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ABSTRACT 

This research proposes and tests an integrated framework for bottom-up simulation of performance in 

construction projects. The proposed framework conceptualizes construction projects as systems-of-systems 

in which the abstraction and micro-simulation of dynamic behaviors are investigated at the base-level 

consisting of the following elements: human agents, information, and resources. The application of the 

proposed framework is demonstrated in a numerical example related to a tunneling project. The findings 

highlight the capability of the proposed framework in providing an integrated approach for bottom-up 

simulation of performance in construction projects. 

1 INTRODUCTION 

One of the major challenges facing the construction industry is the low efficiency of projects in terms of 

time, cost and quality. Based on a recent study by the Construction Industry Institute, only 5.4% of the 

construction projects investigated met both authorized goals in time and cost within an acceptable margin 

(CII 2012). Better understanding of the determinants of performance is critical in enhancing the 

performance of construction projects. Construction simulation models (e.g., Cyclone by Halpin (1976), 

STROBPSCOPE by Martinez (1996), Simphony by Hajjar and AbouRizk (1999)) have been used over the 

past three decades to facilitate a better understanding of the underlying dynamics affecting the performance 

of construction projects. However, context-related factors (e.g. human behaviors and organizational 

culture), which have been proved to have significant impact on the performance of construction projects, 

cannot be captured by traditional construction simulation models (Lee et al. 2007; CII 2013). Recent studies 

in construction simulation filed have developed methodologies to incorporate some of these context-related 

factors into consideration (Lee et al. 2006). Despite the efforts have been made, an integrated framework 

facilitating a bottom-up understanding of the dynamic behaviors, uncertainties, and interdependencies 

between the constituents in construction projects is still missing. The major limitation of the existing 

construction simulation models is the lack of appropriate conceptualization of construction projects. In the 

existing models, construction projects are conceptualized as monolithic systems. However, construction 

projects are actually systems-of-systems (SoS) consisting of networks of interconnected human agents, 

information, and resources. Conceptualization of construction projects as SoS facilitates identification of 

the dimensions of analysis required for an integrated assessment of performance. The objective of this 

research is to propose and test an integrated framework for bottom-up simulation of construction projects 

using a SoS approach. In the following sections, first, the dimensions of analysis related to the proposed 

framework are introduced. Then, the application of proposed SoS framework is demonstrated in a numerical 

example.  
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2 SYSTEM-OF-SYSTEMS FRAMEWORK 

The existing construction simulation models conceptualize construction projects as monolithic systems. 

Improper conceptualization of the nature of construction projects has led to inappropriate level of 

abstraction in the existing simulation models. The level of abstraction is the level at which the dynamics of 

construction projects are captured for simulation. In the existing construction simulation models, the level 

of abstraction is at the activity level. Abstraction of the dynamics of construction projects at the activity 

level leads to the following limitations: (i) lack of consideration of the autonomy of constituents in projects 

(e.g., creativity and flexibility of first-line workers), (ii) lack of consideration of the micro-behaviors (e.g., 

different human agents have different behavior attitudes in conducting same activity), (iii) lack of 

consideration of the interdependencies between constituents (e.g., the impact of information uncertainty on 

the decision-making behaviors of agents).  

In reality, construction projects are systems-of-systems (SoS) consisting of networks of interconnected 

human agents, information, and resources (Zhu and Mostafavi 2014). A system-of-systems is an 

assemblage of components which individually can be regarded as systems (Maier 1998). SoS has five 

distinguishing traits: operational independence of the components, managerial independence of the 

components, geographic distribution, emergent properties and evolutionary development (Maier 1998). A 

close examination of construction projects shows that all these traits can be identified in construction 

projects, and thus, they can be investigated as SoS (Zhu and Mostafavi 2014).  

The main principles in analysis of SoS include (DeLaurentis and Crossley 2005): (i) analysis of multiple 

levels in which the outcomes of each level is obtained by aggregating the dynamics at the levels below; and 

(ii) abstraction of the dynamics of SoS at the base level in which further decomposition is not possible. 

