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ABSTRACT

The fat tree topology with multipath capability has been used in many recent data center networks (DCNs)
for increased bandwidth and fault tolerance. Traditional routing protocols have only limited support for
multipath routing, and cannot fully utilize the available bandwidth in such networks. In this paper, we
study multipath routing for fat tree networks. We formulate the problem as a linear program and prove
its NP-completeness. We propose a practical solution, which takes advantage of the emerging software-
defined networking paradigm. Our algorithm relies on a central controller to collect necessary network state
information in order to make optimized routing decisions. We implemented the algorithm as an OpenFlow
controller module and validated it with Mininet emulation. We also developed a fluid-based DCN simulator
and conducted experiments, which show that our algorithm outperforms the traditional multipath algorithm
based on random assignments, both in terms of increased throughput and in reduced end-to-end delay.

1 INTRODUCTION

Data center networks (DCNs) must provide efficient inter-connection between a large number of servers in
order for the data centers to achieve the necessary economy of scale (Mudigonda and Yalagandula 2010,
Wang et al. 2010). In order to provide abundant bisection bandwidth, modern DCNs usually adopt a
hierarchical multi-rooted network topology, such as the fat tree (Al-Fares, Loukissas, and Vahdat 2008),
VL2 (Greenberg et al. 2009), DCell (Guo et al. 2008), and BCube (Guo et al. 2009). The hierarchical
feature would make such topologies easy to expand, and the multi-rooted topology would allow more
routing options due to multipath.

Among the existing alternatives, the fat tree topology is especially popular for its simplicity, and has
been considered in a number of recent data center designs (Heller et al. 2010, Mysore et al. 2009). Figure 1
shows a 4-pod fat tree with four hierarchical layers, including, from the bottom, hosts, edge switches,
aggregation switches, and core switches. The four core switches at the top are the roots of the tree. The
figure shows two possible paths between host A and host B in different colors (there should be four of
them). In this network, all switches have the same number of ports, and all links are of the same bandwidth.
We refer the readers to Al-Fares, Loukissas, and Vahdat (2008) and Mysore et al. (2009) for a detailed
description of the fat tree topology.

Traditional link-state and distance-vector routing protocols, which have been commonly used on the
Internet (Kurose and Ross 2007), cannot be readily used to take advantage of the multipath capability of the
fat tree topology. For example, most IP-based routing protocols calculate routes and forward packets based
solely on the packet’s destination address, and as a result, all packets with the same destination would follow
the same path. There are indeed protocols that support multipath. For example, some protocols come with
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Figure 1: The fat tree topology with four pods.

the “equal cost multipath” (ECMP) feature. ECMP performs static traffic splitting based on information
from the packet headers. In particular, the algorithm does not consider the bandwidth requirement of the
flows. It is rather limited in terms of path optimization, since it does not consider the traffic condition
of the entire network. Furthermore, the algorithm is only able to choose among the available paths with
the same minimum cost. Consequently, the algorithm is limited to only a small number of alternative
paths (Heller et al. 2010). One must note that DCN routing is significantly different for Internet routing.
Normally, the Internet protocols would give preference to the shortest paths in order to reduce latency.
By contrast, DCNs are less concerned about latencies—after all, DCNs are local area networks with close
geographical distances between nodes. Routing on the DCNs should give more priority to the bandwidth
utilization rather than latency.

The goal of our study is to fully explore the potential of the fat tree topology for data center networking. In
particular, we design practical and efficient multipath routing algorithms with the following three objectives.
First, the algorithms shall be able to improve bandwidth utilization of the entire network. In other words,
the algorithms should accommodate more traffic for the same network fabric. Second, the algorithms shall
be able to achieve better traffic load balance. This is to prevent the network from creating hot spots and
causing congestions. Last, the algorithms shall have a lower time complexity. They should make fast
routing decisions in order to handle large traffic volumes.

