
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

A STRUCTURED DEVS MODEL REPRESENTATION BASED ON EXTENDED STRUCTURED
MODELING

Yunping Hu
Jun Xiao

Gang Rong

Institute of Cyber-Systems and Control
State Key Laboratory of Industrial Control Technology, Zhejiang University

Hangzhou, Zhejiang 310027, P.R.C

Xiaolin Hu

Department of Computer Science
Georgia State University
Atlanta, GA 30303, USA

ABSTRACT

Developing a simulation model needs lots of costs. If the model elements can be reused in newly developed
models of the same physical system, the modeling costs will be reduced. Traditional DEVS model
representations depend on programming languages. A modeler is difficult to identify the DEVS semantics
of model elements, which limits the reuse of existing models. In this paper, the structured modeling
technology is used to represent DEVS models. A DEVS model is represented as a structured model.
An atomic model can be represented as a genus graph and a modular tree, and a coupled model can
be represented as elemental detailed tables. Based on the visual representation, models can be stored,
maintained and reused easily. Two cases for the application of structured DEVS model representation are
also presented.

1 INTRODUCTION

Simulation modeling is a process of abstraction with consideration of some objective. Reuse of existing
models can significantly reduce the modeling costs and improve the quality of simulation when developing
new models for the same physical system.If a model can be represented as a structured format, where the
model elements and the relations between elements can be represented visually, the model reusability will
be improved significantly.

In this paper, we focus on the reuse of existing models in the Discrete Event System Specification
(DEVS) formalism (Zeigler, Praehofer, and Kim 2000), which has been used in discrete event simulation
for more than 30 years. Traditional DEVS implementations, like DEVSJava (Sarjoughian and Zeigler 1998)
and CD++ (Wainer 2002), are mainly developed in the object-orientation(OO) programming languages.
An atomic DEVS model is usually represented by an OOP class, and the DEVS behaviors are modeled
as methods of this class. The OO model representations have better usability and can be executed by
simulators implemented in the same OO programming languages. However, it is difficult to identify the
DEVS semantics of source codes in the programming environments, which influences the model reusability.

2812978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Hu, Xiao, Hu and Rong

From the structured view, these model representations are structured with elements of package, class, attribute
and method in the programming aspect. They are not structured in the DEVS aspect because their elements
for representation have no clear DEVS semantics.

Recently, some new DEVS modeling tools, which try to represent models in methods independent
on sources codes, have been developed. In Component-based System Modeler (CoSMo), a system is
modeled through three model types: template models, instance template models and instance models
(Sarjoughian and Elamvazhuthi 2009). CoSMo visualizes the model structure as a tree, where each node
corresponds to a port, a model or a component. AutoDEVS uses constrained natural language (NL) to
define FDDEVS models and then elaborate models using source codes (Salas and Zeigler 2009). For better
mode compositionality, AutoDEVS uses system entity structure (SES) to represent the model structure.
However, SES cannot describe the model behavior. From the structured view, CoSMo and AutoDEVS
both have a structured representation for the model structure, while they do not support a structured model
behavior. Their representations of the model behavior depend on sources codes or are limited by FDDEVS.

In this paper, we use Extended Structured Modeling (ESM) to represent a DEVS model as a structured
model. For the atomic DEVS formalism, a specific ESM model schema for a general atomic model is
proposed. For the coupled DEVS formalism, a specific ESM model schema for a coupled model class is
proposed. In these two model schemas, a set of ESM genera and modules with clear DEVS semantics are
defined. This model representation not only has a structured model structure, but also has a structured model
behavior. Modelers can manage the model elements visually and can modify or reuse models conveniently.

The remaining of this paper is structured as follows. In Section 2, we introduce ESM as the background
knowledge. Section 3 describes the structured DEVS model representation based on ESM in detail.
Applications and benefits of this representation are shown in Section 4, and conclusions and future work
are discussed in Section 5.

2 EXTENDED STRUCTURED MODELING

Structured Modeling (SM) is a kind of model representation based on discrete mathematics in the management
science/operations research community (Geoffrion 1989). It uses a hierarchically organized, partitioned
and attributed acyclic graph to represent a model. SM has five element types:

1. A primitive entity element is to represent any identifiable entity.
2. A compound entity element is a segmented tuple of primitive entity elements and/or other compound

entity elements.
3. An attribute element, which may be constant or variable, is a segmented tuple of entity elements

together with a value in some range.
4. A function element is a segmented tuple of elements together with a rule that calculate a particular

value based on the attribute elements of the same tuple.
5. A test element is like a function element, except that its value is only true or false.

However, SM focuses on the representation of static models vis-a-vis dynamic models. ESM (Lenard 1992,
Lenard 1993) extends SM for representing discrete event simulation (DES) models and proposes three new
elements:

1. A random attribute element is to represent a random variable.
2. An action element is to represent a change in a model element.
3. A transaction element is a combination of action elements associated with a control structure.

