
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

USING MASSIVELY PARALLEL SIMULATION FOR MPI COLLECTIVE COMMUNICATION
MODELING IN EXTREME-SCALE NETWORKS

Misbah Mubarak

Computer Science Department
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180, USA

Christopher D. Carothers

Computer Science Department
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180, USA

Robert B. Ross

MCS Division
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439, USA

Philip Carns

MCS Division
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439, USA

ABSTRACT

MPI collective operations are a critical and frequently used part of most MPI-based large-scale scientific
applications. In previous work, we have enabled the Rensselaer Optimistic Simulation System (ROSS) to
predict the performance of MPI point-to-point messaging on high-fidelity million-node network simulations
of torus and dragonfly interconnects. The main contribution of this work is an extension of these torus
and dragonfly network models to support MPI collective communication operations using the optimistic
event scheduling capability of ROSS. We demonstrate that both small- and large-scale ROSS collective
communication models can execute efficiency on massively parallel architectures. We validate the results
of our collective communication model against the measurements from IBM Blue Gene/Q and Cray XC30
platforms using a data-driven approach on our network simulations. We also perform experiments to explore
the impact of tree degree on the performance of collective communication operations in large-scale network
models.

1 INTRODUCTION

The increasing data and networking demands of large-scale scientific applications place a challenge on the
network designers of extreme-scale systems. Exascale system architectures are predicted to have O(100K)
compute nodes and a node interconnect bandwidth of up to 1 TiB/s (Dongarra 2012, Department of Energy
2013). Codesign of such extreme-scale networks is critical in order to identify the best network design
options for extreme-scale systems before building physical hardware. While other techniques such as
analytical modeling can also be used to guide initial design decisions, high-fidelity simulation offers an
unmatched ability to evaluate real-world application workloads in detail on proposed architectures.

Considerable research is in progress to determine a network topology that minimizes packet latency and
utilizes maximum network bandwidth for a variety of communication patterns. Among the network topologies
for extreme-scale systems, torus networks are popular because of their efficient local communication patterns.
They have been widely used in the Blue Gene series of supercomputers (Chen et al. 2011), Cray XT5

3107978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Mubarak, Carothers, Ross, and Carns

and Cray XE6 systems (Vaughan et al. 2011). Another emerging class of network topologies is the
low-latency, low-diameter networks, such as dragonfly, which has been used in recent Cray XC30 system
(Alverson et al. 2012). In our previous work, we have presented simulations of MPI point-to-point
messaging on top of million-node dragonfly and torus networks using Rensselaer Optimistic Simulation
System (ROSS) (Carothers et al. 2002). This paper presents an extension to our large-scale discrete-event
models of the torus and dragonfly network topologies to accurately predict the performance of MPI collective
communication operations. The contributions of this paper are as follows:

• We extend the capability of our existing large-scale, discrete-event torus and dragonfly network
simulations to model the MPI collective communication ability.

• Collective communication modeling in large-scale torus and dragonfly simulations is demonstrated
to execute efficiently on both small- and large-scale problem sizes, as shown by the experiments
executed in Section 4. Experiments are executed on network sizes of up to 512K nodes to determine
the effect of tree radix in collective communication on the overall network performance.

• We validate the accuracy of our collective communication model by comparing the collective latency
of the model with measurements from IBM Blue Gene/Q and Cray XC30 platforms.

• We evaluate the performance of our simulation methodology with a strong scaling study of a 65K
node network model. We also compare the performance of ROSS conservative and optimistic
synchronization protocols for the collective communication model.

The remainder of the paper is organized as follows. We describe the background work on the network
models and collective operations in Section 2. Section 3 presents an algorithmic description for simulating
the collective communication algorithms in ROSS. Section 4 validates the model and illustrates an example
using the model to study the impact of tree radix on collective performance. Section 5 analyzes the
performance of the simulator itself. Related work is discussed in Section 6. Closing remarks and future
work are discussed in Section 7.

2 BACKGROUND

In this section we briefly provide background on the simulation of torus networks, dragonfly networks,
and collective operations.

2.1 Torus network simulation

A torus is a k-ary n-cube network with N = kn nodes arranged in an N-dimensional grid with k nodes
in each dimension (Dally and Towles 2004). A torus network has no dedicated routers. Each node is
directly attached to 2∗n other nodes, and all nodes are capable of routing messages in multiple dimensions.
Torus networks are popular in HPC deployments because they yield high throughput for nearest-neighbor
communication as well as good path diversity under concurrent workloads.

