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ABSTRACT 

Established techniques like the Critical Path Method and Linear Scheduling Method are activity centered 
and exhibit schedules statically, which impedes their ability to plan and control projects holistically. 
Scheduling therefore should be enhanced by incorporating new capabilities of measuring and displaying 
the dynamic nature of projects. In another technical field that employs a time-space coordinate system, 
however, traffic engineering, researchers successfully apply various parameters to measure the perfor-
mance of an inherently dynamic behavior, which is identified as having significant potential to be adapted 
for scheduling purposes. This paper identifies concepts in traffic measurement that currently lack analo-
gies in scheduling, including signals and trajectories. They are modeled with singularity functions, range-
based expressions for variable phenomena, for new application in linear scheduling. Examples demon-
strate the feasibility of deriving analogies from a related engineering field, which provides a compass to 
navigate future research to explore concepts that emerge from interaction of dynamic elements. 

1 INTRODUCTION 

Construction projects unfold within a complex and dynamic environment and exhibit such behavior them-
selves. Accordingly, techniques to plan and control should reflect such richness by proactively providing 
decision-makers with relevant and intuitive quantitative information and the status and trend of their pro-
gress. Traditional scheduling methods are not sufficiently effective and efficient at intuitively communi-
cating the dynamic nature of projects. The Critical Path Method (CPM), which currently is widely used in 
both industry and academia (Galloway 2006a, b) views activities as ‘building blocks’ toward a network 
schedule. Its goal is to identify the critical path and determine the total project duration from aggregating 
activity durations. The name-giving critical path is the fixed sequence of “difficult and significant activi-
ties – [to overcome] the problems of achieving the objective” (Kelley and Walker 1959, p. 160). CPM it-
self was established as “management by exception” (Kelley and Walker 1959, p. 160, emphasis in origi-
nal) to replace previous simpler approaches and coincided with the advent of computer use in project 
management. Other approaches, albeit much less known and used, that at least explicitly recognize the 
progressive nature of individual activities are linear and repetitive scheduling (Harris and Ioannou 1998). 

However, scheduling techniques still rely upon an essentially static view of activities as the individual 
elements of a schedule, which are arranged akin to puzzle pieces, rather than explicitly treating them as 
dynamic entities that emerge and interact within the schedule. A conceptual gap exists in that activities in 
schedules are not modeled in a manner that satisfactorily reflects their dynamic nature. Therefore, this pa-
per explores a related field, traffic engineering, which is known for its significant body of knowledge on 
measurement and characterization of dynamic phenomena, as the source for analogous concepts. It is 
hoped that such inspiration will infuse realism into the theory and practice of construction scheduling. 
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2 LITERATURE REVIEW 

2.1 Goals of Project Scheduling 

Construction scheduling has several vital goals, all of which contribute to project performance. Besides 
determining the total project duration, or rather minimizing it, it also seeks to “identifying the specific ac-
tions to be performed… [,] relationships among the project activities [, and] … approximating the number 
of work periods needed to complete individual activities” (PMI 2008, pp. 50-51), i.e. their definitions, se-
quence, and durations within the schedule. But besides using the best available historical data to forecast 
realistic durations, other fundamental questions are less well explored, e.g. how to minimize the inherent 
risk throughout the entire schedule so that milestones and deadlines are achieved. Solution approaches 
may investigate selecting sequencing options that provide sufficient flexibility to be resilient to changes. 
Any realistic schedule optimization toward the goals of minimizing multiple performance parameters, in-
cluding risk, time (activity and project durations, occurrence of delays or shifts in actual versus planned 
progress), cost, resource use (consumption and idle times), while maximizing productivity (active peri-
ods) and resilience (float) for a set of internal and external constraints, requires a sophisticated model that 
reflects the dynamic nature of such complex system. But it appears that current models are suited mostly 
to handling static schedules, which gives rise to the question of how schedules can gain new capabilities. 

2.2 Limitations of Previous Scheduling Methods 

The core of CPM has come to mean in most people’s understanding that ‘the’ critical path provides the 
backbone of a schedule, which may occasionally shift somewhat due to changes or delays, but in general 
should be strictly adhered to – or returned to – at (nearly) all cost. Elaborate constraints in form of mile-
stones, lead or lag durations on links, or extraneous links can be used to influence which particular se-
quence is deemed critical (Korman and Daniels 2003), but do not question the paradigm of the critical 
path itself. This perception facilitates a static view of the schedule as a vital tool for project managers. 
Among the shortcomings of CPM that have been voiced are a difficulty to facilitate resource continuity 
(Harris and Ioannou 1998) or deliberately manage beneficial modifications to the workflow, a focus on 
duration rather than productivity (Lucko 2009), and a widespread use of internal buffers within the sched-
ule to compensate for duration variations, which is largely performed empirically (Russell et al. 2014). 