The segmented tuple portion of an element is called its calling sequence. If one element appears in
another calling sequence, the former is said to call the latter. ESM has been used to DES models in the
event-oriented world view. Unfortunately, ESM has not been used to represent DEVS models.

2813

Hu, Xiao, Hu and Rong

3 DEVS MODEL REPRESENTATION BASED ON ESM

A structured model has two parts: a model schema and a model instance. A model instance is composed of
elements and is represented as elemental tables. The elements with similarity can be treated as a genus. A
model schema is composed of genera and is represented as a genus graph, where the genera are connected
by calling sequences. A model schema can also be represented as a modular structure tree, where the
rooted node and the intermediate nodes are modules and the leaves are genera. The structured DEVS
model representation is developed based on ESM and the DEVS formalism, as shown in Figure 1. In this
version, we focus on the Classic DEVS formalism.

modular level (modular tree)

genus level (genus graph)

elemental level

(elemental graph or elemental detail tables)

model schema

model istance

physical system

physical system

Atomic model template

Simulation behavior of

the atomic model

Atomic Model

Coupled Model

Coupled model class

initial states

input sets

ESM Atomic DEVS ESM Coupled DEVS ESM

Figure 1: The framework of the DEVS representation based on ESM

An atomic model uses a series of variables (input or output variable, state variable) and rules (state
transition function, output function) to represent a physical system. The simulation process of an atomic
model describes the physical system completely in a time period. This process of a model is different, if
the initial states or input events are different. Therefore, in the ESM view, various simulation initial states,
input sets and results of an atomic model are treated as model instances, while the atomic model is treated
as a model schema.

Different atomic models in the DEVS formalism have some common features. In this paper, we develop
an atomic model template which contains common genera for representing various atomic models. An
atomic model of some physical system can be represented according to the template. The model instance
of an atomic model is to represent the event-driven simulation behavior.

A coupled DEVS model has no model behavior. In the genus and modular level, various coupled
model share the same model schema. Using ESM, we develop a specific model schema for representing the
coupled model class. A coupled model of some physical system is only an instance of this model schema.

In the following, for describing the model schemas, three formats are used: Structuring Modeling
Language (SML), genus graph and modular tree. SML is a kind of textual modeling language to represent
a model schema in detail(Geoffrion 1992a, Geoffrion 1992b). The model instances are represented as
elemental tables.

3.1 Atomic DEVS Model Representation Based on ESM

For representing the atomic DEVS model template, the SML schema is shown in Figure 2. It explains the
modules and genera of the atomic DEVS model template in detail.

The simulation process of an atomic DEVS model is event-driven. For describing the dynamic behavior,
an EVENT primitive set is defined. Each event occurs in some time point and may cause the update of
state variables. So each EVENT element has attributes of TIME VALUE, TIME ELAPSED VALUE,
CURRENT STATE, CURRENT PHASE, CURRENT TIME ADVANCE, NEXT STATE, NEXT PHASE

2814

Hu, Xiao, Hu and Rong

event

t

t

tt0 t1 t4t3t2

t0 t4t3

t1 t3t2

external

event

internal

event

EVENTe /pe/ There is a list of EVENTS.

TIME_VAL (EVENTe) /va/ : Int Every EVENT point has a TIME VALUE.

E_VAL (EX_EVENTe) /va/ : Int Every EVENT point has a TIME ELAPSED VALUE.

CUR_STATE (EVENTe) /va/ Every EVENT point has a CURRENT STATE.

NXT_STATE (EVENTe) /va/ Every EVENT point has a NEXT STATE.

CUR_PHASE (EVENTe) /va/ Every EVENT point has a CURRENT PHASE.

NXT_PHASE (EVENTe) /va/ Every EVENT point has a NEXT PHASE.

CUR_SIGMA (EVENTe) /va/ : Int Every EVENT point has a CURRENT TIME ADVANCE.

NXT_SIGMA (EVENTe) /va/ : Int Every EVENT point has a NEXT TIME ADVANCE.

INPUT_PORTip /pe/ There is a list of INPUT PORTs.

EX_EVENT (EVENTe, INPUT_PORTip) /ce/ Select An EXTERNAL EVENT means an event from

some input port.

INPUT_VAL (EX_EVENTe,ip) /va/ {EX_EVENT} EXTERNAL_EVENT has an INPUT VALUE.

EX_STATE_UPD (INPUT_VALe,ip, E_VALe,ip, CUR_STATEe, CUR_PHASEe, CUR_SIGMAe,

NXT_STATEe, NXT_PHASEe, NXT_SIGMAe) /ac / {EX_EVENT} A EX_EVENT may result an

EXTERNAL STATE UPDATE action, which is to calculate the value of NXT_STATE, NXT_PHASE or

NXT_TIME based on INPUT_VAL, E_VAL, CUR_STATE, CUR_PHASE, CUR_SIGMA.

