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ABSTRACT

The simulation of alternative evaluations in the ranking and selection problems often requires extensive
amounts of computing power, so it is natural to use clusters with several workers for this task. We propose to
extend the standard Knowledge Gradient policy to allow parallel and asynchronous dispatch of computation
tasks among workers and denote it as the Asynchronous Knowledge Gradient. Simulation experiments
indicate that performance loss due to parallelization of computations is below 25%. This implies that the
proposed policy can yield significant benefits in terms of the time needed to obtain a desired approximation
of the solution. We describe a master-slave architecture allowing for asynchronous dispatching of jobs
among workers that handles problems with worker failures that are encountered in cluster environments.
As a test bed of the procedure we developed an emulator of a heterogeneous computing cluster that allows
testing of the parallel performance of stochastic optimization algorithms.

1 INTRODUCTION

The goal of the paper is to propose an asynchronously parallelized version of the Knowledge Gradient
policy (Frazier 2009, Powell and Ryzhov 2012) for solving computationally demanding ranking and
selection (R&S) problems. The approach assumes that simulations are run on clusters consisting of several
heterogeneous computing workers, that the simulation itself may have a high variance of computational
time for different runs and that the procedure should be robust with respect to worker failure. Therefore,
the proposed algorithm is parallelized and allows for asynchronous dispatching of simulation execution
requests. We call the policy Asynchronous Knowledge Gradient (AKG). In this algorithm the initiation
of new computation tasks is conditional on (i) previously collected simulation results and (ii) information
about types of computation tasks that were started but have not finished. Taking into account this second
information differentiates the AKG policy from the standard sequential Knowledge Gradient (KG).

The mainstream of research on algorithms used for stochastic optimization concentrates either on
sequential (single worker) execution or synchronized parallelization, where all available workers in each
optimization step are started at the same time and all computations are required to complete before the
next step is made. Let us briefly review the most important results in R&S domain. Optimal computing
budget allocation (OCBA) proposed by He, Chick, and Chen (2007) is a sequential procedure that performs
computation allocation based on asymptotically optimal solution for the problem of maximization of
approximated probability of correct selection. In this algorithm in a single step a fixed number of
simulations is performed, see section 4.1.1 of Chen and Lee (2011). Chick and Inoue (2001) derive a
two-step L L (B) and a sequential L L (S ) procedure for the Bayesian R&S. Frazier and Powell (2010)
in equation (3) formulate the one-step optimal Bayesian allocation R&S problem and later propose the
sequential KG(∗) policy that takes into account that the value of measurements is not concave in general.
All the above methods share one common feature — when computation allocation decision is made no
simulations are in progress. This means that all workers tasks have to be synchronized. Even if we started
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Kamiński and Szufel

multiple parallel computations we have to wait till all of them finished before next step of the algorithm
is made.

In this paper we take a different approach and consider asynchronous parallelization. Under this
scheme, when a worker finishes its job it is instantly assigned a new computational task without waiting
for other workers to complete their simulations. A similar method has been considered by Agarwal and
Duchi (2012) for continuous problems where they model delays in information flow within a computing
grid. Luo and Hong (2011) and Ni, Hunter, and Henderson (2013) consider R&S in a master-slave setting
— an approach that is applied here — but they do not consider the Bayesian approach in their procedures.

An asynchronous parallelization policy is reasonable to use when at least one of the following three
conditions are met: (i) there is a high variance of execution time of individual simulation, (ii) computing
power availability is heterogeneous across nodes in a cluster or (iii) there is the need to handle worker failures.
In each of these cases, a researcher has to take into account the fact that all workers are not guaranteed to
finish their computation tasks in approximately the same time. In such situations, an asynchronous policy
minimizes the time workers are waiting idle for the next task to be assigned. Let us now explain why these
assumptions are often encountered in simulation practice.

High variance simulation execution time results from the fact that in many situations it is not possible
to estimate ex-ante how many simulation steps will be computed for a particular design point and the
simulation complexity can differ significantly across design points. This problem is encountered particularly
often in discrete event simulations (DES) with stochastic stopping criteria or multi-agent simulations (MAS)
where different design points can lead to very divergent simulation dynamics. Fu (1994) notes that in
parallel computation scenarios different computational times should be included in algorithm design. He
further points out that massively parallel execution of whole simulation instances is still more efficient than
another approach to achieve computation speed-up — i.e. splitting a single DES simulation into parallel
processes. Currently several tools and algorithms for parallel running of a single DES or MAS simulation
on multiple processes have been developed — e.g. for the DES simulation see Misra (1986) and for the
MAS simulation see Cordasco et al. (2012).

The heterogeneous computing power assumption arises from the fact that in many cases the most cost-
effective approach to run a large scale simulation is by utilizing cloud computing. In such environments
we can have workers with different speeds (e.g. new and old machines) and different loads (workers can
perform alternative tasks in parallel to simulation). An example could be the service offered by Amazon
— Amazon Elastic Compute Cloud (Amazon EC2). Amazon EC2 offers the computing powered measured
by EC2 Compute Unit (ECU). The ECU used to have the following definition: "one EC2 Compute Unit
provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor" (the original
statement is no longer available on Amazon web site). Hence, the exact computing power assigned to
1 ECU is defined as a range rather than an exact value, which makes the process of estimation of the
computational time more difficult.