In this paper, we focus on load-balanced multipath routing for fat tree DCNs. First, we formulate the
multipath problem as a linear program, and prove that it is NP-complete. The NP-completeness proof
establishes that the problem has no known polynomial-time solutions, which directs us to seek efficient
algorithms using approximation and heuristics. As a practical solution, we propose a load-balanced
multipath routing algorithm that can take advantage of the emerging Software Defined Networking (SDN)
paradigm (Open Networking Foundation 2012). The main idea is to use a OpenFlow controller to collect
the necessary information of the entire network, based on which the algorithm can make centralized routing
decisions upon each flow arrival. More specifically, our algorithm first determines all available paths that
can carry the new flow, and then finds the bottleneck link of each path. A bottleneck link is defined to be
the link with the minimum available bandwidth among all links along the path. The algorithm compares
the available bandwidth of bottleneck links of different paths, and selects the path whose bottleneck link
has the most available bandwidth. In this way, the algorithm can guarantee that the selected path minimizes
the maximum link load of the entire network at the decision time. Consequently, the algorithm is able to
achieve better load balance.

To validate our designs, we have implemented the proposed load-balanced multipath algorithm in two
environments. First, we implemented the algorithm as a module for an open-source OpenFlow controller,
which can be readily deployed in an existing data center. We used Mininet (Lantz, Heller, and McKeown
2010) to validate the implementation. Mininet is a container-based emulation environment for flexibly
testing SDN applications by running the applications in networks consisted of virtual hosts and virtual
switches, all running on a single physical machine. Second, we developed a fluid-based DCN simulator to
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evaluate the performance of our load-balanced multipath algorithm. The simulator was implemented using
the MiniSSF parallel discrete-event simulation framework (Rong, Hao, and Liu 2014). In the experiments
we compared the performance of our algorithm with that of a multipath algorithm based on random path
allocations. Our experiment results show that our load-balanced multipath routing algorithm consistently
outperforms the traditional approach.

The main contributions in this paper are three-folds. First, we formulate the load-balanced multipath
routing problem for the fat tree network as a linear program, and prove that it is NP-complete. Second,
we propose a practical algorithm that can be applied in a data center using the SDN technology. Finally,
through extensive emulation and simulation experiments, we demonstrate the performance superiority of
the proposed algorithm over the existing approach.

The rest of the paper is organized as follows. In section 2, we review related work. In section 3, we
formulate the load-balanced multipath problem as a linear program and proves its NP-completeness. In
section 4, we describe the proposed SDN-based algorithm. In section 5, we describe the two implementations,
one for emulation and the other for simulation, which we use to evaluate our algorithm. In section 6, we
present the experiment results. Finally, we conclude the paper and outline future work in section 7.

2 RELATED WORK

Typical DCNs offer multiple routing paths for increased bandwidth and fault tolerance. Multipath routing
can reduce congestion by taking advantage of the path diversity in DCNs. Multipath routing can be
conducted at either layer two or layer three. Layer-two typically uses a spanning tree, where only one path
is made available between a pair of nodes. A recent work by Mudigonda and Yalagandula (2010) allows
multipath by exploiting the path redundancy in the network. The algorithm computes a set of available paths
and merges them into a set of trees, each mapped to a separate VLAN. At layer three, equal cost multipath
(ECMP) (Cisco Systems 2007) provides the multipath capability by performing static load splitting among
the flows. ECMP-enabled switches are configured with several forwarding paths in a given subnet. When
a packet arrives at a switch that has multiple candidate paths, the switch selects a path based on a hash
function using the selected fields of the packet header, and then forwards the packet along that path. In doing
so, the mechanism is able to split the traffic load among multiple paths in a subnet. It is important to note,
however, ECMP does not account for flow bandwidth in making path allocation decisions, which may lead
to oversubscription even for simple communication patterns. Furthermore, current ECMP implementations
limit the number of choices of candidate paths to 8 or 16, which can be far fewer than what would be
needed to deliver the bisection bandwidth for larger data centers (Heller et al. 2010).

There exist multipath solutions specifically designed for DCNs. Al-Fares et al. (2010) proposed two
multipath algorithms: one uses global first-fit and the other uses simulated annealing. The first algorithm
simply selects among all possible paths the first one that can accommodate a flow. The algorithm is simple.
The drawback of the algorithm, however, is that it needs to maintain accurate information of all paths
between all pairs of nodes. The second algorithm performs a probabilistic search for the optimal path. The
algorithm is fast. However, it is shown that the algorithm may also converge slowly. Heller et al. (2010)
proposed the ElasticTree DCN power management scheme, which includes two multipath algorithms: a
greedy bin-packing algorithm and a topology-aware heuristic algorithm. The former evaluates the available
paths and deterministically chooses the leftmost one with sufficient capacity. The latter uses a fast heuristic
based on the topological features of the fat trees; it relies on flow splitting. Benson et al. (2010a) also
proposed the MicroTE framework that supports multipath routing. Our algorithm described in this paper
also considers multipath. It uses depth-first search to quickly find the possible paths among the layers of
switches, and then uses worst-fit to select the candidate path. Compared with the previous approaches, our
algorithm provides a fast and effective solution for achieving system-wide traffic load balance using SDN.
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3 PROBLEM FORMULATION