In previous work we developed parallel discrete event models of large-scale torus networks and
validated them on the IBM Blue Gene computing platforms (Liu et al. 2012, Mubarak et al. 2014). We
then demonstrated the ability to simulate networks with over 1 million nodes with high fidelity. These
simulations have been used to explore how different application traffic patterns (both nearest neighbor and
bisection bandwidth) respond to different network topology parameters. We also observed that large-scale
discrete event simulation can play a valuable role in network design: network behaviors that emerge at
large scale are not necessarily captured by small-scale models. These simulations focused exclusively on
point-to-point network communication patterns, however.

3108

Mubarak, Carothers, Ross, and Carns

g19

g0

g1
g2g3g4

g5

g6

g7

g8

g9

g10

g11
g12 g13 g14

g15

g16

g17

g18

g10

g9

g8

g7
g6 g4

g3

g2

g1

g11

g12

g13
g14 g15 g16

g17

g18

g19

g0

g5

r07

r00

r01

r02

r03
r04

r05

r06
c000

c001

c002

c003

c010

c011

c012

c013

c020

c021

c022

c023

c030

c031

c032

c033

c040
c041c042

c043

c050

c051

c052

c053

c060
c061 c062

c063
c070

c071

c072

c073

Figure 1: Dragonfly intergroup and intragroup settings with a=8, p=4, h=4 (some groups are not shown
because of graphic rendering purposes).

2.2 Dragonfly network simulation

The dragonfly topology is an alternative to the torus topology in which nodes are organized into a hierarchy
with multiple groups and dedicated routers. Dragonfly networks have recently gained popularity in systems
such as the Cray XC (Alverson et al. 2012). An example of a dragonfly network is shown in Figure 1. The
dragonfly topology offers advantages over the torus for some HPC algorithms by reducing the number of
hops needed for nonlocal communication. Each router has p nodes connected to it, and each group has
a routers. Routers within a group are connected via local channels. Each router also also uses h global
channels for connectivity across groups. The recommended dragonfly configuration sets the topology
parameters to a = 2p = 2h in order to balance local and global link bandwidth. The total number of nodes
N in the network is determined by N = p∗a∗g (Kim et al. 2009).

In previous work we developed a dragonfly network model that was validated against the booksim
cycle-accurate simulator and then demonstrated to scale up to 50 million simulated nodes while processing
1.33 billion events per second. The simulation was used to evaluate the impact of routing strategies
in large-scale dragonfly networks (Mubarak et al. 2012). As in the torus case, this simulator focused
exclusively on point-to-point messaging.

Both the torus and dragonfly models have now been unified under a common framework, known as
modelnet, that allows the two network models (and others like them) to be used interchangeably in broader
HPC system models with a consistent API. The modelnet framework also unifies common functionality
across network models, such as mapping model entities to MPI processes for parallel simulation and
decomposing messages into packets for transmission.

2.3 Collective communication workloads

The performance of large-scale scientific applications often heavily depends on the speed of MPI collective
operations (Almási et al. 2005). Vetter et al. (2013) surveyed 13 prominent HPC applications and found
that while communication strategies varied significantly in each case, collective communication calls may
constitute up to 60% of the communication operations. MPI allreduce() was the most common
operation observed. Although synthetic point-to-point network patterns reveal a variety of insights into
broader system design, they are not sufficient for performance prediction or application codesign. Collective

3109

Mubarak, Carothers, Ross, and Carns

communication models are essential for studying the behavior of specific scientific applications on future
network topologies.

Many MPI collective operations are implemented by forming a tree of the MPI processes involved.
For example, MPICH2 uses a recursive doubling algorithm in a tree for Allgather operations, a binary
tree algorithm for short messages in broadcast operations, and a recursive-halfing algorithm in a tree for
reduce-scatter operations (Thakur and Rabenseifner 2005). The Blue Gene implementation of collective
operations incorporates a machine-optimized versions of MPI collectives that are an extension of MPICH
and Van de Geign algorithms (Almási et al. 2005, Thakur and Rabenseifner 2005). In most of these
operations, there is a fan-in phase where the data is collected by the root of a tree from other nodes,
followed by an optional computation phase where the root node performs some computation on the data.
There also is a fan-out phase where the data computed at the root is distributed to all other nodes.

