simulation model description already exists and has the following information: 

• Configuration parameters: λ, µ and k. 
• Response variables: time in system, WIP, utilization for servers 1 through k 

 
 

Figure 6: Queuing System 
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The experiment feature model defines the following features and possible values: 

 
• Types of experiment objectives available: screen factors, optimize, and compare. 
• Sampling method: randomized, randomized block, full factorial, fractional factorial, central 

composite. 
• Number of factors: one, two to four, five or more 
• Number of responses: one. 

When the user creates a new experiment, an experiment skeleton in the form of Extensible Markup 
Language (XML) document is generated, containing only the most basic information about the 
experiment: 

 

 
 
 Suppose the user selects the comparison objective, with the aim of comparing the effects of λ and k 
on the average waiting time in system. This requires the design to account for one response variable and 
two factors (λ and k), at an unknown number of levels. Once the user has input this information, the agent 
generates a preliminary list of designs that fit this description. 

 

 
 
 The user has two alternatives: either select a design directly from the list generated by the agent, or 
manually input the number of factors and their values, the factor levels, and any other relevant 
information, as well as any additional design constraints such as blocks, center points, etc. The agent 
would then assure that the input is consistent and fits one of the experiment design patterns. In this case, 
the user selects a 2k factorial design with two factors, and is then requested to input the value of the two 
factor levels for each one of the factors. 

 

 

2734



Teran-Somohano, Dayıbaş, Yilmaz, and Smith  
 
 After the user selects a specific design, the agent proceeds as follows: (1) The type of statistical 
analysis is determined. In this case, 2k factorial designs are analyzed using ANOVA. (2) There is now 
enough information to generate the experiment structure. This is shown in a results table, which includes 
a row for each factor level combination to be examined, with a cell corresponding to the response value. 
This table will be filled with the raw data of experiment outcomes. The order of the factor level 
combinations will be executed at random. 
 Once the design step is concluded and the experiment description has been completed (at least in its 
structural form), the experiment must be executed. This is done by, first, synthesizing the description of 
the experiment and transforming it into executable code; second, by executing the script; and, third, by 
retrieving the simulation outcome. The results of this step are then stored in the experiment description. 
Experimenting with different factor level combinations requires execution of the simulation multiple 
times with varying parameter values. To this end, the synthesis process generates a runnable script that 
can invoke the simulator to generate the behavior of the model with different parameter values. Once all 
the runs are completed, the data are aggregated and summarized for statistical analysis and chart 
generation. For instance, an ANOVA analysis can be performed on the raw outcome data. These analyses 
can also be stored in the experiment description and will serve as the basis for the adaptation step. 
 As was mentioned above, simulation experiments are iterative processes. Hence, each iteration 
requires the experiment structure to be modified according to previous results. However, the changes to 
the experiment design should not be ad-hoc. Rather, they are influenced by the experiment objectives and 
the results obtained. Therefore, the adaptation step of the experimental life-cycle requires agent-supported 
schema update. Those components of the experiment that can be modified as well as the configuration 
constraints are formally described in the feature model. 

4 FUTURE WORK 

The challenges for implementing the experiment management framework fall into two major categories: 
first, there are those challenges arising from translating expert experiment domain knowledge into 
specific rules and procedures; second, the transformation of abstract platform-independent experiment 
models into executable scripts for batch-running the experiments. In the first category, we encounter 
issues related to the development of an intelligent agent that exhibits expert design of experiments 
knowledge. The following are the pertinent issues: What are the rules that relate experiment objectives to 
specific designs? How should we change the design as we acquire new experimental data?  In the second 
category, we have to deal with elaborating strategies and techniques for unifying the principles and 
software tools of MDE, scientific workflows, and feature modeling. As discussed in the introduction 
section, the experiment management framework is part of a larger effort to support simulation 
reproducibility and replicability. The proposed strategy offers avenues of opportunity for researchers in 
computer simulation to study reproducibility of simulation experiments, a critical objective and keystone 
of any scientific effort and a requirement for credibility.  

5 CONCLUSIONS 

This paper presents a conceptual framework for managing computer simulation experiments with the 
purpose of improving reproducibility and replicability. It provides a roadmap for building a software tool 
that can support and aid the design and execution of simulation experiments, as well as their changes over 
time. Experiments are iterative and any attempt to manage them should take this into account.  

To streamline the reproducibility of simulation experiments, experiments need to be explicitly 
modeled, reused, managed, and transformed into executable scripts coordinated by a process that is 
consistent with the standard Design of Experiments methodology (Lorscheid et al. 2012). To this end, the 
objective of the Simulation Experiment Management System is to allow users to design, execute, store, 
adapt, and share computer simulation experiments. 
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Simulation experiments (and experiments in general) are systematic, iterative processes for 
determining the truth or falsehood of a set of hypotheses. In order for these experiments to gain validity 
and certainty, it is necessary that they are repeatable, that is, others must be able to reproduce the results 
and, in consequence, confirm or deny the experimenter’s conclusions. This basic principle of all scientific 
endeavors has been significantly neglected in the computer simulation community, in part due to the 
difficulties arising from reproducing simulation experiments across different platforms and systems. It is 
the purpose of our work to remedy the lack of proper experiment management protocols. 
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