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ABSTRACT 

The goal of this paper is to study the team formation of multiple UAVs and UGVs for collaborative 
surveillance and crowd control under uncertain scenarios (e.g. crowd splitting). A comprehensive and 
coherent dynamic data driven adaptive multi-scale simulation (DDDAMS) framework is adopted, with 
the focus on simulation-based planning and control strategies related to the surveillance problem 
considered in this paper. To enable the team formation of multiple UAVs and UGVs, a two stage 
approach involving 1) crowd clustering and 2) UAV/UGV team assignment is proposed during the 
system operations by considering the geometry of the crowd clusters and solving a multi-objective 
optimization problem. For the experiment, an integrated testbed has been developed based on agent-based 
hardware-in-the-loop simulation involving seamless communications among simulated and real vehicles. 
Preliminary results indicate the effectiveness and efficiency of the proposed approach for the team 
formation of multiple UAVs and UGVs.  

1 INTRODUCTION 

Unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) have been widely used for 
surveillance and border patrol due to their capability in autonomous searching and detection and fitness 
for dull or dangerous tasks. For example, according to Haddal and Gertler (2010), a significant number of 
illegal immigrants were detected by the usage of UAVs and UGVs by the US border patrol.  
 Surveillance and crowd control using UAVs and UGVs is a complex issue involving various 
problems such as surveillance region assignment, crowd searching, detection, tracking, and motion 
planning. To resolve such a complex problem, a stream of research efforts has been pursued by the 
authors of this paper, such as system design, algorithm integration, and testbed implementation. For 
example, Figure 1 is the system overview of dynamic data driven adaptive multi-scale simulation 
(DDDAMS)-based planning and control framework for surveillance and crowd control, which have been 
studied by Khaleghi et al. (2013a, 2013b, 2014). The considered framework consists of 4 different 
modules including decision module for DDDAMS, integrated planner, integrated controller, and real 
system. The integrated controller collects vision-based data, processes it via crowd detection, crowd 
 

2907978-1-4799-7486-3/14/$31.00 ©2014 IEEE



Khaleghi, Xu, Minaeian, Li, Yuan, Vo, Lien, Liu, and Son 
 

 

tracking and motion planning modules, and generates commands to control the real system. This process 
is iterative until significant system performance deviations are detected, where the decision module for 
DDDAMS and the integrated planner are invoked to select the best control strategies in use for the future. 
The hardware and software testbed is constructed involving real and virtual UAVs/UGVs modeled via 
agent-based simulation. More details on the workflow, component interactions and integration efforts can 
be found in Khaleghi et al. (2013a, 2013b, 2014). 

 

Figure 1: DDDAMS-based planning and control framework for UAV/UGV surveillance and crowd 
control (Khaleghi et al. 2013a, 2013b, 2014). 

 In this paper, the following scenarios are considered: a crowd of individuals are passing from a border 
region and a team of unmanned vehicles (UVs) (assuming one UAV and multiple UGVs as a team in this 
paper) performing surveillance have detected the crowd; from this time point, the crowd may continue to 
follow its designated path, or start to split into numerous groups to reduce the risk of being further 
followed and captured by border patrol agents. Under the latter case, the team of UVs have several 
options such as 1) team dispersion to capture different crowd groups (system performance may not be 
optimal) and 2) following one of the crowd groups and call for additional team/teams of UVs to follow 
other crowd groups. Figure 2 illustrates a sample splitting behavior of a crowd into two groups, where at 
time point t + 2Δt , the lower crowd group is out of the detection range of the current UV team. It is 
assumed that the UAVs flying at a high altitude observe a global view of the crowd without detailed 
information (low fidelity information, shown as the shaded cells in Figure 2), while the UGVs can 
observe individual dynamics in the crowd (high fidelity information, shown as the dots in Figure 2). 
 Given the described problem scenario, a DDDAMS-based UAV and UGV team formation approach 
is proposed in this paper, where different fidelity information is utilized to perform crowd clustering and 
UAV/UGV team assignment. First, mixture model-based clustering is employed based on the tracking 
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outputs of UAVs with aggregated information of UGVs. Then, in order to find the required number of 
vehicles for each cluster, three cases are formulated according to UGV’s detection capabilities and 
different cluster geometries. Last, a resource allocation problem is presented to optimize the crowd 
coverage percentage and smoothness of team assignment, where the optimal control strategies depend on 
the weights of the objectives. This work serves as a starting point to study a full coordination of 
distributed UAVs and UGVs in the surveillance and crowd control mission. As noted, when the crowd 
splits, a new team of UAVs and UGVs will be used, instead of re-forming the current UAV/UGV team 
(current assumption). This motivates us to focus on determining the number of vehicles required for each 
team. 
 