Publicly available HPC network traces, such as the DOE mini-app traces provided by the Design
Forward project (Department of Energy 2014), already provide access to detailed instrumentation of large
scale applications including both point-to-point and collective communication operations. These traces
can be used in conjunction with high-fidelity HPC network simulation to study the impact of network
parameters on relevant large-scale applications.

3 SIMULATING COLLECTIVE COMMUNICATION

In this section, we describe how we extend the capability of our point-to-point dragonfly and torus network
models to support a collective communication model.

3.1 Modeling collective communication using ROSS

Discrete-event simulation frameworks, such as ROSS, are composed of logical processes (LPs) where each
LP models the state of a distinct component in the system. LPs in ROSS interact with each other by
exchanging time-stamped messages. Synchronization of these time-stamped messages is a key issue in
parallel discrete-event simulation. The most popular approaches to parallel synchronization can be classified
as conservative or optimistic protocols. In the conservative approach, events are processed in the correct
time-stamped order by waiting until it is safe to process events; there is no risk of affecting the logical past
state of an LP. Synchronization points are re-established frequently by introducing communication among
processors, as argued by Nicol et al. (1989). The second approach, optimistic synchronization, allows each
LP to independently progress as far in the simulated time as possible, therefore speeding the simulation.
Events must be rolled back and re-executed in the correct order if an LP receives an out-of-order event
from another LP.

Our collective communication modeling algorithm in ROSS models the fan-in, fan-out, and computation
phases of the collective communication operations where all nodes in a network form a tree of radix n.
ROSS dragonfly and torus network models comprise two LP types: MPI process LPs and network compute
node LPs. The dragonfly model also includes LPs that represent dedicated routers within the network fabric.
We assume a mapping of one MPI process per compute node since we are interested in the interconnection
network among the network nodes. In order to model collective communication for dragonfly and torus
networks, a tree of all MPI process LPs participating in the collective operation is formed. Once the
collective operation starts, the MPI process LPs, positioned as leaves of the collective tree, send an event
at their parents’ LPs, simulating the fan-in phase of collective operations. At each level within the tree,
a delay is added into each event that corresponds to measured time that would have occurred in the real
network hardware being modeled. After the parent LP receives an event from all its children LPs, it sends
a message to its parent LP. The process continues up the tree until an event is sent to the root MPI process
LP. Figure 2-(a) shows this process among the MPI process LPs. Followed by this fan-in phase, an event
corresponding to the computation delay is sent to model the computation phase of the collective operation

3110

Mubarak, Carothers, Ross, and Carns

(a)	 Collec*ve	 modeling	 Fan-‐in	 phase	

LP0	

LP2	 LP1	

LP4	 LP3	 LP5	 LP6	

(b)	 Computa*on	 phase	 at	 root	 node	

LP0	

LP2	 LP1	

LP4	 LP3	 LP5	 LP6	

LP0	

LP2	 LP1	

LP4	 LP3	 LP5	 LP6	

(c)	 Collec*ve	 modeling	 Fan-‐out	 phase	

Figure 2: Example of ROSS collective communication model.

at the root node (see Figure 2-(b)). In order to model the collective fan-out phase, the root MPI process
LP sends an event to its child LPs, and the chain of events travels down to the leaf MPI process LPs.

3.2 Workload description

To carry out the performance study of the collective modeling algorithm in ROSS, we modeled a workload
that is close to the behavior of a large-scale, unstructured finite-element flow solver, PHASTA (Sahni
et al. 2009). The communication phase of PHASTA mostly consists of two stages. The first stage uses
point-to-point operations (either MPI sends or receives) to communicate with neighboring MPI processes.
In the second stage of parallel implicit solvers, a series of MPI allreduce() operations is used to
perform a global summation. The parallel implicit solver involves several iterations of these two phases.