Hence, analysis of construction projects should be based on these principles. Zhu and Mostafavi (2014) 

proposed a framework (so-called construction projects system-of-systems (CPSoS)) for conceptualizing 

construction projects as SoS. In the proposed framework, construction projects are analyzed across four 

levels: base level (α), activity level (β), process level (γ), and project level (δ). The outcomes of each level 

of analysis are obtained by aggregating the components and interdependencies at the levels below. The 

abstraction of the dynamics of construction projects is made at the base level, which consists of three main 

elements: human agents, resources, and information (Zhu et al. 2014). Human agents are entities who 

conduct three major tasks: production work, information processing, and decision making. Resources and 

information are important elements facilitating these tasks of human agents. The proposed CPSoS 

framework identifies different classifications and attributes pertaining to the three base-level elements 

(Table 1). The detailed information pertaining to the classifications and attributes of base-level elements 

can be found in Zhu and Mostafavi (2014).  

Table 1: Attributes of base-level elements in the CPSoS framework. 

Category Classification Attributes 

Human 

Agent 

Production work-Agent Productivity, cost 

Information processing-Agent Response time 

Decision making-Agent Behavior attitude, risk attitude 

Resource 

Material Quantity, quality, cost, availability 

Equipment Productivity, cost, availability 

Capital Quantity, availability 

Information 

Static information 
Availability, accessibility, 

completeness, accuracy 

Dynamic information 
Availability, accessibility, 

completeness, accuracy, recency 
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3 NUMERICAL CASE 

The application of the proposed CPSoS framework is demonstrated in bottom-up assessment of 

performance in a numerical example related to a tunneling project. In the numerical example, the base-level 

elements pertaining to design, construction, and risk management processes are abstracted and simulated 

using agent-based modeling. 

3.1 Case Description 

In this illustrative example, a case related to construction of a 1600-meter long tunnel is investigated. The 

ground conditions vary along the length of the tunnel and are represented by three categories as Good (1), 

Medium (2), and Poor (3). The ground condition persists for at least 100 meters. At the beginning of the 

project, only the ground condition of the first 100 meters is known. The project is conducted in sections. 

Each section has a step length of 100 meters, 200 meters or 400 meters. The design and construction of this 

project follow an adaptive approach based on the category of ground condition in different sections. For 

each section, the designer makes a decision about the excavation rate and type of support for that tunnel 

section based on the ground condition discovered at the end point of the previous section, the state transition 

probability matrix, and the designer’s risk attitude. The state transition probability matrix (Table 2) is a 

piece of static information obtained from historical data. This information can be used to predict the ground 

condition of the next section. For example, if the ground condition at the end point of the previous section 

is found to be good (1), then according to historical data, there is 60% probability for the ground condition 

of the next section to be also good (1), 25% probability of  being Medium (2), and 15% probability of being 

Poor (3). The designer then uses this prediction to adopt the appropriate excavation rate and type of support 

based on his own risk attitude. A risk-neutral designer uses exactly the predicted ground condition as the 

basis for making decision. A risk-seeking designer tends to be more optimistic. For example, as shown in 

Table 3, if the ground condition is predicted to be in the Medium category, a risk-seeking designer will 

choose both the excavation rate and type of support appropriate for Medium ground condition with 60% 

likelihood. The likelihood that the designer selects excavation rate and type of support appropriate for Good 

ground condition is 40%. A risk-averse designer has the opposite attitude in which more conservative 

decisions about excavation rate and type of support are made. After the designer make the decision based 

on the judgment, the workers start constructing that section. There are two activities in the construction 

process considered in this example: excavation and support placement. The productivity and corresponding 

cost rate related to these two activities are different based on different decisions made by the designer (Table 

4). Table 4 shows the probability distributions pertaining to the productivity and cost rate under different 

designs.  

Table 2: State transition probability matrix. 

From Ground 

Category 

To Ground Category 

1 (Good) 2(Medium) 3 (Poor) 

1 (Good) 0.60 0.25 0.15 

2 (Medium) 0.10 0.80 0.10 

3 (Poor) 0.05 0.20 0.75 

Table 3: Decision probability matrix of a risk-seeking designer. 