EX_TEST (INPUT_VALe,ip, E_VALe,ip, CUR_STATEe, CUR_PHASEe, CUR_SIGMAe) /t/

{EX_EVENT} Before executing an EX_STATE_UPD, an EXTERNAL TEST OF INPUT VALUE,

TIME ELAPSED VALUE and CURRENT STATE may be executed when an EX_EVENT comes.

EX_TRANS (EX_STATE_UPDe,ip, EX_TESTe,ip) /tr/ {EX_EVENT} An EXTERNAL EVENT may

result an EXTERNAL TRANSITION transaction which may call EX_STATE_UPD, EX_TEST in the

same EX_EVENT point.

IN_EVENT (EVENTe) /ce/ Select There is a list of INTERNAL EVENTs, a subset of EVENTs.

IN_STATE_UPD (NXT_STATEe, NXT_PHASEe, NXT_SIGMAe, CUR_STATEe, CUR_PHASEe,

CUR_SIGMAe) /ac / {IN_EVENT} An IN_EVENT may result an INTERNAL STATE UPDATE action,

which is to calculate the value of NXT_STATE, NXT_PHASE, or NXT_SIGMA based on CUR_STATE,

CUR_PHASE, CUR_SIGMA.

IN_STATE_TEST (CUR_STATEe, CUR_PHASEe, CUR_SIGMAe) /t/ {IN_EVENT} Before

executing an IN_STATE_ UPD, an INTERNAL CURRENT STATE TEST may be executed as a

condition when an IN_EVENT comes.

IN_TRANS (IN_STATE_UPDe, IN_STATE_TESTe) /tr/ {IN_EVENT} An IN_EVENT may result an

INTERNAL TRANSITION transaction which may call IN_STATE_UPD and IN_STATE_TEST in the

same IN_EVENT point.

OUTPUT_PORTop /pe/ There is a list of OUTPUT PORTs.

OUTPUT_EVENT (IN_EVENTe, OUTPUT_PORTop) /ce/ Select There is an OUTPUT EVENT, if a

model output is sent to some OUTPUT_PORT when an IN_EVENT occurs.

OUTPUT_VAL (OUTPUT_EVENTe,op) /va/ {OUTPUT_EVENT} Every OUTPUT_EVENT has an

OUTPUT VALUE.

OUTPUT_STATE_TEST (CUR_STATEe, CUR_PHASEe, CUR_SIGMAe) /t/ {OUTPUT_EVENT}

Before executing an OUTPUT_ASS, an OUTPUT CURRENT STATE TEST may be executed as a

condition when an IN_EVENT comes.

OUTPUT_ASS (OUTPUT_VALe,op, CUR_STATEe, CUR_PHASEe, CUR_SIGMAe) /ac /

{OUTPUT_EVENT} A INTERNAL EVENT may result an OUTPUT ASSIGNMENT action, which is to

get an OUTPUT_VAL value based on CUR_STATE, CUR_PHASE, CUR_SIGMA.

OUTPUT_FUNC (OUTPUT_ASSe,op, IN_STATE_TESTe,op) /tr/ {OUTPUT_EVENT} A

IN_EVENT may result an OUTPUT FUNCTION which may call OUTPUT_STATE_TEST and

OUTPUT_ASS in the same OUTPUT_EVENT point.

tt1 t3t2

output

event

STATE module

EXTERNAL_TRANSITION

module

INTERNAL_TRANSITION

module

OUTPUT

module

Figure 2: SML schema for the atomic DEVS model template

2815

Hu, Xiao, Hu and Rong

and NEXT TIME ADVANCE. The phase variable and the time advance variable are inherent state variables
in each atomic model.

All events in a simulation are divided into external events and internal events. When an input comes into
a model from outside, an external event occurs and the external transition function is called to update the
state variables based on the present state, the input value and the time elapsed in the current state. Therefore,
we define an EXTERNAL EVENT set, which is a compound set combining the EVENT set with the INPUT
PORT set. Each EXTERNAL EVENT has the attributes of INPUT VALUE, actions of EXTERNAL STATE
UPDATE and tests of EXTERNAL TEST. The EXTERANL TRANSITION transaction calls these actions
and tests when an external event occurs.

When the elapsed time equals to the time advance in the current state, an internal event occurs and
the internal transition function is called to update the state variables based on the present state. We define
an INTERNAL EVENT set, a subset of the EVENT set. An INTERNAL EVENT may have INTERNAL
STATE UPDATE actions and the INTERNAL CURRENT STATE TESTs. The INTERANL TRANSITION
transaction calls these actions and tests when an internal event occurs.