In our simulated workload for collective modeling, we have modeled several iterations of these two
phases of communication where the first phase involves a certain number of point-to-point MPI calls among
neighboring MPI processes and the second phase involves a series of collective communication calls. We
model MPI point-to-point communication operations (MPI sends) on MPI process LPs that translate into
network calls on the compute nodes of dragonfly/torus networks. Currently, our network models assume
that MPI Irecv operations are posted prior to the arrival of an incoming message. Thus, we are not
modeling the case where the receipt of an MPI Isend operation is delayed because there was not matching
MPI Irecv operation. This delay scenario is rare in practice with extreme-scale-ready HPC codes because
the developers take special care to make sure all MPI Irecv operations are posted prior to issuing any
MPI Isend operations. To model collective communication calls in the workload, we use the ROSS
implementation of the algorithm described in Section 3.1.

4 EVALUATION

In this section, we first describe how we validate the accuracy of our collective model against the Blue
Gene/Q and Cray XC30 collective performance. We then present performance data that demonstrates the
impact of tree degree in collective communication on overall simulated network latency using a workload
that extensively makes collective communication calls.

The performance experiments in this section are executed on two architectures: the Computational
Center for Innovation’s RSA cluster and the Argonne Leadership facility’s Tukey cluster. The RSA cluster
is comprised of 32 compute nodes with each node having eight 3.3 GHz Intel Xeon processors. Each node
has 256 GB of available RAM, with the entire system having 8 TB of RAM. The Tukey system has a
total of 96 compute nodes with each node having two 2 GHz AMD Opteron processors. Each node has 64

3111

Mubarak, Carothers, Ross, and Carns

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 4 8 1
6

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

L
a

te
n

c
y
 (

m
ic

ro
s
e

c
o

n
d

s
)

Number of network nodes

BG/Q collectives latency
ROSS torus latency

(a) ROSS torus latency vs. Real (IBM BG/Q) torus latency.

 2

 4

 6

 8

 10

 12

 14

 6
4

 2
5
6

 3
8
4

 5
1
2

 5
6
4

 7
5
0

L
a

te
n

c
y
 (

m
ic

ro
s
e

c
o

n
d

s
)

Number of network nodes

Cray collectives latency
ROSS dragonfly latency

(b) ROSS dragonfly latency vs. Real (Cray XC30) latency.

Figure 3: Simulated and real latency of collective operations as a function of the number of nodes
(software/MPI level overheads are not taken into account).

GiB of RAM and 8 cores per CPU (16 cores per node). Its aggregate performance is over 98 TF double
precision, and the entire system has 6 TB of RAM.

4.1 Validation Study

To validate our ROSS torus collective modeling, we compared it with the latency of collective operations
on the Blue Gene/Q system reported by (Chen et al. 2011). We used a data-driven approach to validate our
simulation by configuring our ROSS collective communication tree with the measured latency per hop for
8-byte collective floating-point operations reported by (Chen et al. 2011). Using these measured latency

3112

Mubarak, Carothers, Ross, and Carns

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 1
0

L
a

te
n

c
y
 (

m
ic

ro
s
e

c
o

n
d

s
)

Tree radix

Network latency --- 128K nodes
Network latency --- 256K nodes
Network latency --- 512K nodes

Figure 4: Simulated latency of torus network in microseconds with varying tree radix (workload: 25
consective collective operations with a small computation delay in between the calls).

trends and varying the number of nodes in the simulation, we obtain close latency agreement with the
collective performance data reported for Blue Gene/Q as shown in Figure 3(a).

To validate the ROSS dragonfly collective modeling, we compared our collective modeling algorithm
with the performance of MPI Allreduce() latency reported by (Alverson et al. 2012) see Figure 15,
which reports latency in terms of number of processes with 16 processes scheduled per node. Since we are
interested in finding latency among network nodes, we measured latency in terms of network nodes instead
of processes. We used the same data-driven approach to validate our dragonfly simulation by configuring
the modeled tree with the latency per level and adjusting the branching ratio or degree of the tree since
the Cray XC30 can support a tree with a branching ratio up to 32. A comparison of the Cray’s reported
latency trends and the ROSS dragonfly simulation is shown in Figure 3(b). Because of the high branching
ratio of the tree, the latency changes slowly for the Cray XC30. We also kept a high branching ratio of the
collective tree in our model to achieve a close latency agreement.

4.2 Network performance with varying tree degree

The branching ratio, or tree degree, is a determining factor in the performance of collective operations. To
evaluate the effect of increasing tree degree on overall collective performance, we simulated a workload
that has extensive calls for collective operations with a small computation delay (20 ns) in between the
collective communication calls.