Predicted Ground 

Condition Category 

Design Basis 

1 (Good) 2 (Medium) 3 (Poor) 

1 (Good) 1 0 0 

2 (Medium) 0.40 0.60 0 

3 (Poor) 0.10 0.30 0.60 
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Table 4: Productivity and cost rate in construction. 

 
Design Basis 

1 (Good) 2 (Medium) 3 (Poor) 

Excavation Rate (meter/hr) 
Triangular 

(0.37,0.38,0.43) 

Triangular 

(0.32,0.33,0.40) 

Triangular 

(0.13,0.17,0.32) 

Excavator Operating Cost ($/hr) 2019 1760 1750 

Support Placement Rate (meter/hr) 
Uniform 

(0.55,0.65) 

Uniform  

(0.37,0.47) 

Uniform 

(0.15,0.30) 

Support Cost ($/meter) 940 1160 1350 

 

After the construction of one section is finished, the workers test the actual ground condition at the end 

point of that section. This ground condition is reported to both the designer and the risk manager who utilize 

this information for making decisions. The workers report the ground condition to the designer at the end 

of each section, while the reporting to the risk manager is conducted randomly. Once the ground condition 

is reported, the risk manager compares this information with the excavation rate and type of support used 

for that section. If the design basis for excavation rate and type of support used in the section does not match 

with the reported ground condition, the risk manager identifies it as a “near miss” or “overdesign”. In the 

case of a “near miss”, designer’s decision on the excavation rate and type of support does not meet the 

requirement based on reported ground condition. For example, if the ground condition at the end point of a 

section is reported as “Medium”, while the excavation rate and type of support decided by the designer are 

appropriate for the “Good” ground condition, it is a “near miss”. Overdesign is an opposite case in which 

the decision made by designer exceeds the requirement. In either case, the risk manager will make the 

decision of decreasing the step length for the next section to reduce the risks as the designer will have more 

chances to adjust the design according to reported ground conditions. In contrast, if the excavation rate and 

type of support used match with the reported ground condition, the risk manager considers this section as 

designed and built appropriately and increases the step length for the next section since the risk manager is 

more confident in the design capability of the designer and evaluates the situation as of low risk. The 

decision related to the step length made by the risk manager is reported to the designer and workers and the 

next round for design and construction continues. However, the ground condition in one section may vary. 

Using the ground condition discovered at the end point to represent the whole section does not provide the 

objective results of near misses and overdesigns. Therefore differences exist between the actual and 

reported near misses as well as overdesigns. 

3.2 Abstraction at the Base Level 

The CPSoS framework is used to evaluate the base level components and their attributes in the numerical 

example. Table 5 summarizes the human agents, resources, and information in the tunneling project 

described in the numerical example. The key attributes of each component are highlighted in Table 5 and 

used in creation of a simulation model for assessment of performance in the example. 

3.3 Aggregation at Higher Levels 

In the CPSoS framework, the level of aggregation can be made at activity, process and project levels based 

on the abstraction of base-level elements. In this numerical example, since not all the activities in all 

processes are considered, the level of aggregation is at activity and process levels. At the activity level, each 

activity can be represented as a network aggregating the interactions between different human agents, 

resources, and information. Figure 1(a) shows an example of the network related to the excavation activity 

in the construction process for the numerical example. This network consists of human agents (workers), 

resource (excavator), and information (design of excavation rate, step length, and ground condition at the 
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end of the section). In this activity, workers receive information related to the excavation rate and the step 

length for the section from the designer and risk manager, respectively. Then, the workers excavate using 

the excavator (equipment) with certain productivity throughout the determined step length. Finally, they 

report the ground condition discovered at the end point of the constructed section. In the numerical example, 

other activities are involved in the design, construction and risk management processes. For example, 

support placement in the construction process, determining the excavation rate and the type of support in 

design process, and monitoring the step length in risk management process are examples of other activities 

in the process networks. At the process level, a process is shown as a network aggregating the interactions 

between different human agents, resources, and information across different activities. Figure 1(b) shows 

an example of network of construction process in the numerical example. In the construction process, 

human agents, resources and information pertaining to the two activities (i.e., excavation and support 

placement) are aggregated in a network, and the outcomes of this construction process network can be 

assessed by simulating the interactions of the base-level elements in the process network. In the numerical 

example, three processes are considered: design, construction and risk management. Information 

interdependencies such as design information, ground condition and step length create the linkages between 

different processes and affect the performance outcomes assessed at each single process in the example. 