 
Figure 2: Demonstration of splitting behavior of the crowd and need of forming a new team. 

 The rest of this paper is organized as follows. Section 2 provides a background and literature review 
of different clustering methods (focusing on Gaussian Mixture clustering) as well as team formation in 
multi-robot systems. Section 3 discusses the crowd clustering and team assignment approach for 
surveillance and crowd control missions. Section 4 provides the details of the integrated agent-based 
hardware-in-the loop simulation and real UAV/UGV as the testbed and preliminary experiment results are 
presented. Section 5 concludes the work and discusses future research directions. 

2 LITERATURE REVIEW 

In the area of crowd tracking and surveillance, cluster analysis is an important issue. Clustering the 
individuals into several groups, instead of considering all the individuals as one group, helps motion 
tracking. Andrade, Blunsden, and Fisher (2006) applied unsupervised feature extraction using spectral 
clustering to identify the optimal number of models in representing normal motion patterns for better 
crowd event detection. Ge, Collins, and Ruback (2009) developed a bottom-up hierarchical clustering 
method to group individuals, which improves robustness of tracking individuals.  
 Many existing clustering methods are available, however in this paper Gaussian Mixture clustering is 
adopted due to its great flexibility in representing different patterns and its sound statistical model forms. 
Specifically, Gaussian Mixture clustering considers each observation having a probability of belonging to 
a certain cluster, making starting points of the algorithm less sensitive to the clustering results. 
Furthermore, according to the law of large numbers, Gaussian Mixture clustering conforms to reality 
well. Gaussian Mixture is implemented based on the Expectation–Maximization (E-M) algorithm, which 
is first introduced by Dempster, Laird and Rubin (1977) and further developed in the context of clustering 
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problem by Banfield and Raftery (1993). Further developments of Gaussian Mixture clustering are 
available in the literature, as summarized in Melnykov and Maitra (2010).  
 After the clustering algorithm generates the mean and covariance matrix (as outputs) of each cluster, 
the UAV/UGV team assignment will be invoked. The UAV/UGV team assignment in this paper is 
closely related to the multi-robot task allocation in cooperative multi-robot systems (CMRS), which 
mainly concerns with the assignment of robot groups to different tasks in order to cooperatively achieve 
the mission. Various multi-robot coordination schemes were proposed in the past several decades. Most 
of these schemes were domain-specific or architecture-dependent that were difficult to generalize and 
extend. Given this situation, Gerkey and Mataric (2004) classified the formal model of multi-robot task 
allocation (MRTA) based on three distinct dimensions: single-task or multi-task robots (ST or MT), 
single-robot or multi-robot tasks (SR or MR), and instantaneous assignment or time-extended assignment 
(IA or TA). The team formation in this work, also known as the coalition formation in robotics field, 
belongs to the ST-MR-IA category of MRTA.  
 Various questions are to be addressed in the coalition formation problem including how many 
vehicles (robots) are needed in each team, how to form a team, and how long a team should persist to 
perform corresponding tasks. Among the literature, Shehory and Kraus's algorithm (1998) was one of 
most popular algorithms in multi-agent coalition formation, which is based upon set covering and set 
partitioning heuristics. Specifically, two stages are involved in their algorithm: 1) Preliminary stage, 
which is responsible for calculating the values of all possible coalitions; 2) Algorithmic stage, which 
utilizes a greedy algorithm to select the matched coalition iteratively. Various extensions to the Shehory 
and Kraus's algorithm have been made. Vig and Adams (2006) proposed an innovative multi-robot 
coalition formation algorithm involving the concept of coalition imbalance, which demonstrated the 
effectiveness of the proposed algorithm via simulation and robot experiments. 