Figure 4 shows the latency trends of a 128K, 256K and 512K torus network with varying tree radix.
Only hardware level collective overheads are taken into account on a per-tree level basis using data from
the Blue Gene/Q performance study (Chen et al. 2011). One can see that the simulated network latency
tends to decrease as the overall tree degree of the collective communication tree increases, leading to an
improved overall collective performance. From a degree 2 to degree 4, there is a sharp drop in latency,
whereas the latency difference becomes less evident as the tree degree grows larger. Beyond degree 10,
the drop in latency due to tree radix is negligible (not shown in the figure).

The above experiment is an example of how large-scale discrete-event simulation can be used to find
the best configuration parameters for collective communication in a network of any size. This capability

3113

Mubarak, Carothers, Ross, and Carns

can be combined with workload information incorporating both point-to-point and collective operations in
order to evaluate performance of entire large-scale scientific applications.

5 SIMULATOR PERFORMANCE

In this section, we demonstrate strong scaling of our collective communication model on 128K nodes. We
also compare the simulation run-time of the ROSS conservative synchronization protocol with the optimistic
synchronization protocol using a workload that has a combination of point-to-point and collective operations
as described in Section 3.2.

5.1 Strong scaling of simulation performance with optimistic synchronization protocol

ROSS uses the time warp synchronization protocol to process events, which leads to an efficient simulation
by allowing each LP to execute events optimistically until it detects an out-of-order event. When an out-
of-order event is detected, the simulator rolls back previous events and then re-executes them in the correct
order. Optimistic scheduling in ROSS has been shown to dramatically reduce the simulation run-time and
state-saving overhead (Barnes Jr et al. 2013). Using the reverse computation capability in ROSS, our
network simulations scale to a large processor count, even in cases where the models have a low look-ahead.
In this section, we carry out a strong-scaling study of a 65K node torus network model on the Argonne
Leadership Computing Facility (ALCF) system Tukey, with a simulation workload that has a phase of
several nearest-neighbor point-to-point messages followed by another phase of collective communication
operations, as described in Section 3.2.

Table 1: Strong scaling of 65K nodes torus network simulation with optimistic synchronization protocol.
Number of collective calls per iteration = 10, number of point-to-point messages per iteration = 320 (message
size=32 bytes).

Number of Processes 4 16 64 256 1024
Event efficiency(%) 98.91 97.65 97.12 96.10 94.46

Event rate (events/sec) 8,612.51 30,143 108,665 373,593 1,219,590
Running time (seconds) 9,202.9 2,629.43 729.39 212.15 64.98

Net events processed (million) 79.25 79.25 79.25 79.25 79.25

Table 1 demonstrates the strong-scaling results of the simulation performance for a 65K nodes torus
network model. We have evaluated the performance results using three metrics: committed event rate per
second, time to complete the simulation, and event efficiency. These metrics provide a picture of how the
simulation performs with varying processor counts. Event efficiency in ROSS determines the amount of
useful work that the simulation has performed. Equation 1 shows how ROSS event efficiency is calculated.

event efficiency = 1− rolled back events
total committed events

(1)

Since ROSS uses the reverse computation mechanism by rolling back events, the simulator efficiency
is proportional to the number of events that are rolled back. With zero rollbacks, the simulator yields
100% efficiency. Table 1 shows that the event efficiency with the 65K node network model is at minimum
94.46%, which indicates that the simulation is not spending excessive time in rolling back events. As the
number of processes increases, the simulation event rate also scales with a maximum event rate of 1.2
million events per seconds on 1,024 MPI processes. Because of the increasing event rate, the simulation
run-time also keeps decreasing as the number of MPI processes increase.