Repetitive and linear scheduling methods overcome some of these defects by explicitly considering 
how work and time interact, either point-by-point or on a continuous basis. They typically model a linear 
growth of activities or segments thereof that progress within a two dimensional coordinate system of time 
and work. However, they essentially remained a graphical tools until the Productivity Scheduling Method 
(PSM) introduced a mathematical approach based on singularity functions, a type of range-based expres-
sions, and formalized its optimization algorithm (Lucko 2009). Inputs and outputs related to project per-
formance, including start and finishes in terms of time and work quantity, production rates, buffers, float, 
and critical path, can be visualized following the analysis. PSM can model not just constant activities, but 
also those with variable production rates. However, while it improves significantly upon CPM and previ-
ous approaches to repetitive and linear scheduling, it has fallen short of efficiently expressing the diverse 
ways in which projects grow and evolve, i.e. their ‘flow’ of individual activities and the overall project. 

While earned value management (EVM) can assist in monitoring project performance, it suffers from 
conceptual drawbacks, including that its measure is expressed in dollar terms for schedule performance 
and becomes zero at the project finish, regardless of prior performance (Vandevoorde and Vanhoucke 
2006). Advances in building information modeling (BIM) hold promise to providing rich input for creat-
ing more realistic schedules. Recent studies on data sensing are beginning to explore how to exploit visual 
information for updating schedule progress (Moon et al. 2014, Golpavar-Fard et al. 2011). However, they 
focus on the input side of extracting knowledge via image processing algorithms and machine learning 
techniques, whereas this study seeks to expand the capabilities of the underlying mathematical model. 
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2.3 Goals of Traffic Engineering 

Traffic engineering is a field of research and practice whose goal is to transport persons and goods safely, 
rapidly, and efficiently, and is particularly focused on studying the designs and operations of the moving 
agents – vehicles – on the vast network of roadways and other traffic media. As such, traffic engineering 
research offers a rich body of knowledge in modeling dynamic phenomena, by expressing them either as 
movements of individuals particles or as continuous flows through the nodes and links of the network. 

2.4 Need for Research on Conceptual Analogies 

Since its early formalizations almost 80 years ago (Greenshields 1935), traffic engineers have observed 
and modeled such important measures and phenomena of highly dynamic traffic systems such as flow, 
density, and speed, or shockwaves that can describe jams. The latter arise through interactions of multiple 
sequential system elements. Importing concepts from traffic theory for project scheduling is theoretically 
possible because both employ 2D coordinate systems of time and work or distance, respectively, within 
which the trajectories of discrete elements – vehicles or activities – are tracked. As traffic engineering is 
experienced in modeling, analyzing, and optimizing dynamic phenomena, it is indeed surprising to find 
that project scheduling has not yet taken any inspiration from this field. The criticality and float of CPM 
suffer from limitations, because they are viewed as essentially static phenomena that are punctuated by 
occasional updates, rather than dynamic aspects of how a project unfolds over time. Linear and repetitive 
scheduling, while inherently better suited to modeling progress, lack a comprehensive theory of flow 
when compared with traffic engineering. Therefore, it is necessary to investigate how project scheduling, 
here focusing on the latter techniques, can finally be infused with urgently needed dynamic elements. 

2.5 Research Objectives 

To address the stated need, this paper begins an exploration of traffic engineering to identify concepts that 
have potential for novel and beneficial use in project scheduling. This paper can only serve to provide the 
beginnings of such comprehensive undertaking. Singularity functions – explained in the following section 
– provide the necessary enabling factor to adopt and adapt them. After introducing their mathematics and 
recent application to linear schedules, Research Objective 1 is to identify concepts that fulfill two criteria, 
being of fundamental importance in traffic engineering and being readily usable without any modification 
to their nature. Research Objective 2 is to convert them into singularity functions that can model activities 
in project schedules. Validation calculations are performed to establish credibility of the new formulas. 
Research Objective 3 is to identify concepts with significant potential for future interdisciplinary research. 