In this section, we formulate the load-balanced multipath routing problem as a linear program, and then
prove its NP-completeness for the fat tree topology by reduction from the integer partition problem.

3.1 Load-Balanced Multipath Routing Problem

A fat tree DCN can be modeled as a directed graph G = (H ∪S,E), where H is the set of hosts, S is the
set of switches, and E is the set of links each connecting a switch with another switch or a host. Each
edge (vi,v j) ∈ E has a nonnegative capacity c(vi,v j) ≥ 0, which denotes the available bandwidth of the
corresponding link. Let F = {F1, . . . ,Fn} be the set of all flows in the network. A flow Fk (where 1≤ k≤ n)
is defined as a triple (ak,bk,dk), where ak ∈ H is the source host, bk ∈ H is the destination host, and dk
is the demanded bandwidth. We use fk(vi,v j) ∈ {0,1} to indicate whether the flow Fk traverses the link
(vi,v j).

The load-balanced multipath routing problem can be expressed as a linear program, whose the objective
is to minimize the maximum load among all the links in the network. More formally, the load-balanced
multipath routing problem can be specified as follows:

Minimize maxload

Subject to the following constraints:

n

∑
k=1

fk(vi,v j)dk ≤maxload≤ c(vi,v j), ∀(vi,v j) ∈ E (1)

∑
vi∈H∪S

fk(vi,v) = ∑
v j∈H∪S

fk(v,v j), ∀k ∈ {1,2, · · · ,n},∀v ∈ H ∪S\{ak,bk} (2)

∑
v j∈H∪S

fk(ak,v j) = ∑
vi∈H∪S

fk(vi,bk) = 1, ∀k ∈ {1,2, · · · ,n} (3)

Equation (1) defines maxload, and also states the link capacity constraint, i.e., the total demanded
bandwidth on a link shall not exceed its available bandwidth. Equation (2) states the flow conservation
constraint, i.e., the amount of any flow shall not change at an intermediate node. Equation (3) states the
demand satisfaction constraint, i.e., for any flow, the outgoing traffic at the source and the incoming traffic
at the destination shall be the same as the demand of the flow.

3.2 NP-Completeness

In this section we show the NP-completeness of the load-balanced multipath routing problem.
Theorem 1 The load-balanced multipath routing problem is NP-complete for the fat tree topology.

Proof. The proof is by reduction from the NP-complete partition problem (Garey and Johnson 1990). A
partition problem decides whether a set of integers, X = {x1, . . . ,xn}, can be partitioned into two subsets,
Xs and X \Xs, such that the sum of elements in Xs is equal to that in X \Xs, i.e.,

∃Xs ⊆ X , ∑
xi∈Xs

xi =
1
2 ∑

xi∈X
xi (4)

For reduction, we consider an instance of the partition problem with set X , and construct an instance
of the load-balanced multipath routing problem for a fat-tree. The basic idea is to create a group of flows
between two hosts, and the demand of each flow is one of the integers in set X . Leave only two disjoint
paths between the two hosts for the flows. If there is a partition of the integer set, then we can accordingly
allocate the flows to the two paths to achieve optimal load balance, and vice versa. Figure 2 shows an
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Figure 2: One pod from a four-pod fat tree topology.

example of one pod of a 4-pod fat tree, where hosts 1 and 3 have only two disjoint paths ABD and ACD
between them.

The detailed reduction is as follows. First, set up a K-pod fat tree, and the capacity of each link is set
as infinity to avoid violating the link capacity constraint. Second, select two hosts, denoted as h1 and h2,
in the same pod but under different edge switches. We will designate all the flows between the two hosts.
Third, create n flows each corresponding to an integer in X , where each flow Fi has ai = h1, bi = h2, and
di = xi where xi ∈ X . Four, create additional K/2−2 flows, where each flow Fk has ak = h1, bk = h2, and
dk = ∑xi∈X xi/2.