3114

Mubarak, Carothers, Ross, and Carns

5.2 Comparison of simulation runtime with conservative synchronization protocol

The (optional) ROSS conservative mode protocol employs a global synchronization mechanism in which
LPs are allowed to process events between a globally computed time stamp. The computed lowest time
stamp is the smallest unprocessed event in the simulation plus a global look-ahead value. This approach
requires more frequent synchronization among processes than does the Time Warp synchronization protocol
and can lead to a slower simulation whenever the look-ahead value is small, as argued by Carothers and
Perumalla (2010). In this section, we compare the simulation run-time of the network models with the ROSS
conservative mode against the optimistic event-scheduling mode. The workload for this performance study
comprises 40 point-to-point messages each having a message size of 512 bytes followed by 5 collective
communication operations. There are 10 such iterations of point-to-point and collective communication
phases.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 4
0
9
6

 8
1
9
2

 1
6
3
8
4

 3
2
7
6
8

 6
5
5
3
6

 1
3
1
0
7
2
S

im
 r

u
n

ti
m

e
 (

s
e

c
s
)

Number of network nodes

ROSS conservative mode
ROSS optimistic mode

Figure 5: ROSS simulation performance: conservative vs. optimistic mode with a message payload size
= 512 bytes, number of point-to-point messages per iteration = 40, number of collective operations per
iterations = 5, number of communication iterations = 10.

Figure 5 presents a comparison of the simulation run-time for the ROSS conservative vs. optimistic mode
with torus network sizes ranging from 4K nodes to 128K nodes. For both small and large network sizes, the
optimistic mode performs more efficiently than the conservative mode. Excessive global synchronization
required in the conservative mode is one factor that influences the conservative simulation performance.
Another factor is the size of the look-ahead values. The event time stamps are architecture-specific, and
the look-ahead values must be set to a correspondingly low value to prevent out-of-order event execution.

6 RELATED WORK

Previous discrete event simulators have implemented MPI collective operations using other techniques.
Girona et al. (2000) modeled collective communication in the Dimemas simulator by using analytical
models, while Rodriguez et al. (2004) fit linear models to Dimemas trace replays to generalize them. Hoefler
et al. (2010) model collective communications in the LogGOPSim simulator by decomposing them into
individual point to point operations based on common MPI library algorithms. The LogGOPSim simulator
is a sequential discrete event simulator that models communication costs for point-to-point messages using
a variation of the LogGP (Alexandrov et al. 1995) analytical model. SimGrid offers SMPI, a tool through

3115

Mubarak, Carothers, Ross, and Carns

which large-scale MPI applications can be simulated online on a single node by using memory footprint
reduction and sampling execution iterations (Clauss et al. 2011).

Algorithms for collective communications have been studied extensively in the literature, with particular
focus on tuning algorithms for use on different networks, scales, and message sizes. Mitra et al. (1995)
implemented a set of collective communication algorithms optimized for Intel supercomputers in the iCC
library. Thakur and Rabenseifner (2005) developed collective algorithms for switched networks with the
goal of minimizing latency for small messages and minimizing bandwidth use for large messages. Chan
et al. (2007) developed a general, parameterized family of collective algorithms to be used for automatic
optimization. Each of these works describes specific algorithms for expressing collective operations in
terms of individual point-to-point messages.

7 CONCLUSION AND FUTURE WORK

Discrete-event simulation is becoming an increasingly important tool for exploring design space of future
supercomputers, and many complex scientific applications now rely heavily on MPI collective operations.
In this work we have therefore extended the capability of our large-scale torus and dragonfly network
models to support collective communication operations. We have carried out a study to determine the
impact of collective tree configuration on network performance. A simulation performance study for small-
and large- scale network sizes has also been carried out using ROSS optimistic event scheduling. We have
validated our ROSS collective model against the performance measurements reported for the Blue Gene/Q
and Cray XC platforms. Overall, our work is geared at providing network designers with a capability to
simulate certain configurations of a network with collective and point-to-point MPI communication.

As part of the future work, we plan to use real application communication traces, such as those collected
as part of the Design Forward mini-app characterizations (Department of Energy 2014), to drive our network
simulations. This will be a step towards enabling the network design space exploration using communication
traces of complex scientific applications. We also plan to execute our collective communication model on
Blue Gene systems and evaluate the simulation performance.

8 ACKNOWLEDGEMENTS

This work is supported by the Department of Energy (DOE) Office of Science, Advanced Scientific Computer
Research (ASCR) under contract DE-AC02-06CH11357. This research used resources of the Argonne
Leadership Computing Facility (ALCF) at Argonne National Laboratory. We would like to thank Ms. Elsa
Gonsiorowski for her help with visualizing a small-scale dragonfly network.