Worker failure handling means that we allow for the possibility that a single simulation might fail
and return an error or a worker can break down or become unavailable. This can happen in a large scale
simulation optimization — e.g. when a particular node is shut down or simply one of the simulations
crashes. Our algorithm can recover in such cases and continue the simulation-optimization process. Hence,
our approach enables a fault tolerance both on a task-level and on a workflow-level (Yu and Buyya 2005).

In the development of the procedure we follow a standard assumption made for KG-type algorithms
(Frazier 2009) and take that in each iteration of the algorithm we perform one-step ahead allocation
optimization. This means that the desired algorithm should be designed in such a way that it can be
interrupted in any moment. The need for optimization interruptibility arises for instance from the fact that
computing power can be bought from cloud services within a particular budget. When the budget and time
runs out it should be possible to pick the best alternative for the SO problem and present it to a decision
maker. This feature makes our approach particularly suited for simulation problems where the computing
power budget is measured in hours and the exact computational power requirements can not be estimated
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ex-ante. Hence, the interruptibility can be useful when using cloud computing with a limited budget. This
situation justifies the one-step optimization performed under the standard KG policy as being reasonable
in practice (which, as is known, is not globally optimal in general).

The paper is structured as follows. In Section 2 we develop the AKG policy. Subsequently, in Section 3
we propose a master-slave architecture that can be used to implement it practically. Finally, in Section 4
we perform verification experiments of the AKG policy versus the sequential KG policy. Additionally, in
this section we develop a universal emulator of computing clusters that can be used to compare different
stochastic optimization algorithms in asynchronous and parallel environments.

2 ASYNCHRONOUS KNOWLEDGE GRADIENT ALGORITHM

Let {1,2, . . . ,N} be the set of alternatives from which we want to select the best. We will follow the standard
Knowledge Gradient (Frazier 2009) approach and assumptions. Each alternative has some unknown mean
value that we want to maximize. These mean values cannot be observed but we can run a simulation and
obtain an unbiased sample of it, normally distributed with a variance σ2

ε that is known to the researcher.
We take a Bayesian approach and assume that we have a random variableY =(Y1,Y2, . . . ,YN) representing

our beliefs about distribution of values of alternatives. We take it that the prior distribution of Y is multivariate
normal with means (µ(0),1,µ(0),2, . . . ,µ(0),N) and a covariance matrix that is diagonal with variances σ2

(0),i.
Now let us assume that in step k we have run the simulation for alternative i and have observed a

sample that has value y. Then, following the Bayes’ rule we can update our beliefs concerning distribution
Yi as follows (Powell and Ryzhov 2012):
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Notice that by the independence assumption, σ2
(k), j and µ(k), j for j 6= i are not changed.

In an asynchronous environment we have a set W denoting a pool of workers and we want to assign
a new task to worker ∈W immediately after it becomes available for computations. After observing the
k-th sample the worker that provided it is waiting for the next job. However, when deciding on what task
to assign to it we have to take into account that other workers can be performing simulations that were
started earlier but have not yet finished (this is a key assumption for the asynchronous algorithm). This is a
desired approach because we do not want to wait for a decision until all workers finish their computations
as this would imply a loss of available computing power or an unnecessary delay. Because we have |W |
workers then while deciding on a new job for a worker that has just finished computations, we have
maximally |W |−1 simulations running. Denote the number of scheduled but not observed measurements
of alternative i as si (this is the number of workers currently running a simulation for alternative i). We
thus have ∑

N
i=1 si ≤ |W |−1. Denote s = (s1,s2, . . . ,sN).

Let us now assess our beliefs regarding how si scheduled measurements of alternative i will influence
µ(k),i after they are performed. Using the standard Bayesian inference (Powell and Ryzhov 2012) we see
that the distribution of these beliefs is normal with mean µ(k),i and variance given by formula:

σ
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= σ
2
(k),i−

(
1

σ2
(k),i

+
si
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ε

)−1

.

Informally we can say that the variance σ2
(k),i|si

measures by how much µ(k),i can change after si

measurements. It is instructive to consider two extreme cases. If si = 0 then σ2
(k),i|0 = 0 which simply
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means that without making any measurements we will not change our beliefs about µ(k),i. Next notice that
as si increases σ2

(k),i|si
also increases. The more measurements we make the larger changes of µ(k),i can

happen. Finally limsi→+∞ σ2
(k),i|si

= σ2
(k),i. This is also in line with the intuition. By making infinitely many

measurements we will learn the true value of the mean and after k measurements the uncertainty of our
beliefs is captured by their variance that is equal to σ2

(k),i.