Suppose that the partition problem for set X has a solution Xs. Note that for the two hosts h1 and
h2 in a K-pod fat tree, there are K/2 disjoint paths between them, each through a different aggregation
switch. In the fourth step of the above reduction process, we create (K/2−2) flows, each with the demand
of ∑xi∈X xi/2. Due to load balancing, each of them will be allocated to a different path, resulting in two
remaining vacant paths. Finally, each of the n flows created in the third step, if xi ∈ Xs, we designate the
corresponding flow Fi to the first of the remaining two paths. If not, we designate the corresponding flow
to the second path. In this way, we find a solution for the load-balanced multipath routing problem that
minimizes the maximum load to be ∑xi∈X xi/2 and achieves the optimal load balance.

Suppose that the load-balanced multipath routing problem has an optimal solution with a maximum
load being ∑xi∈X xi/2. Each of (K/2− 2) flows created in the fourth step must occupy a different path.
The n flows created in the third step must share the remaining two paths, based on which we can create
the two subsets Xs and X \Xs accordingly, and thus we find a solution for the partition problem.

4 AN SDN-BASED ALGORITHM

In this section, we propose an SDN-based load-balanced multipath routing algorithm. Software-Defined
Networking (Open Networking Foundation 2012) is an emerging networking paradigm that has recently
gained tremendous popularity. SDN can be realized using OpenFlow: the network has a central OpenFlow
controller that communicates with the OpenFlow switches in the network using the OpenFlow protocol.
The controller can be used to collect the network state and direct all traffic flows in the network. Our
main idea here is to use the central controller to collect the traffic load information for all the links in the
network so that our algorithm can make globally optimized routing decisions. When a new flow enters the
system, the switch that first encounters the flow will inform the controller. The controller will enumerate
all possible paths that can carry the flow, compare the load of the bottleneck links of those paths, and
then select the one with the minimum load. After the path has been determined, the controller will inform
all switches along the path and update their flow tables so that subsequent packets of the flow will be
forwarded along the same path.

4.1 Design Philosophy

To optimize bandwidth utilization in DCNs, one needs a global view of the available resources in the
network (Benson et al. 2010a). To do that, we implement the load-balanced multipath routing scheme at
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the central controller, which communicates with the switches in the network using the OpenFlow protocol.
Each OpenFlow-enabled switch contains a flow table, which the switch uses to control the flows. A flow
can be flexibly defined by any combination of the ten fields in the packet header identified by the switch,
including the source and destination IP addresses, the port numbers, and others. A controller can control
the flows in the system by querying, inserting, or modifying the corresponding entries in the flow table of
an OpenFlow switch. In particular, the central controller is able to collect bandwidth and flow information
of the entire network from the switches for it to make globally optimized routing decisions, and then direct
the flows by updating the flow tables at the switches along the flow paths.

OpenFlow devices are already widely available on the market today. Many recent data centers use
OpenFlow as part of their network switching fabric. As such, our proposed solution can be readily applied
in those data centers to improve their network performance.

4.2 The Algorithm

In the following we describe the SDN-based load-balanced multipath algorithm in more detail. The algorithm
has three steps:

In the first step, the algorithm identifies the highest layer of switches a flow needs to reason based on
the location of its source and destination hosts. If the source and destination hosts belong to different pods,
the path will need to include the core switches. If the two hosts are attached to the same edge switch, the
edge switch will simply connect them. If the two hosts are in the same pod but not under the same edge
switch, one of the aggregation switches will be needed to connect them.

In the second step, the central controller determines the bottleneck link of each potential path between
the source and destination hosts. Note that in the fat tree, the switch at the highest layer can uniquely
identify the path between the given source and destination. Since the central controller has the information
of every link in the network, it can quickly identify the bottleneck link of a path by comparing the available
bandwidth on all the links along the path. The link with the smallest available bandwidth will be the
bottleneck link. Arbitrary tie-breaking rules can be applied here if a path has more than one links with
smallest available bandwidth.