When an internal event occurs, the output function will be called to send out message before the internal
transition function is called. So, each internal event is also an output event which associates with an output
port. We define an OUTPUT EVENT set which is a compound set combining the INTERNAL EVENT
set with the OUTPUT PORT set. Each OUTPUT EVENT has an attribute of OUPUT VALUE and an
OUTPUT ASSIGNMENT action and may have an OUTPUT CURRENT STATE TEST. The OUTPUT
FUNCTION calls the action and the test when an output event occurs.

In classic ESM, each attribute has a value range in consideration of the mathematical aspect. However,
each attribute here has a simple or complex data type. Because the DEVS implementations depend on
programming languages, the data type property is necessary for an attribute.

For visualizing the atomic DEVS model template, the genus graph is shown in Figure 3. and the modular
tree is shown in Figure 4. In this genus graph, the genera are connected as a directed graph through calling
sequences. In this modular tree, the rooted node is the ATOMIC MODEL module and the intermediate notes
have four module types: STATE, EXTERNAL TRANSITION, INTERNAL TRANSITION and OUPUT.

pe:

EVENT

va:

TIME_VAL

va:

CUR_STATE

CUR_PHASE

CUR_SIGMA

va:

NXT_STATE

NXT_PHASE

NXT_SIGMA

ce:

EX_EVENT

va:

E_VAL

va:

INPUT_VAL

pe:

INPUT_PORT

ac:

EX_STATE_UPD

t:

EX_TEST

tr:

IN_TRANS

tr:

EX_TRANS
tr:

OUTPUT_FUNC

ac:

OUTPUT_ASS

ac:

IN_STATE_UPD

t:

IN_STATE_TEST

t:

OUTPUT_STATE_TEST

va:

OUTPUT_VAL

ce:

OUTPUT_EVENT

ce:

IN_EVENT

pe:

OUTPUT_PORT

Figure 3: Directed genus graph for the atomic DEVS model template

Furthermore, the modular tree here explains how to represent an atomic model of some physical system
based on the model template. A specific atomic model may have other state variable in addition to the
phase variable and the time advance variable. So in the STATE module, specific CUR STATE attributes
and NXT STATE attributes may be added. Each EXTERNAL TRANSITION module corresponds to
an input port. The reason is that an atomic model may have different rules (actions and transactions)
to change the state for different input ports. If an atomic model has more than one input ports, more
than one EXTERNAL TRANSITION modules are needed. The OUTPUT module is similar with the
EXTERNAL TRANSITION module and each OUTPUT module corresponds to only one output port.

2816

Hu, Xiao, Hu and Rong

ATOMIC_MODEL

STATE

EXTERNAL_TRANSITION 1

INTERNAL_TRANSITION

Module

OUTPUT 1

EX_TEST: ex_t1, ex_t2, ...

OUTPUT_STATE_TEST: out_t1, out_t2, ...

IN_STATE_TEST: in_t1, in_t2, ...

OUTPUT_ASS: out_a1, out_a2, ...

OUTPUT_FUNC: out_tr1, out_tr2, ...

IN_TRANS: in_tr1, in_tr2, ...

EX_TRANS: ex_tr1, ex_tr2, ...

IN_STATE_UPD: in_upd1, in_upd2, ...

IN_EVENT

CUR_SIGMA

NXT_SIGMA

CUR_PHASE

NXT_STATE: var1, var2, ...

NXT_PHASE

EX_EVENT: inport_event1

INPUT_VAL: in_var1

INPUT_PORT: inport1

OUTPUT_EVENT: output_event1

OUTPUT_VAL: out_var

OUTPUT_PORT: outport1

CUR_STATE: cur_var1, cur_var2, ...

EXTERNAL_TRANSITION 2

EXTERNAL_TRANSITION m

..
.

OUTPUT 2

OUTPUT n

..
.

Module Genus

EX_STATE_UPD: ex_upd1, ex_upd2, ...

EVENT

TIME_VAL

E_VAL

Figure 4: Modular tree for the atomic DEVS model template

A model instance of the model schema for the atomic model template can be represented as elemental
detail tables, as show in Table 1. These tables only contain entities and value-based elements including
primitive entities, compound entities, attributes and tests. The column names of these tables come from
the model schema for the atomic model template. For an atomic model of some physical system, these
elemental tables may be extended in terms of the extension of the model template.

Table 1: Elemental detail tables for the model instance of the atomic DEVS model template

Table Name Column Name
EVENT EVENT ‖ INTERP TIME VAL CUR STATE NXT STATE CUR PHASE

NXT PHASE CUR SIGMA NXT SIGMA E VAL
INPUT PORT INPUT PORT ‖ INTERP

EX EVENT EVENT INPUT PORT ‖ IN VAL EX TEST
IN EVENT EVENT ‖ IN STATE TEST
OUT PORT OUTPUT PORT ‖ INTERP

OUTPUT EVENT EVENT OUTPUT PORT ‖ OUT VAL OUTPUT STATE TEST

3.2 Coupled DEVS Model Representation Based on ESM

A coupled DEVS model only has elements of model structure. We define a series of primitive sets and
compound sets in the model schema for the coupled DEVS model class. The SML representation of the
coupled model class is show in Figure 5.