3 SINGULARITY FUNCTIONS 

3.1 Definition 

Equation (1) provides the functional operator that is common to all singularity functions and has been in-
troduced previously, e.g. to model periodic phenomena in cash flows, which was accomplished by creat-
ing signals (Su and Lucko 2013). In general, the operator can be understood as a generalization of a basic 
polynomial term. The behavior of the dependent variable y(x) is determined by the values of three coeffi-
cients; the strength s is the intensity of y(x), the activation a is the location on the x-axis whereafter y(x) is 
evaluated for non-zero behavior, and the power n is the type of behavior, i.e. constant, linear, quadratic, or 
of fractional or higher orders. Here, x stands for work quantity, y is time, and z symbolizes cost for con-
sistency with prior research (Su and Lucko 2013), but is not used in the exploratory equations of this pa-
per, although other combinations among managerially relevant variables of the ‘dimensions’ of project 
management, such as work, time, cost, and resources are certainly possible and useful (Su and Lucko 
2014). 
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3.2 Principles 

Multiple operators per Equation (1) can be added into a singularity function. Such superposition enables 
modeling complex behaviors from more basic ones. ‘Singularity’ refers to any individual locations along 

the independent variable, here the x-axis, where a prior behavior changes; e.g. [ ]0
2

0
10 axaxs −−−⋅ , 

where a1 < a2 and 00 ≡ 1, yields a constant s0 in the interval of singularities a1 to a2. Note that Equation (1) 
is commonly defined as right-continuous (but could also be modified), so that y(x) = s at a1, but at a2 it is 
y(x) = 0 again already. Another example, 1

22
1

11 axsaxs −⋅+−⋅  first has slope s1 from a1 to a2, where 
its behavior changes to the additively superimposed new slope s1 + s2. Extensions of singularity functions 
have been investigated, notably rounding operators, which are applied to an independent variable x with n 
= 1 (linear growth) “to yield [a] stepped growth” (Su and Lucko 2013, p. 3162). By subtracting from a 
rounded operator another one that is shifted on the x-axis, an intermittent signal is gained. It period and 
amplitude can be controlled to model repetitive phenomena. Even more functionality is gained if opera-
tors or entire singularity functions are combined multiplicatively (Lucko et al. 2014). An operator could 
also be nested within another singularity function, as used for compound interest (Su and Lucko 2013). 

3.3 Transposition 

While the meaning of axes in the coordinate system as mentioned is aligned with previous studies so that 
x is work and y is time, depending on use it may be necessary to treat either as the independent variable 
and express y(x) or x(y) as the output (Lucko 2011). Mathematically transposing x and y while leaving 
their relationship intact is equivalent to rotating the axes in the coordinate system by 90°. Equation (2) de-
rives general transpositions for various exponents to convert between measuring time on the horizontal or 
vertical axis. For n = 0 it can be derived if it has a limited horizontal range, which becomes a vertical step 
of that height. It is valid for x < aF. Otherwise, a second singularity function can model the upper bound. 
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3.4 Productivity Scheduling Method 

Linear schedules are graphically represented as coordinate systems in which activities are progress curves 
of work quantity over their duration on the time axis. Each activity is expressed as a singularity function. 
While activities may be planned with constant productivity, i.e. fixed slopes for their duration, in practice 
they often experience changes. This is modeled by introducing change terms as explained in the previous 
section into the singularity function. The granularity of such segmentation within an activity can be cho-
sen with as fine a level of detail as the available data allow. Lucko (2009) has provided details of how to 
analyze and optimize linear schedules with singularity functions as summarized here as the foundation for 
the subsequent calculations. The algorithm follows the precedence constraints and obeys any milestones 
for starts or finishes of activities or segments thereof. Importantly it guarantees that within the framework 
of those constraints the minimum total project duration is generated. It comprises two mathematical steps: 
 

• Stacking activities starts at the origin of the project. Proceeding by precedence, it creates one sin-
gularity function of Equation (3) per activity, where x and y are work quantity and time; their ra-
tio is the productivity. The intercept ‘start’ indicates the project start date, which is often zero. 
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Among m activity segments, 1 through m – 1 are created by successively modifying the previous 
cumulative productivity by a new ∆work / ∆time. Each singularity function is evaluated to identi-
fy its maximum y-value, i.e. tentative finish date, which becomes the intercept of its successor. 
Buffers that specify required distances between activities can be inserted by also using Equation 
(3). Stacking creates a conservative schedule without concurrency among dependent activities. 