In the third step, the controller compares the available bandwidth of bottleneck links of all potential
paths and selects the one with the maximum value. If the maximum available bandwidth is greater than the
demand of the flow, the corresponding path is selected for the flow. The controller will then set up the flow
tables of all the switches along the chosen path accordingly. However, if the maximum available bandwidth
is less than the flow demand, it means that there does not exist a viable path for this flow. The system may
choose to either reject this flow, or admit this flow at the risk of jeopardizing the quality-of-service of this
flow and all other existing flows in the system that may intersect with this flow.

4.3 Time Complexity

In a k-pod fat tree, which consists of k3/4 hosts and 5k2/4 switches, there are at most k distinct paths
between any two hosts. For each path, the algorithm needs to check at most 8 links (which is the maximum
path length) in order to find the bottleneck. Therefore, the complexity of the routing process is O(k). In
other words, the proposed multipath routing algorithm has a time complexity of O(n1/3) for a network
with O(n) nodes.

5 IMPLEMENTATIONS

To validate our designs, we have implemented the proposed algorithm in two environments: as a module
of an open-source OpenFlow controller, and in a home grown DCN simulator.
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5.1 OpenFlow Controller Module

We implemented the algorithm as a module of the Beacon controller (version 1.04) (Erickson 2013). The
module has two functions: monitoring the link state and calculating paths for new flows.

The Beacon controller module periodically schedules a monitoring event, upon which the controller
will send an OFStatisticsRequest command to every switch in the network, once every T seconds.
Each switch will in turn reply with an OFStatisticsReply message. The controller processes the reply
message by extracting the switch ID, the port number, the total number of bytes transmitted, as well as the
time the reply message was received. An estimation of the flow rate for each port can be calculated based
on this information. The size of the messages is quite small: 8 bytes for the OFStatisticsRequest
message and 104 bytes for the OFStatisticsReply message. The overhead for the port statistics
request and reply was small. In a 4-pod or 8-pod fat tree setup in Mininet (Lantz, Heller, and McKeown
2010), we noticed that by making T smaller (from 6 to 2 seconds) the CPU usage was increased only by
approximately 2-5%.

The flow path scheduling function requires up-to-date port statistics for load balancing. When an
OpenFlow switch receives a packet, the switch will attempt to match the packet header with the entries
in its flow table. If the switch cannot find a matching flow entry, it will send the packet to the controller
wrapped in an OFPacketIn message. Upon receiving this message, the controller will decide on an
optimized path for the flow, as described in Section 4. Once the path is determined, the controller will
create and send an OFFlowMod message, which contains the packet header information for flow matching,
along with the input and output ports for each switch on the flow path.

Mininet 2.1 was selected for emulation. We studied the algorithm using a 4-pod or a 8-pod fat tree. A
python script was developed to automatize the testing process, including switch initialization and connection
to the Beacon Controller, host initialization, and traffic generation. Traffic are UDP flows generated by
iperf: each host has an iperf server; and based on the traffic load, the python script creates a UDP flow
from an iperf server to an iperf client chosen randomly among the hosts at certain time intervals.

5.2 DCN Simulation

We also developed a fluid-based DCN simulator to help evaluate the performance of the proposed multipath
algorithm in diverse settings. The DCN simulator was implemented using the MiniSSF parallel discrete-
event simulation framework (Rong, Hao, and Liu 2014), although it only used the sequential simulation
functions.

The DCN simulator creates the fat tree network model with simulated hosts, switches, and links between
the switches and hosts. Currently we use an exponential distribution to model the inter-arrival time of
flows, which are randomly placed between the hosts according to a uniform distribution. Here we assume
that the flow arrival is a stationary Poisson process. One can capture the non-stationary behavior (such as
the diurnal effect) by using piece-wise constant flow arrival rates at different time intervals. Such traffic
pattern can also be extended easily to include more realistic scenarios, e.g., Benson et al. (2010), Benson
et al. (2010b). Upon each new flow arrival, the simulator invokes a routing oracle to determine its path.
The aforementioned load-balanced multipath routing algorithm is implemented as the routing oracle.