3 SURVEILLANCE AND CROWD CONTROL VIA COOPERATIVE UAVS AND UGVS  

3.1 Crowd Clustering Based on UAVs’ and UGVs’ Observations  

Clustering is based on the tracking outputs of UAVs with aggregated information of UGVs. Let ( )i tx  
denote the state vector of occupied crowd cell i at time t, which may include the locations, velocities, and 
other related information. To perform the clustering of crowd agent observations, different clustering 
methods are available, as summarized in Section 2. In this paper, mixture model-based clustering is 
considered due to its great flexibility of representing different complex cluster patterns and its unique 
feature of modeling each cluster as a parametric distribution. Based on estimating the distribution 
parameters, many statistical quantities (e.g. confidence regions) can be constructed, which could provide 
meaningful, informative and compact information to UAVs’ decision making. A generic formulation of 
mixture distribution can be represented as 

 ( ( )) ( ) ( ( ) | )dg t w f t
Ω

= ∫
θ

x θ x θ θ ,  (1) 

where g() and f() are the compound probability density function and component probability function; w() 
is another probability density function governed by a collection of parameters θ  with the parameter space 

of Ωθ , satisfying ( ) 0w ≥θ  and ( )d 1w
Ω

=∫
θ

θ θ . It is noted that the number of components in (1) is 

uncountable. In practice, a finite number of components with positive probabilities are considered and (1) 
is reduced into 

 
1

( ( )) ( ( ) | )m
j j jj

g t w f t
=

=∑x x θ , (2) 

where jw  represents the mixing proportion of the jth component and the overall probability density 
function, g(), is a convex combination of m component probability density functions, fj()’s. In the context 

2910



Khaleghi, Xu, Minaeian, Li, Yuan, Vo, Lien, Liu, and Son 
 

 

of clustering, observations from cluster j is modeled with the parametric distribution of fj() with 
parameters jθ . However, for any specific observation x, its membership to a certain cluster is unknown 
and needs to be identified based on the available data. Such unknown membership issue makes the 
clustering as a classic unsupervised learning problem extensively addressed in the machine learning field.        

Given tracking outputs at any time t, denoted as 1{ ( )}nt i ix t ==D , mixture model-based clustering 
requires to estimate the unknown parameter vector θ  and to allocate each individual observation to a 
specific cluster based on the resulting estimated model. To achieve parameter estimation, the maximum 
likelihood method can be used to maximize the log-likelihood function represented as 

 ( )1
1

( | ) log ( ( ) | )
n

m
t j j i jj

i
l w f t

=
=

=∑ ∑θ D x θ ,  (3) 

where l() is the log-likelihood function. Notice that the first order conditions, i.e. ( | ) / 0tl∂ ∂ =θ D θ , can 
be expressed as an addition to the n fractional terms, which makes it analytically difficult or even 
impossible to obtain the maximum likelihood estimate (MLE). Also, directly maximizing (3) based on a 
nonlinear optimization method is difficult due to its complex functional form. To overcome such 
difficulties, Expectation-Maximization (E-M) is typically employed, which is formally introduced by 
Dempster, Laird and Rubin (1977) and widely applied to different statistical problems (for details, see 
McLachlan and Krishnan (1996) and references therein). Basically, (3) is augmented with additional data, 
denoted as Zt, and a complete joint log-likelihood function of ( | , )t tl θ D Z  can be formulated. A two-step 
procedure, namely the expectation step and the maximization step, can be performed based on 
( | , )t tl θ D Z  in an iterative fashion until convergence. For detailed convergence properties of the E-M 

algorithm, see Wu (1983). In the context of mixture distribution in (2), let 
Zt ={zij (t) : i =1,...,n; j =1,...,m} and then the E-M algorithm can be specifically expressed as follows: 

 Initialize (0)
jw  and (0)

jθ , j=1,…,m.  For any iteration step max1,...,φ φ= , repeat the following:  

 E-step: compute ( )( 1) ( 1)

1 1

[ ( | , ) | , ] ( ) | , log log ( ( ) | )
n m

t t t ij t j j i j
i j

l z t w f tφ φ− −

= =

⎡ ⎤= +⎣ ⎦∑∑E θ D Z D θ E D θ x θ ;  

 M-step: ( ) ( 1)argmax [ ( | , ) | , ]t t tlφ φ−= θθ E θ D Z D θ .  
It is noted that by the theorem of Bayes,   

  ( )
( 1) ( 1)

( 1)
( 1) ( 1)