• Consolidation performs an optimization toward the minimum total project duration. Its inputs are 
all singularity functions of activities and buffers from the stacking step. Following the precedence 
of activities from earliest to latest, their intercepts are now systematically reduced until all activi-
ties have been consolidated to a position where no further reduction is possible unless constraints 
would be violated. For it, first singularity functions of direct predecessor-successor pairs are sub-
tracted, their difference is the interstitial area between them in the coordinate system. Second, the 
minimum distance between them must be identified. For it, the difference equation is once differ-
entiated per Equation (4). If segments are linear, such minimum distance can only occur at a start, 
singularity, or finish of either predecessor or successor. Once an x-value of the minimum distance 
is found, the difference equation is evaluated at that location for the difference ∆y. Third, said dif-
ference is subtracted from the successor intercept. This results in consolidating it onto its prede-
cessor. All singularity functions are updated in this manner to their final values of start and finish 
dates. Figures (1) and (2) illustrate the algorithm for a small example that features variable and 
constant productivity in activities A and B, as well as progress directions in segments C1 and C2. 
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Figure 1: Productivity Scheduling Method: 
Stacking Step for Initial Solution 

Figure 2: Productivity Scheduling Method: 
Consolidation Step for Optimized Solution 

 
Note that activity A and C in Figure 1 already exhibit variability in their progress, here changing posi-

tions across the x-range of {25 to 45} without performing work that would consume time on the y-axis, 
and moving into two different directions before and after position x = 20. This, however, is planned and 
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not induced by outside events or signals, which remains to be explored. Gray areas represent minimum 
buffers that must be maintained between activity pairs to prevent interference effects from congestion. 
Processing the activities per Equation (3) per the algorithm reduces the total project duration as shown. 

4 INITIAL ANALOGIES FROM TRAFFIC ENGINEERING FOR PROJECT SCHEDULING 

Before investigating more complex conceptual analogies of traffic engineering for adoption and adaption 
into project scheduling under future research, it is first necessary to explore how fundamental elements of 
these areas can be modeled and matched. These initial analogies are based on the vital measurement of 
progress – or lack thereof – through the time-space coordinate system. For traffic engineering, this rate of 
advancement is speed, for project scheduling it is productivity. Both share the time axis as the direct con-
ceptual connection, over which the former measures distance and the latter measures work quantity. The 
following sections describe how the respective modeling terms are derived using singularity functions. 

4.1 Signal Function for Time-Space Coordinate System 

Both construction activities and traffic participants, i.e. vehicles, strictly speaking do not progress contin-
uously, but incur changes in their rate of advancement and even encounter occasional standstills. For con-
struction, they fall into two categories, planned and unplanned. The former comprises calendar-related 
items of weekends, holidays, and vacations, and shift-related items of breaks, non-working and nighttime 
hours. The latter includes sudden unavailability of productive resources (labor, materials, or equipment), 
e.g. mechanical breakdown of an excavator, unannounced inspections, accidents, weather events, or other 
acts of God. For traffic, they are traffic lights, which have a predictable period, stop signs, which act only 
upon a vehicle that arrives at any time, and yield signs, which regulate the interactions of two vehicles. 

These phenomena have in common that they temporarily modify or deactivate the regular progress 
within a time-space coordinate system. Signal functions w(y) using singularity functions have been shown 
to successfully model individual periodic phenomena. Equation (5) can start at any time, where aS and λ 
are the integer and non-integer portions of the start date, and aF is the finish date (Su and Lucko 2013). 
The previous application in cash flow analysis to provide a single ‘peak’ as a signal to issue a payment, 
however, is not yet suitable to express the alternating active and idle periods as inspired by traffic signals. 
This paper therefore modifies that signal function per Equation (6) to express ‘block’ shaped alternating 
active and idle periods, which of course should be able to have different durations. On and off durations 
n1 and n2 in Equation (6) repeat to infinity. For example, a signal may be on for n1 = 10 seconds and off 
for n2 = 5 seconds. Table 1 lists the verification of the calculations per Equation (7) as shown in Figure 3. 
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Here the singularity functions rely upon the aforementioned rounding operators, the floor operator    

and the ceiling operator   , which covert their operand into the nearest integer per Equations (8) and (9). 
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4.2 Trajectory Function for Time-Space Coordinate System 

The basic expression for a vehicle moving on a road is analogous to an activity progressing along a trajec-
tory in a schedule per Equation (10). Its strength s can represent speed of a vehicle or productivity of an 
activity. For example, per Equation (11), it may have started 1,000 m before the present location, which is 
treated as the origin, and moving at the speed of 20 m/s, where aS and aF are its respective start and finish. 
 