To achieve high performance for running large-scale network models and scenarios with high traffic
intensity, we developed a fluid model to represent the network traffic. Fluid models, e.g., Nicol (2001), Liu
et al. (2003), can be applied to reduce the computational complexity, where one uses fluids to represent a
series of packets traversing the network. It is also possible to capture the interaction between that network
flows represented as fluids and those represented by individual packets, e.g., Nicol and Yan (2004), Gu,
Liu, and Towsley (2004), Liu (2006), Li, Van Vorst, and Liu (2013). These models are shown to be able
to achieve substantial performance gains—in some cases, more than three orders of magnitude—over the
traditional packet-oriented approach, while still maintaining good accuracy.
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Figure 4: Mininet delay.

In our case, we developed a simple fluid model that can capture the steady-state queuing behavior. Upon
the arrival of a new flow, we update the flow arrival rate of the network queues at each hop visited by the
flow. We calculate the throughput and end-to-end delay of the flow traversing the queue using a steady-state
approximation of the M/D/1/N queue. For simplicity, we do not capture the transient time-varying aspects
of the queuing behavior. Changes in the throughput and delay at one queue are propagated immediately to
the subsequent queues. The throughput and delay of other flows traversing the same queue may also need
to be updated. To avoid the “ripple effect” (Nicol 2001), where a change in the arrival rate of one flow
at one queue may cause changes to the rate of all other flows at the same queue as well as other queues
subsequent traversed by these flows, we apply a dampening factor to prevent small changes from being
propagated to subsequent queues. Our fluid model is simple and can accurately capture the fluctuations in
flow rate when flows entering and leaving the system.

6 EXPERIMENTS

We conducted two sets of experiments: one with the Beacon SDN controller and the Mininet emulation
platform, and the other with the MiniSSF simulator. The former validates the correctness of the proposed
design in a real implemented system. The latter uses simulation to evaluate the algorithm performance for
networks with various configurations and of larger scales.

6.1 Emulation

While our OpenFlow controller module implementation can be applied directly in DCN, we need to first
validate its correctness. For this, we chose Mininet (version 2.1.0), which is a container-based emulation
environment for testing SDN applications (Lantz, Heller, and McKeown 2010). Mininet can instantiate
a set of virtual hosts and virtual switches, which can be connected as an arbitrary network, all on the
same machine. Mininet runs on a single Linux kernel for all virtual host instances using a lightweight
container-based virtualization solution. Using lightweight container-based virtualization provides a scalable
mechanism: one can use Mininet to create hundreds and even thousands of virtual hosts. One limitation is
that all instantiated virtual machines must run the same OS kernel (since each container is simply running
in a separate kernel name space). The main drawback of the container-based VM, however, as we acutely
observed in our experiments, is that containers do not impose resource isolation. There is a stringent
limitation in the amount of traffic that can be emulated by Mininet on a single machine in real time.
Moreover, the applications running on the virtual hosts are also competing for the CPU resources. For our
experiment scenarios potentially with heavy traffic, Mininet cannot produce reasonable results.

To show its limitation, we used the Mininet to emulate a fat tree with k = 4 pods, in which case the
network contains only 16 hosts and 20 switches. We set the bandwidth of all links to be 100 Mbps. We
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used iperf to generate UDP flows; the source and destination of the flows were chosen uniformly at
random. Each flow generates packets at a constant rate which is uniformly distributed between 8 to 12
Mbps; the mean is 10 Mbps. The duration of each flow is 30 seconds. We varied the offered traffic load
on the network by changing the mean inter-arrival time between the flows, which is set to be exponentially
distributed. For the experiment, we varied the offered load from 1% to 20% of the total bandwidth for
connecting the hosts. For k = 4, that’s 100 Mbps for each of the 16 hosts, or 1.6 Gbps in total. Each
experiment ran for 300 seconds; we conducted 10 runs for each offered load.

Figure 3 shows the average throughput of all flows created in the experiment; Figure 4 shows the
average delay. In the figures, we plot the results from each of the 10 runs, together with the averages.
For comparison, we also show the results from simulation with a similar setting (described in more detail
in the next section). From this experiment, we can make two observations. First, there exists significant
variation in the Mininet results between runs, especially considering the results are averages among all
flows in each experiment. Second, the throughput drops significantly when offered load increases; such
decrease starts early even when the offered load is small. The same is true for the end-to-end delay, which
increases with the increasing offered load. In this aspect, the emulation results diverge significantly from
the simulation results, which show a rather stable behavior when the offered load is blow 20%.