Table 5: Base-level components in the numerical example. 

Base-level 

Components 
Type Classification Key Attributes 

Human Agent 

Designer 
Production work/ information 

processing/decision making 
Risk Attitude 

Workers 
Production work/information 

processing 
Productivity 

Risk Manager 
Information processing/decision 

making 
- 

Resource 
Excavator Equipment Productivity and Cost 

Support Material Cost 

Information 

State transition matrix Static information Availability 

Ground condition 

prediction 
Dynamic information - 

Design Decision  Dynamic information - 

Current ground 

condition  
Dynamic information 

Accessibility and 

Recency 

Step length Dynamic information - 

 

Workers

Design for 

excavation rate

Step length

Excavator

Ground 

Condition at 

the end point 

of the section

 

Design for 

excavation 

Workers

Step Length Excavator

Ground 

Condition Workers
Design for 

support

Step Length

Support

Excavation
Support 

Placement

Sequential 

Relationship

Construction 

Process

 
(a)                                                    (b)         

 

Figure 1: Activity network (a) and process network (b) examples in the numerical example. 
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3.4 Bottom-up Simulation  

The dynamic behaviors and the interdependencies between the base level components in the example were 

captured and modeled using Agent-Based Modeling (ABM). ABM is a widely used modeling approach for 

micro-simulation in systems with adaptive and dynamic components (Mostafavi et al. 2013). Figure 2 

demonstrates the Class and Sequence diagrams related to the simulation model using a Unified Modeling 

Language (UML) protocol. As shown in Figure 2(a), the class diagram defines the static relationships of 

the model. Four classes of objects are: Designer, Workers, Risk manager and Main class. The Main class 

has a composition relationship with the other agent classes. All the agents and their actions are embedded 

in the Main. In each agent class, attributes and operations are defined based on the dimensions of analysis 

identified in the CPSoS framework. For example, for the Designer agent, risk attitude is used to model the 

attributes of this human agent, and the availability to the static information “state transition probability” is 

also an attribute of the Designer agent. The Designer agent also conducts decision making and information 

processing task which is design. In the design task, the designer uses the available information to design 

and the outcome of the design task is information related to excavation rate and type of support. The 

information of excavation rate and type of support then can used by other agents. Figure 2(b) shows the 

sequence of events that characterize the simulation experiment in a dynamic view by focusing on the 

message interchanges between agent classes. For example, Workers start working after receiving the design 

information sent by Designer. After Workers finish the construction work for a section, a message about 

the actual ground condition discovered at the end point will be sent to Designer and Risk Manager to trigger 

their operations. 

 

 
(a)                                                                            (b) 

 

Figure 2: Class diagram (a) and Sequence diagram (b) of agent-based model for the numerical example. 

3.5 Computational Model 

AnyLogic 7.0.0 is used to create the computational model related to the numerical example. For each agent 

class, action charts are created to capture their dynamic behaviors. In the Main class, dynamic behaviors of 

different agents are aggregated based on the interdependencies between base-level elements. 

3.5.1 Designer agent class 

As described in the example, the designer agent makes the decisions pertaining to the excavation rate and 

type of support based on the prediction of the ground condition as well as risk attitude. Figure 3 shows an 

example related to the decision making process of a risk-averse designer when the prediction information 

indicate that the ground condition is Good. The first decision node in the action chart shows that, although 

the prediction of the ground condition is Good, there is 60% likelihood that the risk-averse designer designs 

this section according to a Good ground condition. The second decision node shows that the designer have 

3289



Zhu and Mostafavi 

 

30% likelihood of designing according to a Medium ground condition. Otherwise, the designer will design 

according to a Poor ground condition. This action chart is called “Good” since it represents the designer’s 

behavior when the predicted ground condition is Good. There are other action charts called “Medium” and 

“Poor” for scenarios in which the ground condition is predicted to be Medium and Poor, respectively. For 

different types of designer (i.e., risk-neutral, risk-averse and risk-seeking), the probabilities of decisions 

under the same situation are different. 