 ( ) ( )1100 FSStrajectory ayaysyxyx −−−⋅+−⋅= . (10) 

 ( ) ( )110 1000200000,1 −−−⋅+−⋅−= yyyyx trajectory . (11) 
 

Table 1: Calculation Verification 

x w1(x) w2(x) wsignal_block(x) 
0 0 0 1 
1 0 0 1 
2 0 0 1 
3 0 0 1 
4 0 0 1 
5 0 0 1 
6 0 0 1 
7 0 0 1 
8 0 0 1 
9 0 0 1 

10 0 1 0 
11 0 1 0 
12 0 1 0 
13 0 1 0 
14 0 1 0 
15 1 1 1 
16 1 1 1 
17 1 1 1 
18 1 1 1 
19 1 1 1 
20 1 1 1 
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Figure 3: Signal Function with Block Shape 

 

Figure 4: Trajectory Function with Shifts and Delays 

 
Lucko (2008) has provided the general equations to perform PSM, where the slope of the singularity 

functions is the inverse of the productivity, if time is treated as the dependent variable for the purpose of 
optimization. Yet if time is treated as the independent variable, it matches the trajectory function for the 
vehicle of Figure 4, where distance is replaced by work quantity. Lucko (2013) has extended such linear 
schedule with considering shifts and delays to model how starts and finishes may change when an activity 
is executed. Per Equation (12), the shift d1 is an outside influence – caused by a delayed predecessor – 

y [time] 

y [time] 

w [signal] 

x [work] 
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that modifies both the start and finish, while a delay d2 is an internal influence – cause by an insufficient 
productivity or interruption – that affects only the finish. For consistency with prior studies, an asterisk on 
start or finish denotes the existence of a shift or delay within dates; 1

* daa SS +=  and 21
* ddaa FF ++= . 

Note that the average modified productivity is also modified by a delay, as the work quantity U (which 
here is assumed fixed, but could be extended as well) is divided by a potentially longer duration D + d2. 
Figure 5 shows how the activity of Equation (11) would be impacted by d1 = 10 and d2 = 20 time units. 
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4.3 Trajectory Functions Controlled by Signals 

Combining the signal and trajectory functions provides a very flexible model, which can express a vehicle 
stopping at a stop light, e.g. at an intersection (Liu et al. 2009), or an activity incurring an interruption. A 
vehicle trajectory can be divided into two parts, before and after a stopping location, here referred to as 
intersection for brevity. The intersection is located at location zero on the x-axis and alternatingly issues 
stop and go signals (i.e. red and green), which can be plotted over time along the y-axis per Figure 3. For 
clarity, the time axis is horizontal, which may apply the transposition of Section 3.3 to a linear schedule. 
It is assumed that the location of any possible interruption is known, whether an intersection or work po-
sition, but it is unknown if the interruption will have a negative effect or not without introducing a signal 
function. The times *

Sa  and *
Fa  in Equation (13) denote the actual start and finish when the vehicle is 

moving, which include the aforementioned shifts d1 or delays d2 from previous accumulated delays or a 
slower speed, respectively, where afterbeforeFafterafterSafterS dadaa _1

*
__1_

*
_ +=+=  and 

afterafterafterFafterF ddaa _2_1_
*

_ ++= . The term xbefore/after / (D + d2) models the speed before and after the 
intersection. An important feature to connect the trajectory and signal functions is the shift time after the 
intersection d1_after per Equation (14), which returns zero if the signal function is one (green). If the signal 
is zero (red), d1_after returns the remaining duration from the time when a vehicle arrived at the intersection 
to when the signal will turn to green again per the term ( *

_ beforeFa  / (n1 + n2) – *
_ beforeFa  / (n1 + n2)) · (n1 

+ n2) in Equation (14), where n1 and n2 are the aforementioned on and off durations of the cyclical signal. 
Substituting the actual arrive time at the intersection *