REFERENCES

Alexandrov, A., M. F. Ionescu, K. E. Schauser, and C. Scheiman. 1995. “LogGP: Incorporating long
messages into the LogP Model – one step closer towards a realistic model for parallel computation”. In
Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’95, 95–105. New York, NY, USA: ACM.

Almási, G., P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J. E. Moreira, B. Steinmacher-Burow,
and Y. Zheng. 2005. “Optimization of MPI collective communication on BlueGene/L systems”. In
Proceedings of the 19th annual international conference on Supercomputing, 253–262. ACM.

Alverson, B., E. Froese, L. Kaplan, and D. Roweth. 2012. “Cray XC series network”. Technical Report
White Paper WP-Aries01-1112, Cray Inc.

Barnes Jr, P. D., C. D. Carothers, D. R. Jefferson, and J. M. LaPre. 2013. “Warp speed: executing time warp
on 1,966,080 cores”. In Proceedings of the 2013 ACM SIGSIM conference on Principles of Advanced
Discrete Simulation, 327–336. ACM.

Carothers, C. D., D. Bauer, and S. Pearce. 2002. “ROSS: A high-performance, low-memory, modular Time
Warp system”. Journal of Parallel and Distributed Computing 62 (11): 1648–1669.

3116

Mubarak, Carothers, Ross, and Carns

Carothers, C. D., and K. S. Perumalla. 2010. “On deciding between conservative and optimistic approaches
on massively parallel platforms”. In Proceedings of the 2010 Winter Simulation Conference (WSC),
edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, 678–687. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Chan, E., M. Heimlich, A. Purkayastha, and R. van de Geijn. 2007, September. “Collective communication:
Theory, practice, and experience: Research articles”. Concurr. Comput. : Pract. Exper. 19 (13): 1749–
1783.

Chen, D., N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar, V. Salapura, D. L. Satterfield,
B. Steinmacher-Burow, and J. J. Parker. 2011. “The IBM Blue Gene/Q interconnection network and
message unit”. In 2011 International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2011., 1–10. IEEE.

Clauss, P.-N., M. Stillwell, S. Genaud, F. Suter, H. Casanova, and M. Quinson. 2011. “Single node on-line
simulation of MPI applications with SMPI”. In Parallel & Distributed Processing Symposium (IPDPS),
2011 IEEE International, 664–675. IEEE.

Dally, W. J., and B. P. Towles. 2004. Principles and Practices of Interconnection Networks. Morgan
Kaufmann.

Department of Energy 2013. “Exascale initiative: Design forward program”. Accessed July 31, 2013,
”http://www.exascaleinitiative.org/design-forward”.

Department of Energy 2014. “Design Forward characterization of DOE mini-apps”. Accessed June 05
2014, http://portal.nersc.gov/project/CAL/designforward.htm.

Dongarra, J. 2012. On the future of high-performance computing: How to think for peta and exascale
computing. Hong Kong University of Science and Technology.

Girona, S., J. Labarta, and R. M. Badia. 2000. “Validation of Dimemas Communication Model for MPI
Collective Operations”. In Proceedings of the 7th European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing Interface, 39–46. London, UK,
UK: Springer-Verlag.

Hoefler, T., T. Schneider, and A. Lumsdaine. 2010, June. “LogGOPSim - Simulating large-scale applications
in the LogGOPS model”. In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, 597–604: ACM.

Kim, J., W. Dally, S. Scott, and D. Abts. 2009. “Cost-efficient dragonfly topology for large-scale systems”.
Micro, IEEE 29 (1): 33–40.

Liu, N., C. Carothers, J. Cope, P. Carns, and R. Ross. 2012. “Model and simulation of exascale communication
networks”. Journal of Simulation 6 (4): 227–236.

Mitra, P., D. G. Payne, L. Shuler, R. Geijn, and J. Watts. 1995. “Fast collective communication libraries,
please”. In Proceedings of the Intel Supercomputing Users’ Group Meeting.

Mubarak, M., C. D. Carothers, R. Ross, and P. Carns. 2012. “Modeling a million-node dragonfly network
using massively parallel discrete-event simulation”. In High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion,, 366–376. IEEE.

Mubarak, M., C. D. Carothers, R. B. Ross, and P. Carns. 2014. “A case study in using massively parallel
simulation for extreme-scale torus network codesign”. In Proceedings of the 2nd ACM SIGSIM/PADS
conference on Principles of Advanced Discrete Simulation, 27–38. ACM.