1

( ( ) | )
( ) | ,

( ( ) | )
j j i j

ij ij t m
j j i jj

w f t
p z t

w f t

φ φ
φ

φ φ

− −
−

− −

=

= =
∑

x θ
E D θ

x θ
,  (4) 

where ( )ijz t  is an augmented binary random variable corresponding to ( )i tx  and ijp  denotes the 

associated conditional expectation. If ( )i tx  is in cluster j, ( )ijz t =1; otherwise, ( )ijz t =0. As described 
above, E-step can be evaluated analytically but the M-step may involve numerical maximization. In this 
paper, Gaussian-mixture is considered due to its great flexibility but more importantly, it yields closed 
form solution in the M-step. Specifically, assuming normality, ( ( ) | )j jf tx θ  = ( ( ) | ( ), ( ))j jN t t tx µ Σ , 

where N() represents the multivariate normal density with mean vector ( )j tµ  and covariance matrix 

( )j tΣ , closed-form solutions in the M-step can be explicitly given by  

 ( ) 1

1

( )
( )

n
ij ii

j n
iji

q t
t

q
φ =

=

=
∑
∑

x
µ ,      j=1,…,m,    (5) 

 
( ) ( ) T

( ) 1

1

[ ( ) ( )][ ( ) ( )]
( )

n
ij i j i ji

j n
iji

q t t t t
t

q

φ φ
φ =

=

− −
=∑

∑
x µ x µ

Σ ,      j=1,…,m,   (6) 

2911



Khaleghi, Xu, Minaeian, Li, Yuan, Vo, Lien, Liu, and Son 
 

 

 ( ) 1

n
iji

j

q
w

n
φ == ∑ ,      j=1,…,m. (7) 

 With the aforementioned E-M algorithm, MLE of the Gaussian-mixture model can be approximately 
obtained as max( ) ( )j tφµ , max( ) ( )j tφΣ  and max( )

jw
φ , where maxφ  is the maximum iteration step when the algorithm 

is converged. Based on (4), the membership of any observation ( )i tx  can be determined as: xi (t)  
belongs to cluster j∗ , where ( )max( )argmax ( ) | ,j ij tj z t φ∗ = E D θ . The number of clusters can be 

predetermined based on the total available number of UAVs and UGVs. It can also be determined through 
the available data, which are addressed in Melnykov and Maitra (2010). Thus, the outputs of clustering 
will give the number of clusters and model parameters (i.e. mean vector and covariance matrix) of each 
individual cluster. 

3.2 UAV/UGV Team Assignment for Crowd Clusters 

In this section, we discuss the team size and team assignment in case of crowd splitting into different 
clusters. As mentioned earlier, a team in this work consists of one UAV and multiple UGVs working 
together for performing surveillance mission. In this case, determining the team size responds to 
assigning different number of UGVs in the team. Thus, the upper and lower bounds of the required 
number of UGVs for coverage of each cluster are developed first considering the geometry of each 
cluster. Next, a resource allocation problem is formulated to determine the optimal number of UGVs to be 
allocated to each cluster.  

In this paper, the same cameras (or lenses) are used for UAVs and UGVs, although the performance 
of the vision modules is not the same. Grocholsky et al. (2006) discussed that UAVs commonly have a 
wider field of view (FOV), faster coverage of the search area, and lower resolution for detection and 
localization. However, UGVs have a narrower (or obscured) FOV, slower coverage of the search area, 
and better resolution. This is a major motivation to employ teams of cooperative UAVs and UGVs in this 
paper. Along with the vision system characteristics and visual sensor constraints, information sharing in 
the assigned team of UAVs and UGVs provides a way for estimating the uncertainty in the detection and 
localization algorithms.  
 The detection range for the UAV is a function of both FOV and altitude, which can be computed as  
 DR(A) = 2h(A) tan FOV / 2( ) , (8) 

where ( )ADR  represents the 1-D length of the detection range, ( )Ah  is the flying altitude of UAV, and 
FOV is the field of view. For the UGV, the detection range would be only considered in one dimension 
for the horizontal FOV. Furthermore, a safety distance between UGV and the target crowd is assumed in 
this work to ensure the UGV’s safety and persistent coverage. The detection range for UGV ( ( )GDR ) can 
be formulated as  