A coupled model is composed of components, each of which associates with an atomic or coupled model.
So, we define two primitive sets of MODEL and COMPONENT and a compound MODEL COMPONENT
set. The ATOMIC MODEL set and the COUPLED MODEL set are both compound sets, subsets of
the MODEL set. The components in a coupled model are connected by couplings: internal couplings
(ICs), external input couplings (EICs) and external output couplings (EOCs). Therefore, we define three
compound sets of IC, EIC and EOC. The select function can be represented as a set of ordered pairs, each
element in which has one prioritized component and one or more than one concurrent components. So,
we define a SELECT compound set which has two member COMPONET sets.

2817

Hu, Xiao, Hu and Rong

MODELm /pe/ There is a list of MODELs.

C_MODEL (MODELm) /ce/ Select There is a list of COUPLED MODELs, a subset of MODELs.

A_MODEL (MODELm) /ce / Select There is a list of ATOMIC MODELs, a subset of MODELs.

MODEL_INPUT_PORT (MODELm, INPUT_PORTip) /ce/ Select {MODEL} × {INPUT_PORT} A

MODEL INPUT PORT means that a MODEL has zero or more INPUT_PORTs.

MODEL_OUTPUT_PORT (MODELm, OUTPUT_PORTop) /ce/ Select {MODEL} × {OUTPUT_PORT}

A MODEL OUTPUT PORT means that a MODEL has zero or more OUTPUT_PORTs.

COMPONENT /pe/ There is a list of COMPONENTs.

MODEL_COMPONENT /ce/ Select {MODEL} × {COMPONENT} A MODEL COMPONENT means that a

COMPONENT associates with a MODEL.

EOC (C_MODELm, OUTPUT_PORTop, COMPONENTc, OUTPUT_PORTop) /ce/ Select {C_MODEL}

× {OUTPUT_PORT} × {COMPONENT} × {OUTPUT_PORT} A EXTERNAL OUTPUT COUPLING

represents a output coupling between a COMPONENT and a COUPLED_MODEL.

EIC (C_MODELm, INPUT_PORTip, COMPONENTc, INPUT_PORTip) /ce / Select {C_MODEL} ×

{INPUT_PORT} × {COMPONENT} × {INPUT_PORT} A EXTERNAL INPUT COUPLING represents a

input coupling between a COMPONENT and a COUPLED_MODEL.

IC (COMPONENTc, OUTPUT_PORTip, COMPONENTc, INPUT_PORTop) /ce/ Select

{COMPONENT} × {OUTPUT_PORT} × {COMPONENT} × {INPUT_PORT} A INTTERNAL

COUPLING represents a internal coupling between a COMPONENT and another COMPONENT.

SEL (COMPONENTc, COMPONENTc) /ce/ Select A SELECT FUNCTION has a set of ordered pairs where

the first elements are prioritized components and the second elements are concurrent components.

Figure 5: SML schema for the coupled DEVS model class

Based on the SML schema for the coupled DEVS model class, the genus graph is shown in Figure 6 and
the modular tree is shown in Figure 7. The rooted node of the modular tree is COUPLED MODEL, which
has three intermediate nodes: MODEL, COMPONENT and COUPLING. The elemental detail tables for
a coupled model are shown in Table 2. Modelers can write the coupled model elements for some physical
system into these tables.

pe:

MODEL

ce:

IC
ce:

SEL

ce:

EOC

pe:

COMPONENT

ce:

EIC

pe:

OUTPUT_PORT

pe:

INPUT_PORT

ce:

MODEL_INPUT_PORT

ce:

MODEL_OUTPUT_PORT

ce:

MODEL_COMPONENT

ce:

C_MODEL

ce:

A_MODEL

Figure 6: Directed genus graph for the coupled DEVS model class

4 CASES

Based on the structured DEVS model representation, we can represent specific DEVS models. In this
section, we use two cases to test the model representation and discuss the benefits using this method.