 

randomTrue(0.6)

//60% probability of 

design according to 

Good ground condition 

designcondition[i]=1;

randomTrue(0.75)//

30% probability of 

design according 

to Medium ground 

condition

designcondition[i]=2;

designcondition[i]=3;

 
Figure 3: Action chart of a risk-averse designer agent for good ground condition. 

3.5.2 Workers agent class 

As shown before in Table 4, workers and equipment have different productivities and cost rates under 

different design decisions. Figure 4 shows the action chart of Workers in the computational model. The 

action chart defines the attributes of the workers using different values of “ExcavationRate”, 

“ExcavationCostRate”, “PlaceRate”, and “PlaceCostRate”. 

 

ExcavationRate=triangular

(0.37,0.43,0.38);

ExcavationCostRate=2019;

PlaceRate=uniform(0.55,

0.65);

PlaceCostRate=940;

get_Main().designer.designcondition[i]==1

ExcavationRate=triangular

(0.32,0.40,0.33);

ExcavationCostRate=1760;

PlaceRate=uniform(0.37,

0.47);

PlaceCostRate=1160;

ExcavationRate=triangular

(0.13,0.32,0.17);

ExcavationCostRate=1750;

PlaceRate=uniform(0.15,

0.30);

PlaceCostRate=1350;

get_Main().designer.

designcondition[i]==2

 
Figure 4: Action chart of workers agent. 

3.5.3 Risk manager agent class 

The action chart for the Risk manager agent is shown in Figure 5. Since the actual ground conditions 

discovered at the end point of the sections are reported to the risk manager in a random fashion, the recency 

of the base-level information “ground condition report” depends on the probability of reporting. The 

likelihood that the workers report the ground condition to the risk manager varies from 0 to 1 at the end of 

each section. The higher the probability, the more recent the information. In the action chart, the probability 

values can change to simulate different levels of recency in formation. If the ground condition is reported, 

the risk manager will have the chance to check if the work conducted matches with this reported ground 
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condition. In the action chart, it is shown that if the work does not match with the reported condition (e.g. 

reported ground condition is Good while the design and construction are made appropriate for Medium 

condition), the section just constructed is documented as “Reported near miss”, and the risk manager will 

decrease the step length instantly (decreasing the step length leads to having more information related to 

the ground condition in the following sections). The step length will also be decreased if there is an instance 

of overdesign, in which case, the section is documented as “Reported overdesign”. If the design and 

construction criteria exactly matches with the reported ground condition, no instance of near miss or 

overdesign is documented and the risk manager increases the step length for the next section. As 

demonstrated previously, the “Reported near miss” and “Reported overdesign” obtained may not be 

accurate information since the ground condition in one section may not be consistent, thus the reported 

ground condition cannot be completely representative for the actual ground condition throughout the section. 

In the simulation model, actual near miss and overdesign instances are obtained by comparing the actual 

ground conditions with design and construction every 100 meters. Thus, the difference between the actual 

and reported instances of near miss and overdesign can be determined. 

 

if 

(get_Main().Steplength==400){

get_Main().Steplength=200;}

else 

if(get_Main().Steplength==200

){get_Main().Steplength=100;}

if 

(get_Main().Steplength==100){

get_Main().Steplength=200;}

else 

if(get_Main().Steplength==200

){get_Main().Steplength=400;}

randomTrue(0.5)//probability 

of report ground condition to 

risk manager is 0.5

get_Main().actualsoilcondition[get_Main().j]>get_Main().

designer.designcondition[get_Main().i]

get_Main().Reportednearmiss=

get_Main().Reportednearmiss+

get_Main().k;

get_Main().Reportedover

design=get_Main().Repor

tedoverdesign+get_Main(

).k;

Figure 5: Action chart of risk manager agent. 