 DRmin
G( ) = 2 hmin

G( )  tan FOV / 2( ) ≤ DR G( )  ≤ 2 hmax
G( )  tan FOV / 2( ) = DRmax

G( ) , (9) 

where DRmin
(G ) is the minimum detectable range based on the predefined safety distance, hmin

G( )  is the safety 

distance, hmax
G( )  is the longest distance that the camera can detect individuals through the detection 

algorithm, and DRmax
(G ) is the maximum detection range. A graphical illustration of such relationship is 

presented in Figure 3(a). 
Based on the safety distance and detection range defined above, the lower and upper bounds of the 

number of UGVs for complete coverage of each cluster has been developed considering the geometry of 
each cluster. Since the boundary of the cluster is always projected as an ellipse using GMM clustering 
algorithm (Section 3.1), we will use the geometry of the multivariate normal distribution to determine the 
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number of required UGVs for each cluster. In this regard, the longest diameter of the ellipse is in the 
direction of the eigenvector associated with the larger eigenvalue, and the other eigenvector represents the 
direction of the shortest diameter of the cluster. The lengths of these diameters are also defined as 
 di ,L = 2 λ1χ2,α

2    and    di ,S = 2 λ2χ2,α
2 , (10)  

where di ,L  and di ,S  are the ith ellipse’s longest and shortest diameter lengths, respectively; λ1and λ2  are 
its larger and smaller eigenvalues, and α  is the significance level of the clustering algorithm. 
Furthermore, defining EDD = hmax

G( ) − hmin
G( )  as the Effective Detection Depth of the UGV’s camera, three 

cases can be considered to compute the required number of UGVs for the ith cluster,
 
Vi , by comparing the 

geometry of the different cluster types and EDD (see Figure 3(b)). 
 

         
                                     (a)                                                                         (b) 

Figure 3: (a) Illustration of UGV’s detection range; (b) Three cases of crowd clusters. 

 Case 1: di ,S ≤ EDD , which means the ith cluster is narrow enough to be covered by UGVs located 

along a straight line. Under this case, the lower bound (denoted as Vi!" #$ ) and upper bound (denoted as Vi!" #$ ) 

of the required number of UGVs for the ith cluster are computed as 
 Vi!" #$= di ,L / DRmax

(G ) ≤Vi ≤ di ,L / DRmin
(G ) = Vi&! '# . (11) 

 Case 2: EDD < di ,S ≤ 2 EDD , which means the ith cluster is wider than in Case 1, but is smaller than 
the double of EDD. Thus, the crowd can be covered by two lines of UGVs located along each side of the 
cluster. The lower and upper bounds for the required number of UGVs for the ith cluster are given as 

 Vi!" #$= 2di ,L / DRmax
(G ) ≤Vi ≤ 2di ,L / DRmin

(G ) = Vi&! '# . (12) 

 Case 3: 
,S 2 id EDD> , which means the ith cluster’s shortest diameter is larger than the double of 

EDD, so it cannot be covered by only one or two lines of UGVs. In this case, the ellipse’s perimeter 

(Pi = 2π λ1χ 2,α
2 + λ2χ 2,α

2( ) / 2)  is considered to compute the lower and upper bounds for the required 

number of UGVs for the 𝑖!! cluster as 
 Vi!" #$= Pi / DRmax

(G ) ≤Vi ≤ Pi / DRmin
(G ) = Vi&! '# . (13) 

It is noted that in all three cases, using the lower bound for the number of UGVs may affect the 
coverage performance; therefore, there is always a trade-off between assigning smaller group of UGVs to 
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a cluster and covering the whole boundary, considering the fact that not all the boundary parts include 
individuals. Also, in the third case, the team of UGVs is designated around the ellipse, which results in 
some inner parts of the crowd uncovered. However, these uncovered crowds will need to come near to the 
boundary of cluster in order to escape or split, so the UGVs can still follow them. 