4.1 The Structured Representation of an Atomic Model

We have defined an atomic model template based on ESM. In this section, we use the template to represent
the processor model. The formal specification of the processor model is shown in Figure 8

The modular tree and the genus graph for the processor model is shown in Figure 9. There is a
state variable named job in the processor model. Therefore, in the STATE module, specific CURRENT

2818

Hu, Xiao, Hu and Rong

COUPLED_MODEL

DEVS_MODEL

COMPONENT

COUPLING

Module

SEL

EOC

IC

EIC

INPUT_PORT

OUTPUT_PORT

MODEL_COMPONENT

C_MODEL

COMPONENT

Module Genus

MODEL

A_MODEL

MODEL_INPUT_PORT

MODEL_OUTPUT_PORT

Figure 7: Modular tree for the coupled DEVS model class

Table 2: Elemental detail tables for the model instance of the atomic DEVS model template

Table Name Column Name
MODEL MODEL ‖ INTERP

A MODEL MODEL
C MODEL MODEL

INPUT PORT INPUT PORT ‖ INTERP
MODEL INPUT PORT MODEL INPUT PORT

OUTPUT PORT OUTPUT PORT ‖ INTERP
MODEL OUTPUT PORT MODEL OUTPUT PORT

COMPONENT COMPONENT ‖ INTERP
EIC MODEL INPUT PORT COMPONENT INPUT PORT

EOC COMPONENT OUTPUT PORT MODEL OUTPUT PORT
IC COMPONENT OUTPUT PORT COMPONENT INPUT PORT

SEL COMPONENT COMPONENT

Processor = <X, Y, S,δext,δint,λ, ta>

Where

InPorts = {“in” }, where Xin = R0
+

X = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and values

OutPorts = {“out” }, where Yout = R0
+

Y = {(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports and values

S = {phase, sigma, job} = {“passive”, “active”}×R0
+×R0

+

ext(msg: type ExternalMessage) {

cur_job = job; cur_phase = phase; cur_sigma = sigma;

if(msg.port== in) { inJob = msg.value; job = inJob;

if(cur_phase == passive) { phase = active; sigma = 5;}

else sigma = cur_sigma – e; }

int(msg: type InternalMessage) {

cur_phase = phase; cur_sigma = sigma;

phase = passive; sigma = Inf; }

(msg: type InternalMessage) {

cur_job = job;

outJob = cur_job; send outJob to out port; }

ta(“passive”) = ta(“active”) = 5

Figure 8: The formal specification of the processor model

2819

Hu, Xiao, Hu and Rong

STATE named cur job and specific NEXT STATE named job are defined. Because there is only one input
port and one output port, there is one EXTERNAL TRANSITION module and one OUTPUT module in
the modular tree. In the EXTERNAL TRANSITION module, the tr1 transaction genus calls the phase t
test, the job ac1 action, the sigma ac1 action and the sigma ac3 action with the if-else control structure.
There is no transaction in the OUTPUT module because there is only one action named outJob ass. In the
INTERNAL TRANSITION module, the tr2 transaction calls the sigma ac2 action and the phase ac2 action
with the sequential control structure. After simulation, we can get the model instance for the processor

pe:

EVENT

ac: phase_ac1

EX_STATE_UPD

ce: in_EX_EVENT

EX_EVENT

va: job

NXT_STATE

va: inJob

INPUT_VAL

va: outJob

OUTPUT_VAL

t: phase_t

EX_TEST

tr: tr2

IN_TRANS

tr: tr1

EX_TRANS

ac: out_ac

OUTPUT_ASS

ac: phase_ac2

IN_STATE_UPD

pe: in

INPUT_PORT

ce: out_OUTPUT_EVENT

OUTPUT_EVENT

ce:

IN_EVENT

va: cur_job

CUR_STATE

pe: out

OUTPUT_PORT

ac: sigma_ac2

IN_STATE_UPD

va:

NXT_PHASE

va:

CUR_PHASE

va:

NXT_SIGMA

ac: job_ac1

EX_STATE_UPD

va:

CUR_SIGMA

ac: sigma_ac1

IN_STATE_UPD

va:

E_VAL

ac: sigma_ac3

EX_STATE_UPD

EX_TEST

phase_t: CUR_PHASE == passive;

EX_STATE_UPD

job_ac1: job = inJob;

phase_ac1: NXT_PHASE = busy;

sigma_ac1: NXT_SIGMA = 5;

sigma_ac3: NXT_SIGMA =

CUR_SIGMA - E_VAL;

EX_TRANS

tr1: if phase_t

then job_ac1, sigma_ac1, phase_ac1

else sigma_ac3;

IN_STATE_UPD

phase_ac2: NXT_PHASE = passive;

sigma_ac2: NXT_SIGMA = Inf;

IN_TRANS

tr2: sigma_ac2, phase_ac2;

OUTPUT_ASS

outJob_ac: outJob = cur_job;

ATOMIC_MODEL:

processor

STATE

EXTERNAL_TRANSITION 1

INTERNAL_TRANSITION

Module

OUTPUT 1

EX_TEST: phase_t

OUTPUT_ASS: outJob_ac

EX_TRANS: tr1

IN_STATE_UPD: phase_ac2,

sigma_ac2

IN_EVENT

CUR_SIGMA

NXT_SIGMA

CUR_PHASE

NXT_STATE: job

NXT_PHASE

EX_EVENT: in_EX_EVENT

INPUT_VAL: inJob

E_VAL

INPUT_PORT: in

OUTPUT_EVENT:

out_OUTPUT_EVENT

OUT_VAL: outJob

OUTPUT_PORT: out

CUR_STATE: cur_job

Module Genus

IN_TRANS: tr2

EX_STATE_UPD: phase_ac1,

job_ac1, sigma_ac3

TIME_VAL
EVENT

Figure 9: The modular tree and the genus graph for the processor model

model. The initial states and input sets have been set before simulation. The initial phase is passive, the
initial time advance is infinite and the initial value of the job variable is 0. There are three input events in
the time points of 1 and 4. The elemental detail tables of this model instance are shown in Figure 10.