_ beforeFa  into the signal function per Equation (6) re-
turns the value of said signal at that time, i.e. it can check the current status. The condition term 

afterbeforeFafterafterSafterS dadaa _1
*

__1_
*

_ +=+=  in Equation (13) sets the actual start time *
_ afterSa  of the 

branch after the intersection equal to the finish time *
_ beforeFa  of the branch before it, but only if d1_after is 

not zero (i.e. a vehicle passes a green signal). However, if d1_after is zero (i.e. the vehicle must stop at a red 
signal), it sets *

_ afterSa  equal to afterbeforeF da _1
*

_ + . The term d2_after of Equation (15) can incorporate a dif-
ferent speed of the vehicle after the intersection. 
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In traffic engineering, if a vehicle changes to a new speed vafter after having stopped at a red signal, it 

could be modeled by updating the previous speed xafter / (D + d2). In Equation (15), the planned duration 
Dafter could be unequal to the actual duration xafter / vafter if a vehicle changes speed after a signal. In the 
example of Figure 5, d2_after < 0 for the third vehicle, which accelerates after the signal changes to green. 
 

 
Figure 5: Multiple Trajectories with Slope Change 

As with the previously investigated analogies, 
trajectories of multiple moving vehicles bear strik-
ing similarities to multiple sequential activities in a 
project schedule. Such bundles of progress curves 
are not merely subject to external factors such as 
calendars, weather, or resource limitations, but will 
also incur internal interactions that merit further 
exploration. For example, a ‘shockwave’, a classic 
phenomenon in traffic engineering that is generated 
by multiple vehicles that change speed in a time-
staggered sequence (Wu and Liu 2011) and thus 
create or dissolve congestions could be modeled by 
an extension of the previous approach, but is be-
yond the scope and limited length of the initial ex-
ploration of this paper and left for future research. 

5 VALIDATION WITH SINGULARITY FUNCTIONS 

An example of a small linear schedule is used to validate the functioning of the newly developed model. 
Its parameters are selected as follows: An activity has an as-planned duration of D = 20 days to produce U 
= 5 work units with an initial shift of d1 = 0 days that postpones its start and delay d2 = 0 days that extends 
its duration. Actual dates that include these adjustments again are marked with an asterisk *. The activity 
per Equation (16) is shown in Figure 6 as a dotted upsloping line, where the slope U / (D + d2) denotes its 
productivity. A calendar of n1 = 5 days and n2 = 2 days for workdays and weekend is applied by Equation 
(17), which creates a dashed profile of merlons and crenels (peaks and valleys), which is amplified in the 
figure for clarity. More sophisticated singularity functions have been derived to calculate calendar dates 
for different patterns of n1 and n2, including different types of government holidays (Lucko 2014), but are 
not needed for this example. The arguments {nS, nF} in the calendar signal function control its start and 
finish. To convert the activity (which is interrupted at weekends, akin to a vehicle obeying stop lights), 
into the desired calendar days, Equation (18) combines both the workday progress and the calendar signal 
functions and graphically plotted as the thick line in Figure 6. Such integration synchronously shifts the 
functions as follows: In the first week, the calendar function is applied by multiplying xact_workday{0,20} 
and wsignal{0,1}; in the second week, xact_workday{2,22} and wsignal{1,2}; andsoforth. Note that activities 
should only start on workdays, e.g. a *

Sa  = 6 would be corrected to *
Sa  = n1 + n2 = 7. As Figure 7 shows, 

this model can handle other inputs, e.g. for different work quantities, or productivities, or breaks, or shifts, 
delays, or calendars. It newly allows correctly calculating the vital time-related performance parameters 
such as productivity as the relationship of calendarized time and work quantity. Note that in CPM it 

 

3373



Lucko and Su 
 
would require six activities, five finish-to-start lags (weekend), productivity data would be lost, and any 
parameter change would require a full recalculation. CPM networks grow exponentially if a schedule 
grows more complex. Yet singularity functions only require modifying the parameter of an existing be-
havior or at the most adding one new term per change. 
 