In real scenarios, due to the limited number of resources (i.e. UGVs), it may not be always possible to 
assign the required number of UGVs (Vi ) to each cluster. Given the decision variable TSi  as the number 
of UGVs assigned to the ith cluster, the number of occupied cells (i.e. low fidelity information) of the ith 
cluster, oi , and the total number of available UGVs, NG , we assume for each cluster, the inequality 
TSi ≤ oi  holds, meaning that the number of assigned UGVs to a cluster cannot exceed the number of 

occupied cells in that particular cluster. Furthermore, Bi  is defined asmin oi , Vi{ } . If Bi ≤ NGi=1

C

∑  then 

TSi = Bi . If Bi > NGi=1

C

∑ , where C is the number of clusters, then strategy maker should determine how to 

distribute UGVs among different clusters. In this case, /i iTS V   shows the proportion of the required 
number of UGVs assigned to the ith cluster, and the term (TSi /Vi )oi  gives the coverage of the entire 
occupied cells in the ith cluster. So the utility function ( f1 ) is defined as the normalized overall coverage 
of all clusters as follows: 

 f1 = 
i=1

C

∑
TSi
Vi
oi   /

i=1

C

∑oi . (14) 

However, UGVs might not be uniformly assigned among all the clusters, which can result in very few 
or no assigned UGVs in some clusters. To smooth the UGV assignment among all the clusters 2  f is 
defined as smoothness index 
 f2 = M −m , (15) 
where /i im TS MV≤ ≤ . In real scenarios the strategy maker may need to adjust the team assignment to 
maximize the utility function, or minimize the smoothness index, or optimize a composite objective 
including both. By using the weighting method the multi-objective optimization problem reduces to the 
following: 

 max    α f1 − 1−α( ) f2  (16) 

  subject to 

  
i=1

C

∑TSi ≤ NG , 

 0 ≤ TSi ≤ Bi , 
 m ≤ TSi /Vi ≤ M , 

TSi  integer , 
where 0 ≤α ≤1 . If α = 0 , then only f2  is optimized and if α =1 , then only f1  is considered. Here the 
first constraint implies that the total number of available UGVs cannot exceed resources and the second 
constraint determines the lower and upper bound of the decision variable. This optimization problem can 
be solved using integer linear programming methods, which result in the optimal number of UGVs 
assigned to different clusters. 
 Altering the value of 𝛼  in (16) results in different control strategies for conducting the team 
assignment. All solutions are Pareto optimal. The control strategies employed here are consistent with 
what was studied by the authors previously (Khaleghi et al. 2013a). As  α  gets closer to 1, the overall 
coverage of all clusters will be increased, but the UGVs may not be assigned uniformly among all the 
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clusters. On the other hand, by decreasing the value of α closer to 0, UGVs will be assigned uniformly 
among the clusters, but the overall coverage may not be optimal. It should be noted that the solutions to 
the optimization problem depend on the selection of Vi  (lower and upper bounds are given in previous 
discussion). Investigating the impact of Vi is left for future research.  

4 INTEGRATED TESTBED AND EXPERIMENTS 

We developed an autonomous UAV and UGV platform as a testbed that is robust, flexible and capable of 
carrying a variety of sensors in both indoor and outdoor environments. While commercial UAV and UGV 
platforms are available, most are either quite expensive; do not offer sufficient payload capacity or 
robustness for operating different tasks; or use strictly proprietary components and software. To meet our 
goals, we developed a customized UAV and UGV platform (see Figure 4(a)) using inexpensive off-the-
shelf parts and open-source software components.  
 The computational architecture used in both UAV and UGV platforms consists of a low-level and a 
high-level computer. The low-level computer is responsible for the control of the vehicle's hardware 
components such as motors and servos. It is also responsible for vehicle stabilization and simple 
waypoint-based navigation. For this reason, we use an open-source embedded microcontroller developed 
by 3dRobotics called the ArduPilotMega (APM). Previously, this autopilot unit was designed for fixed-
wing hobby aircraft but has been adapted to use in multicopters. It features an ATMega2560 
programmable microcontroller circuit, which processes data from an integrated inertial measurement unit 
(IMU) measuring 3-axis translational acceleration, rotational velocity, and magnetic field direction. It also 
accepts peripheral sensor inputs from a global positioning system (GPS) sensor and a sonar sensor, as 
well as radio control inputs from a 2.4Ghz radio receiver, and serial command inputs using a standardized 
protocol called MAVLINK. Among the possible serial MAVLINK commands, waypoint commands or 
direct "joystick" controls are usually used to instruct the vehicle to move to given coordinates 
(latitude/longitude). These commands come from the high level computer, which is responsible for 
planning and deliberation. This high level computer is a commercially available microcomputer platform 
called ODROID, which runs on a powerful quad-core ARM processor and installs a Linux-based 
operating system. 
 Distributed communication is essential for the testbed. Each agent, whether it is a UAV or UGV, 
must be able to communicate information with the other agents to perform coordinated tasks, and a 
ground station should be able to monitor most of the activities among agents in the system for safety and 
analysis purposes. The transmitted information will include the agent's estimated GPS location, task-
specific status messages, and commands from the ground station. For the application in this paper, we 
have selected the Digi Xbee Pro 900 radio to be embedded in each UAV and UGV platform.  
  