There are several benefits for the structured representation of DEVS models. The modular tree and
genus graph can represent an atomic model in a visual format. If the modeler does not use some variable
in a newly developed model, the variable can be deleted and the actions and transaction calling the variable
will be deleted automatically in the genus graph. The model instance shows the simulation results in detail.
The modeler can choose corresponding tables to look at the state updates, input events or output events.

2820

Hu, Xiao, Hu and Rong

Table Name: EVENT

cur_job jobTIME_VAL||EVENT

Table Name: INPUT_PORT

INPUT_PORT

Table Name: in_EX_EVENT

EVENT INPUT_PORT phase_t

Table Name: IN_EVENT

EVENT

Table Name: OUTPUT_PORT

OUTPUT_PORT

Table Name: out_OUTPUT_EVENT

outJobOUTPUT_PORTEVENT ||

CUR_PHASE NXT_PHASE CUR_SIGMA NXT_SIGMA

INTERPINTERP

INTERP

||

||

0 121||e1 passive active Inf 5in job 1

12 126||e3 active passive 2 Infout job 1
12 124||e2 active active 5 2in job 2

in in job port|| out out job port||

||

e1 in true||

e2 in false||

e3

12oute3 ||

inJob

12

17

1

3

E_VAL

0

Figure 10: Elemental detail tables for the processor model

4.2 The Structured Representation of an Coupled Model

We have defined the coupled model class based on ESM. In this section, we use the model class to represent
the EFP (Experiment Frame and Processor) model, as shown in Figure 11. The EFP model is a coupled
DEVS model and has three components: Generator, Processor and Transducer. Each component associates
with an atomic DEVS model. For example, Generator is a component of the genr model.

outJobPoutJob
Generator

(genr)

outStopinArriv
Transducer

(transd)

inSolved

outJobGinStop
Processor

(proc)

Figure 11: EFP coupled model

The EFP coupled model is represented as a model instance of the coupled model class. The elemental
detail tables for this model instance are shown in Figure 12. The model elements of the EFP model are
all listed in these tables.

5 CONCLUSION

In this paper, we use the ESM to represent a DEVS model as a structured model. For the atomic DEVS
formalism, we propose an atomic DEVS model template represented as an ESM model schema. This
template contains basic modules and genera for the representation of various specific atomic models. The
model instance for an atomic model is to represent the simulation behavior in some initial states and input
sets. For the coupled DEVS formalism, we propose a coupled model class represented as an ESM model
schema. A specific coupled model is a model instance of this model schema.

The structured representation of DEVS models provides a visual format to build and maintain models.
An atomic model can be represented as a modular tree or a genus graph. The modeler can add or delete model
elements visually. Furthermore, the simulation behavior of an atomic model is represented as elemental
detail tables in detail. The user can observe the simulation results conveniently. The model elements of a
coupled model are stored in a series of tables, where they can be edited clearly.

We are planning to develop a DEVS modeling platform to support the ESM model representation. A
DEVS model is firstly represented as an ESM model, and then is transformed into a model executed by
CD++ or DEVSJava. The DEVS models are created and maintained in a structured format in this platform.
The Java language and the data base technology are used in developing this platform.