Nicol, D. M., C. C. Michael, and P. Inouye. 1989. “Efficient aggregation of multiple PLs in distributed
memory parallel simulations”. In Proceedings of the 21st Conference on Winter Simulation, edited by
K. J. Musselman, P. Heidelberger, and E. A. MacNair, 680–685. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Rodriguez, G., R. M. Badia, and J. Labarta. 2004. “Generation of simple analytical models for message
passing applications”. In Proceedings of the Euro-Par Conference, 183–188.

3117

Mubarak, Carothers, Ross, and Carns

Sahni, O., C. D. Carothers, M. S. Shephard, and K. E. Jansen. 2009. “Strong scaling analysis of a
parallel, unstructured, implicit solver and the influence of the operating system interference”. Scientific
Programming 17 (3): 261–274.

Thakur, R., and R. Rabenseifner. 2005. “Optimization of collective communication operations in MPICH”.
International Journal of High Performance Computing Applications 19:49–66.

Vaughan, C., M. Rajan, R. Barrett, D. Doerfler, and K. Pedretti. 2011. “Investigating the impact of the
Cielo Cray XE6 architecture on scientific application codes”. In IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011, 1831–1837. IEEE.

Vetter, J. S., S. Lee, D. Li, G. Marin, C. McCurdy, J. Meredith, P. C. Roth, and K. Spafford. 2013.
“Quantifying architectural requirements of contemporary extreme-scale scientific applications”. In
International Workshop on Performance Modeling, Benchmarking and Simulation of HPC Systems
(PMBS13). Denver, CO.

AUTHOR BIOGRAPHIES

MISBAH MUBARAK is a Ph.D. student in the Computer Science Department at Rensselaer Polytechnic
Institute (RPI) . Her research interests are modeling and simulation of massively parallel systems. She
received her master’s degree in computer science from RPI as a U.S. Fulbright scholar. She also has
experience in developing multitier enterprise applications at CERN, Switzerland, and Teradata corporation.
Her email address is mubarm@cs.rpi.edu.

CHRISTOPHER D. CAROTHERS is a professor in the Computer Science Department at Rensselaer
Polytechnic Institute. He received the Ph.D., M.S., and B.S. from Georgia Institute of Technology in 1997,
1996, and 1991, respectively. Professor Carothers is an NSF CAREER Award winner as well as Best
Paper award winner at the PADS workshop for 1999, 2003, and 2009. Since joining Rensselaer, he has
secured research funding from a wide variety of agencies including the NSF, the U.S. Department of Energy,
Army Research Laboratory and Air Force Research Laboratory, as well as several companies, including
IBM, General Electric, and AT&T. His simulation research involves the creation of high-fidelity models of
extreme-scale wireless and wired networks and computer systems. Additionally, Professor Carothers serves
as the director for the Center for Computational Innovations (CCI) at Rensselaer. CCI is a partnership
among Rensselaer and IBM. The center currently supports a network of more than 850 researchers, faculty,
and students from 50 universities, government laboratories, and companies across a diverse spectrum of
disciplines. Currently, the CCI operates HPC resources exceeding one petaflop in compute power. The
flagship supercomputer system is a 1 PF IBM Blue Gene/Q with 80 terabytes of memory. His email address
is chrisc@cs.rpi.edu.

ROBERT B. ROSS is a computer scientist in the Mathematics and Computer Science Division of Argonne
National Laboratory and a senior fellow in the Northwestern-Argonne Institute for Science and Engineering.
He is also an adjunct assistant professor in the Department of Electrical and Computer Engineering at
Clemson University. He received his Ph.D. in computer engineering from Clemson University in 2000.
He currently holds several leadership positions at Argonne and in the U.S. DOE computing community,
including serving as deputy director of the Scientific Data Management, Analysis, and Visualization Institute
and as co-lead of the Data Management component of the DOE Office of Science Exascale Computing
activity. His email address is rross@mcs.anl.gov.

PHILIP CARNS is a software development specialist in the Mathematics and Computer Science Division
at Argonne National Laboratory. He received his Ph.D. in computer engineering from Clemson University
in 2005. He also has industry experience in applying grid technology to business data management. His
email address is carns@mcs.anl.gov.

3118