     
          (a)                                                                                   (b) 

Figure 4: (a) Assembled UAV and UGV platform for the integrated testbed; (b) Demonstration of crowd 
splitting behavior in agent-based simulation. 
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For the experiment of this work, a similar situation demonstrated in Figure 2 has been considered. An 
agent-based hardware-in-the-loop simulation has been implemented in Repast Simphony utilizing the GIS 
data from NASA WORLD WIND (Khaleghi et al. 2013b) while communicating with simulated/real 
UAVs and UGVs. Figure 4(b) illustrates two snapshots of the agent-based hardware-in-the-loop 
simulation, where a team of UVs consists of one UAV and two UGVs tracking a crowd of 40 individuals 
moving together as one cluster. Then after 40 seconds, the crowd starts to split into two clusters with 
different number of individuals in each cluster. The performance (i.e. coverage percentage) of the UAV 
for 100 seconds has been illustrated in Figure 5(a). As the figure shows, the coverage percentage (i.e. 
ratio of number of the occupied cells to total number of cells in UAV’s detection range) starts to decrease 
after 40 seconds as the two crowds getting far from each other. During this time, the UAV attempts to 
track both crowds by selecting the mean of both clusters until 70 seconds. After this time, due to the 
distance between two clusters, UAV starts to track the cluster with more occupied cells. The model 
parameters of the two clusters (see Figure 5(b)) have been sent to the ground station for assigning UGVs 
required for each cluster. 
 

                     
                  (a)                                                                           (b) 

Figure 5: (a) Coverage percentage reduction due to crowd splitting; (b) Results of clustering algorithm. 

A numerical experiment involving four different test scenarios has also been performed to investigate 
the effects of different cluster patterns and weight values on the number of UGVs assigned. To this end, 
each test scenario has been solved with two settings of weight values (i.e. α = 0.5 , α =1 ). As shown in 
Table 1, by setting α  to 0.5, UGVs assigned to each cluster were more uniformly distributed comparing 
with α =1 , where the UGVs were assigned in an imbalanced manner. Furthermore, the overall coverage 
of two clusters by setting α  to 0.5 is less in comparison with the situation where 𝛼 equals 1.   

 

Table 1: Experimental results for UAV/UGV team assignment ( NG = 8 ). 

Test 
scenarios 

Cluster 
index 

(i) 
oi Vi  

α = 0.5  α =1  

TSi  
TSi
Vi
oi  TSi  

TSi
Vi
oi  

Case 1 1 100 12 6 50 8 66.6 
2 10 2 1 5 0 0 

Case 2 1 100 12 6 50 8 66.6 
2 30 5 2 12 0 0 

Case 3 1 100 12 5 41.6 1 8.3 
2 60 7 3 25.7 7 60 

Case 4 1 100 12 4 33.3 0 0 
2 90 10 4 36 8 72 
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5 CONCLUSIONS AND FUTURE WORKS 

In this paper, a DDDAMS-based UAV and UGV team formation approach was presented involving 
crowd clustering and UV team assignment. The motivation comes from a crowd splitting scenario, where 
different teams of UVs are used to follow crowds. The proposed approach first captured the crowd 
dynamics via Gaussian Mixture clustering technique, followed by the decision of assigning UGVs to 
teams. An integrated testbed involving real and virtual UAVs/UGVs in simulation was developed, and 
experimental results demonstrated the effectiveness of the proposed approach.  

As a future work, a time-based triggering mechanism of crowd clustering and team formation will be 
considered, where the problem tends to be more complex in the frequency of clustering and team 
assignments. We also plan to improve the selection of the required number of UGVs for each cluster 
(lower and upper bounds are given in Section 3.2) to make all stages of the process more efficient. 
Furthermore, the searching patterns and coordination issue between UAVs and UGVs will be addressed 
under the DDDAMS framework. 
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