2821

Hu, Xiao, Hu and Rong

Table Name: MODEL

||MODEL

Table Name: INPUT_PORT

INPUT_PORT

Table Name: MODEL_INPUT_PORT

MODEL INPUT_PORT

Table Name: COMPONENT

INTERP

INTERP

||

||genr a generator atomic model

||transd a transducer atomic model

||proc a processor atomic model

inStop stop job port||

inJob in job port||

inArriv arrive job port||

inSolved solved message port||

Table Name: OUTPUT_PORT

OUTPUT_PORT INTERP||

outJobG out job port||

outJobP out job port||

outStop stop message port||

genr

transd

proc

inStop

inJob

inArriv

inSolved

transd

Table Name: MODEL_OUTPUT_PORT

MODEL OUTPUT_PORT

genr

proc

outJobG

outJobP

outStoptransd

Table Name: MODEL_COMPONENT

MODEL COMPONENT

genr

proc

Generator

Processor

Transducertransd

Generator

Processor

Transducer

COMPONENT INTERP||

a genr component||

a proc component||

a transd component||

Table Name: IC

COMPONENT OUTPUT_PORT

Generator

Processor

outJobG

outJobP

outStopTransducer

Table Name: SEL

COMPONENT COMPONENT

Generator

Processor Transducer

Table Name: ATOMIC_MODEL

MODEL

genr

transd

proc

COMPONENT INPUT_PORT

Generator

Processor inJob

inSolved

inJob

Transducer

Generator outJobG Transducer inArriv

Processor

TransducerGenerator

Transducer Generator

Figure 12: Elemental detail tables for the EFP model

ACKNOWLEDGEMENTS

The financial supports from the National High Technology R&D programs of China (2012BAE05B03 &
2013AA040701) are gratefully acknowledged.

REFERENCES

Geoffrion, A. 1989. “The Formal Aspects of Structured Modeling”. Operations Research 37 (1): 30–51.
Geoffrion, A. 1992a. “The SML Language for Structured Modeling: Levels 1 and 2”. Operations Research 40

(1): 38–57.
Geoffrion, A. 1992b. “The SML Language for Structured Modeling: Levels 3 and 4”. Operations Research 40

(1): 58–75.
Lenard, M. L. 1992. “Extending the Structured Modeling Framework for Discrete-event Simulation”. In

Proceedings of the 25th Hawaii International Conference, 494–503. Los Alamitos, California: Institute
of Electrical and Electronics Engineers, Inc.

Lenard, M. L. 1993. “A Prototype Implementation of a Model Management System for Discrete-Event
Simulation Models”. In Proceedings of the 25th Conference on Winter simulation, edited by G. W.
Evans, M. Mollaghasemi, E. Russell, and W. Biles, 560–568. Los Angeles, California: Association for
Computing Machinery.

Salas, M. C., and B. P. Zeigler. 2009. “AutoDEVS: a Methodology for Automating Modeling and Simulation
Software Development and Testing of Interoperable Systems”. The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology 6 (1): 33–52.

Sarjoughian, H. S., and V. Elamvazhuthi. 2009. “CoSMoS: a Visual Environment for Component-based
Modeling, Experimental Design, and Simulation”. In Proceedings of the 2nd International Conference
on Simulation Tools and Techniques, edited by O. Dalle, G. Wainer, L. Perrone, and G. Stea, 1–9. Rome,
Italy: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

2822

Hu, Xiao, Hu and Rong

Sarjoughian, H. S., and B. P. Zeigler. 1998. “DEVSJAVA: Basis for a DEVS-based Collaborative M&S
Environment”. In Proceedings of the International Conference on Web-based Modeling & Simulation,
edited by P. Fishwick, D. Hill, and R. Smith, 29–36. San Diego, California: Society for Computer
Simulation International.

Wainer, G. 2002. “CD++: a Toolkit to Develop DEVS Models”. Software - Practice and Experience 32
(13): 1261–1306.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems. 2nd ed. Academic Press.

AUTHOR BIOGRAPHIES

Yunping Hu is a doctor candidate of Control Science and Engineering at Zhejiang University in Hangzhou,
China. He holds a M.S. in Control Science and Engineering from Nanjing University of Technology in
Nanjing, China. His research interests include modeling & simulation, model management and decision
support system. His email address is yphu@iipc.zju.edu.cn.

Jun Xiao is a master candidate of Control Science and Engineering at Zhejiang University in Hangzhou,
China. He earned his Bachelor’s degree in Automation from Wuhan University in Wuhan, China. His
research interests include DEVS modeling & simulation and mathematical knowledge management. His
email address is jxiao@iipc.zju.edu.cn.

Gang Rong is Professor of Control Science and Engineering at Zhejiang University in Hangzhou, China. His
research interests cover modeling, simulation & optimization, data-ming, data visualization and enterprise-
control system integration in process industries. He holds a Ph.D. in Control Science and Engineering from
Zhejiang University in Hangzhou, China. His email address is grong@iipc.zju.edu.cn and his web page is
http://mypage.zju.edu.cn/en/rglab.

Xiaolin Hu is an Associate Professor in the Computer Science Department at Georgia State University,
Atlanta, Georgia. He received his PhD degree from the University of Arizona, MS degree from the
Chinese Academy of Sciences, and BS degree from the Beijing Institute of Technology in 2004, 1999,
and 1996, respectively. His research interests include modeling and simulation theory and application,
agent and multi-agent systems, and complex systems science. He has served as program chairs for several
international conferences/symposiums in the field of modeling and simulation, and is an associate editor
for Simulation: Transaction of The Society for Modeling and Simulation International. Dr Hu is a National
Science Foundation (NSF) CAREER Award recipient. His email address is xhu@cs.gsu.edu.

2823