3.6 Results 

The created simulation model is used in conducting Monte-Carlo experimentations to investigate the 

impacts of base-level components and their interdependencies on the performance of the project in the 

illustrative example. Specifically, impacts of information and agents’ attributes are investigated to highlight 

the significance of the proposed CPSoS framework for bottom-up modeling of performance in construction 

projects.  

3.6.1 Impacts of human agents 

The results of the simulation model reveal that the risk attitude of human agents affect the performance of 

the project in the numerical example. For example, the risk attitude of the designer affects the decision 

making processes pertaining to determining the rate of excavation and implementing support based on the 

prediction of the ground condition. Figure 6(a) shows that if the risk attitude of the designer is “risk-averse”, 

the average duration of the project will be 482.6 days. The mean value pertaining to the duration of the 

project decreases by 15.58% if the risk attitude of the designer is “risk-neutral”, and by 25.45% if the risk 

attitude of the designer is “risk-seeking”. The results also show that the standard deviation pertaining to the 

duration of the project is the greatest if the risk attitude of the designer is “risk-averse” and the lowest if the 
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risk attitude of the designer is “risk-seeking”. Similarly, Figure 6(b) shows the impacts of the risk attitude 

of the designer on the project cost. The mean value pertaining to the project cost is $13.04 million if the 

risk-attitude of the designer is “risk-averse”. This mean value of cost decreases by 12.65% and 18.02% if 

the risk attitude of the designer is “risk-neutral” and “risk-seeking”, respectively. In addition, the standard 

deviation values pertaining to the project cost vary based on the risk attitude of the designer. Similar to the 

results related to the project duration, the standard deviation pertaining to the cost of the project is the 

greatest if the risk attitude of the designer is “risk-averse” and the lowest if the risk attitude of the designer 

is “risk-seeking”. 

Besides construction time and cost, designers with different risk attitudes also affect the performance 

outcomes in terms of design quality. As shown in Figure 7(a), the mean value pertaining to the percentage 

of sections identified as near-miss sections is 16.56% if the risk attitude of the designer is “risk-averse”. 

However, with a risk-seeking designer, the mean value pertaining to the percentage of near-miss sections 

grows to 43.38%. The other quality measure considered in the analysis is percentage of sections that are 

overdesigned. Figure 7(b) shows that the mean value pertaining to the percentage of overdesigned sections 

is 8.63% if the risk attitude of the designer is “risk-seeking”, while the mean value pertaining to the 

percentage of overdesigned sections increases to 31.25% if the risk attitude of the designer is “risk-averse”. 

These findings have important implications for performance assessment. Based on the findings, selection 

of a risk-seeking designer can improve the performance of the project with respect to time, cost, and 

overdesign measures. In contrast, selection of a risk-seeking designer can exacerbate the performance of 

the project in terms of near-miss situations. In a counter intuitive finding, the results show that the selection 

of a risk-seeking designer reduces the uncertainties (measured by standard deviation values) pertaining 

different performance measures. These findings demonstrate the varying effect that the attributes of human 

agents could have on the performance measures. 

 

 
                                              (a)                                             (b) 

 

Figure 6: Time (a) and cost (b) with different designers 

 

 
(a)                                                (b) 

 

Figure 7: Percentages of near-miss (a) and overdesign (b) sections with different designers. 
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3.6.2 Impacts of static information 

The results of the simulation model reveal that the attributes of static information affect the project 

performance. The results of the Monte-Carlo experimentations are used to evaluate the impact of the 

availability of one piece of static information (state transition probability matrix) in the numerical example 

on performance measures. Figure 8 demonstrates the probability distributions pertaining to the cost and 

schedule in two scenarios: (i) the static information is not available; and (ii) the static information is 

available. As shown in Figure 8(a), the availability of the static information significantly affects the standard 

deviation pertaining to the project duration. The level of uncertainty (measured by the coefficient of 

variation) in the performance measure of duration is greater when the static information is not available. 