{ } ( )1*1*

2

**
_ , FSFSworkdayact ayay

dD
Uaax −−−⋅
+

= . (16) 

{ } 












−







+
+

−−







+
+

−












−







+

−−







+

=
1

21

2

1

21

2

1

21

1

21

, FSFSFSsignal n
nn
nyn

nn
nyn

nn
yn

nn
ynnw  (17) 

( ) { }∑







 +

=










⋅+⋅+×













++







+

+







+

=
1

2

0
2

*
2

*

21

*

21

*

_ ,1,
n

dD

i
FSyact_workda

SS
signalcalendaract nianiaxi

nn
a

i
nn

a
wx  (18) 

 

 
Figure 6: Initial Schedule Example with 

D = 20, U = 5, d1 = 0, d2 = 0, n1 = 5, n2 = 2 

 
Figure 7: Modified Schedule Example with 
D = 20, U = 4, d1 = 1, d2 = 2, n1 = 4, n2 = 3 

productivity 1/5, 1/3, 1/5 unit/d with 3 days breaks 

6 CONCLUSIONS, CONTRIBUTIONS, AND RECOMMENDATIONS 

Current construction scheduling techniques share the significant disadvantages of being activity-driven 
with a stationary perspective, thus lacking the capability of planning a construction project holistically 
and controlling it dynamically. Linear scheduling possesses the virtue explicitly linking time with work 
quantity, which can be modeled mathematically by using singularity functions and displayed graphically. 
However, it itself is limited by lacking an underlying theory that facilitates understanding and advancing 
the dynamic nature of projects. Therefore, this paper has begun to advocate that project scheduling can be 
improved by exploring how traffic engineering plans and controls its dynamic flows by employing singu-
larity functions as the tool to transfer the relevant concepts as seamlessly as possible. Trajectories merit 
immediate investigation, which are matched with progress curves of construction activities. Signals to in-
terrupt progress provide a direct constraint, which are matched with interruptions that can occur in con-
struction, as well as calendars that govern construction projects. Both have been modeled mathematically. 

Methodologically, this study has compared and aligned fundamental concepts. Its contributions to the 
body of knowledge include that attention has been called to the need for overcoming the current limited 
view of project scheduling, which by defaults treats its schedules as static. Instead, this paper has advo-
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cated a dynamic systems view that is inspired by another – initially seemingly unrelated, but in fact highly 
inspiring – field, traffic engineering. The necessary equivalencies can be realized by employing an inte-
grated mathematical expression, singularity functions. New avenues to enhance linear scheduling are ena-
bled by establishing said direct linkage between the two areas. Several further analogies, especially those 
arising from interactions of elements, await investigation to further advance this new approach of extend-
ing the theory of project scheduling as inspired by the performance parameters that characterize traffic. 

Additional topics in project scheduling, e.g. limited availability of labor or equipment resources, and 
congested or restricted space on the project site could be addressed with an approach that employs signal 
functions. On the side of source, the body of knowledge of traffic engineering still provides an abundance 
of theories, concepts, and metrics that may become accessible to project management via interdisciplinary 
research. Table 2 lists a tentative set of potential analogies from traffic engineering for project scheduling: 
As discussed, the vehicle in traffic and the activity in a schedule are both entities that move through time-
space coordinates systems; the slope of the progress curve is the speed of vehicle or the productivity of an 
activity; headway and buffer are similar concepts, which denote a mandatory safety gap between entities 
and can be measured in time or space units; congestion in traffic and criticality in schedules appear analo-
gous in that they identify entities that remain without any flexibility to adapt to changes; and signals at 
stop lights and intersections are analogous to resource limitations or calendarization; flow and density are 
metrics that characterize the behavior of multiple entities, whereas project scheduling lacks such under-
standing; and neither last nor least, a shockwave is “the motion of an abrupt change in concentration” (Liu 
et al. 2009, p. 413), which is a dynamic effect that arises from the change in flow and density, again com-
pletely lacking in the theory of project scheduling. Even more yet unidentified concepts very likely exist. 
Future research will continue to exploit these analogies with the goal of deriving generalizable insights 
that can be converted into more efficient and effective scheduling techniques for construction managers. 

Table 2: Potential Analogies from Traffic Engineering for Project Scheduling 

Traffic Engineering Description Project Scheduling 
Vehicle Entity moving in coordinates system Activity 
Speed Slope of progress curve Productivity 
Headway (time/space) Safety gap between entities Buffer (time/work) 
Congestion (jam)  Entities without flexibility Criticality 
Signals Entity moving with interruptions Calendarization, limited labor / 

equipment / space 
Flow, density Behavior of multiple entities Lacks such holistic metric 
Shockwave “[M]otion of an abrupt change in 

concentration” (Liu et al. 2009, p. 413) 
Lacks such dynamic effect 

Other To be explored Not yet existing 
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