There could be many possible contributing factors to this disparity. We measured the CPU utilization
during the emulation experiment. The machine we ran the experiment has a four-core 3.3 GHz Intel Xeon
processor with hyper-threading enable, and 12 GB of memory. At 1% traffic load, the CPU utilization was
averaged at 77%. At 2% load, it was increased to 93%. For an offered load of 3% and more, the CPU
utilization was consistently above 97%. As this rate, Mininet was not able to deal with the emulation events.
We believe the fast increase in delay and rapid decrease in throughput can be attributed to the resource
contention. Note that, with such light traffic load for a small-scale DCN, we cannot conduct meaningful
experiments to compare the performance of our load-balanced multipath algorithm. In the next section,
we resort to simulation for the performance evaluations.

6.2 Simulation

In this section, we present the simulation results to demonstrate the effectiveness of our algorithm. We
consider fat trees of k = 4, 8, and 16. A fat tree contains k3/4 hosts and 5k2/4 switches. For k = 16, we
have 1024 hosts and 320 switches. We used the same parameters as in the Mininet experiment described in
the previous section, except that we increased the range of the offered load up to 90% of the total bandwidth
for connecting the hosts. For each offered load we conducted 15 trials each running 1000 seconds.

We compare the results from using our load-balanced multipath algorithm (labeled as LBMP) with
those from a simple multipath algorithm, which, likes ECMP, randomly selects one of the available paths
between the source and destination hosts. Figure 5 shows the average throughput achieved under different
offered load, and Figure 6 shows the average end-to-end delay. We plot the 95% confidence interval for the
15 runs at each data point (which is negligible in most cases). As expected, our load-balanced multipath
algorithm consistently achieved better throughput and delay compared to the random multipath algorithm.
With the same offered load, the end-to-end delay of our algorithm is measured slightly higher for larger
fat trees. This is due to the longer average path length. The throughput remains similar between different
fat tree sizes, because the algorithm is able to balance the traffic load in the network. This is not true
for the random multipath algorithm: at higher traffic intensity, congestions start to form which causes the
throughput to drop more precipitously, especially for larger network size.

The size of the network queues should play an important factor in determining the packet delays. In
the previous experiment, we fixed the buffer size to be 1000 packets (that’s 500 KB assuming the average
packet size is 500 bytes). In the next experiment, we varied the buffer size from 1000 to 16000 to examine
its effect on the throughput and delay. Figures 7 and 8 shows the results for a k = 4 fat tree. We observe
that, while the throughput does not change under different buffer sizes, a larger buffer size would increase
the end-to-end delay. Both algorithms are able to spread the traffic load and the network has enough
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Figure 5: Simulation throughput.
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Figure 6: Simulation delay.
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Figure 7: Throughput with varying buffer size.
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Figure 8: Delay with varying buffer size.

capacity to handle the flows originated from the hosts. The queue length remains to be relatively small and
therefore the blocking probability is kept low not to significantly affect the throughput. However, with a
larger buffer size, the average queue length does increase, which directly affects the queuing delay for the
flows traversing the queue, as it is obviously shown in Figure 8. In all cases, our load-balanced multipath
algorithm consistently achieves better performance than the random multipath algorithm, both in terms of
the increased throughput and in the reduced delay.

7 CONCLUSIONS

The fat tree with multipath capability has become a popular topology for data center networks for its
increased bandwidth and fault tolerance. In this paper, we propose a load-balanced multipath routing
algorithm, which can better distribute the traffic load and utilize the available bandwidth in the fat tree
network. We formulate the problem as a linear program and show its NP-completeness by reduction from the
integer partition problem. As a practical solution, we propose a load-balanced multipath routing algorithm
for SDN-based data center networks. The algorithm uses the central controller to collect information
of the network state, and makes optimized load balancing decisions when admitting new flows to the
network. We implemented the proposed algorithm both in Mininet, to establish the basic validation of the
implementation, and in a simulator, to conduct extensive performance evaluations. Experiment results show
that our algorithm consistently outperforms the traditional multipath algorithm using random assignments.

For future work, we plan to conduct more validation experiments. Especially we would like to compare
the simulation results against those from a real physical SDN testbed, and against other multipath algorithms.
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We will also conduct experiments with more realistic traffic load, including the use of TCP, for a better
representation of the data center applications and their network behavior.
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