The coefficient of variation related to the project duration is 11.8% if the static information is available and 

is 17.4% if the static information is unavailable. Also, Figure 8(b) shows that the availability of the static 

information significantly affects the level of uncertainty pertaining to project cost. The coefficient of 

variation related to the project cost is 9.5% if the static information is available and is 11.8% if the static 

information is unavailable. The availability of the static information also affects the quality performance 

measures. As shown in Figure 9(a), when the static information is available, the mean value pertaining to 

the distribution of the percentage of near-miss sections is 26.75% and is 36.75% when the information is 

not available. According to Figure 9(b), the mean value pertaining to the percentage of overdesigned 

sections is 16.3% when the static information is available, and is 21.44% if the static information is not 

available. The results also show that the level of uncertainty varies for both near-miss and overdesign 

measures based on the availability of the static information. The availability of the static information 

decreases the level of uncertainties in the performance measures. These findings could be used in 

quantification of the value of the static information in terms of reducing the level of uncertainties in project 

performance measures. 

 

 
                                         (a)                                                       (b) 

 

Figure 8: Time (a) and cost (b) with/without  static information. 

 

        
(a)                                                       (b) 

 

Figure 9: Percentages of near-miss (a) and overdesign (b) sections with/without static information. 
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3.6.3 Impacts of dynamic information 

The results of the simulation model also reveal the impact of the attributes of dynamic information on 

project performance. Recency is the distinguishing attribute of dynamic information compared to static 

information. Recency of dynamic information determines the frequency at which a piece of dynamic 

information gets updated with more recent information. An example for a piece of dynamic information in 

the numerical example is the actual ground condition. Every time a section is completed, the actual ground 

condition at the end point of the section may be reported to the risk manager. The risk manager then uses 

this updated information to evaluate whether there is a near-miss or overdesign instance in the completed 

section, and changes the step length for the next section if necessary. The recency of this dynamic 

information increases if the ground condition is updated to the risk manager more frequently. The results 

of the Monte-Carlo experimentations show no significant differences in time, cost, actual near-miss or 

overdesign instances due to changes in recency of the dynamic information. 

However, the recency of the dynamic information affects the level of “information uncertainty”. 

Information uncertainty is defined as the difference between the actual state and the perceived state based 

on the available information. In this example, information uncertainty is the difference between the actual 

and reported values pertaining to the percentage of near-miss and overdesign instances. As shown in Figure 

10, the level of information uncertainty reduces with increasing the recency of the dynamic information. 

The results also show that the extent to which the recency of the dynamic information affects the level of 

information uncertainty varies based on the risk attitudes of the human agents. For example, as shown in 

Figure 10(a), the recency of the dynamic information has a more significant impact in reducing the level of 

information uncertainty pertaining to the near-miss instances for a risk-seeking designer. Similarly, the 

recency of the dynamic information has a more significant impact in reducing the level of information 

uncertainty pertaining to the overdesign instances for a risk-averse designer. These results highlight the 

interdependencies between the attributes of base-level components and their impacts on the performance 

of construction projects. 

 

 
(a) (b) 

 

Figure 10: Differences between reported and actual near miss (a) and overdesign (b). 

4 CONCLUSION 

This paper proposed and tested a framework for integrated simulation of performance in construction 

projects using a system-of-systems approach. The proposed framework is based on the abstraction and 

simulation of human behaviors, information processing, and resource utilization in construction projects. 

The application of the framework was demonstrated in a numerical example related to a tunneling project 

using agent-based modeling. The simulation results of the tunneling project highlight the significance of 

the impacts of base-level components’ attributes on the performance of construction projects, as well as the 
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capability of the proposed framework for providing a tool for integrated assessment of performance in 

construction projects. The proposed framework addresses the methodological challenges of existing 

simulation models of construction projects by appropriately conceptualizing construction projects as 

systems-of-systems. The proposed framework has the potential to be adopted and tested in future studies to 

develop and test solution concepts for improving the performance of construction projects.  
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