In the following computations by Φ(x) = (2π)−1 ∫ x
−∞

e−t2/2dt we denote the cumulative distribution
function of a standard normal random variable. Then the cumulative distribution function of posterior
beliefs F(k),i|si(x) about µ(k),i is Φ((x−µ(k),i)/σ2

(k),i|si
) for si ≥ 1 and is a function with 0−1 jump at µ(k),i

for si = 0. Denote a random variable with this distribution as M(k),i|si .
Now let us consider a random variable V(k)|s that represents the expected value of a selected alternative

after all s currently executed simulations finish. Notice that:

V(k)|s = max
i∈{1,2,...,N}

M(k),i|si .

The formula reads that after si measurements we expect that our beliefs about the mean of alternative i
are described by the normal random variable M(k),i|si (keeping in mind that for si = 0 this random variable
is degenerated to a point µ(k),i). We know that having performed all s measurements we will select the
alternative with the highest evaluation of the mean. Therefore V(k)|s is the maximum of M(k),i|si . Remember
that we have assumed that our beliefs about evaluation of alternatives are independent (measurement of
one alternative does not influence our beliefs about other alternatives) therefore random variables M(k),i|si

are independent.
Now we can define the AKG policy at time k that takes into account the number of scheduled

computations si as:
AKG(k,s) = argmaxi∈{1,2,...,N}E

(
V(k)|s+ei

)
,

where ei is the i-th standard basis vector in N-dimensional space (consisting of all 0 and 1 in i-th position).
Notice s+ ei in the maximization formula means that we are assuming that after starting the new

computation si will increase by 1 because the waiting worker will be scheduled to simulate alternative i.
The AKG policy defined above can be interpreted as follows. In the step k of the algorithm we follow

a standard KG assumption that we are planning to assign only one more observation. However, we know
that before assigning it we are going to collect si measurements of the alternative i. Therefore we want to
select an alternative i for which we get the most benefit from collecting si +1 observations instead of si
observations. Notice that this optimization task can be equivalently formulated as follows:

E
(
V(k)|x

)
→max subject to ∀1≤ i≤ N : xi ≥ si∧

N

∑
i=1

xi = 1+
N

∑
i=1

si,

where we denote x = (x1,x2, . . . ,xN). This formulation shows that in a single step of the procedure the
AKG allocation is an optimal solution to R&S problem with computing budget 1+∑

N
i=1 si, as defined for

example in equation (3) by Frazier and Powell (2010), subject to additional constraints xi ≥ si that some
of the computations are already started. This additional assumption significantly reduces the optimization
process complexity and makes the AKG policy relatively simple to compute.

The key difficulty is the evaluation of V(k)|s. Because all M(k),i|si are independent we can compute its
cumulative distribution function as C(k)|s(x) = ∏

n
i=1 F(k),i|si(x). Using this CDF we can evaluate E

(
V(k)|s+ei

)
by a numerical approximation of univariate improper integral

∫ +∞

−∞
xdC(k)|s(x). In our code (available for

download at http://bogumilkaminski.pl/pub/AKGv1.1.zip) in order to evaluate the integral
we use the formula given by equation (13) in Ross (2003) and next transform it to the [0,1] interval with
the variable substitution t = 1/(x+1):
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∫ +∞
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Next, we numerically approximate the integral using adaptive Gauss-Kronrod quadrature with 61 nodes
and 10−12 deviation threshold used for interval bisection decision (see the method calculateEV_KG in
the class simtools.CalculateEv in the source code).

Using the approach proposed here we do not need to evaluate the derivative of C(k)|s, which would
increase computational complexity of the algorithm and reduce its numerical accuracy. In the implementation
we also have to remember to distinguish cases si > 0 and si = 0, because in the latter F(k),i|0(x) is degenerate.

For practical application we note that the process of identification of AKG(k,s) scales quadratically
with the number of alternatives N (we take the maximum of N options and in each option we have the
product of N cumulative distribution functions). However, we have found it to be acceptably fast relative
to the expected execution times of simulation steps. This is the only time consuming task performed by
the master machine as described in Section 3. In calculations on a laptop computer with the master process
running on a single core for N = 5 and |W |= 5 we have found that computing AKG(k,s) takes around 20
milliseconds.

If the optimization process is finished after k measurements we select the alternative v, for which our
current belief about mean µ(k),v is maximal — exactly as in the standard KG policy.

Apart from the formulas given above, that identify optimal decisions for worker scheduling, the AKG
policy requires appropriate computation architecture to run it, as we describe in the next section.

3 MASTER-SLAVE ARCHITECTURE FOR ASYNCHRONOUS KNOWLEDGE GRADIENT

In this section we outline how an AKG algorithm can be implemented in a master-slave architecture. We
assume that we have one master machine and a set W of worker machines. The master controls the entire
simulation process (the execution of the AKG algorithm) while workers are assigned simulation execution
tasks. A worker starts the simulation for a configuration given by the alternative i ∈ {1,2, . . . ,N} when it
is invoked by the master. After the worker finishes the simulation it notifies the master that it is ready to
return simulation output and start a new task.

The full procedure has been presented as Algorithm 1. Let us now highlight its major features. Every
worker ∈W apart from executing simulations possesses the following three attributes:

1. status:
(a) free — newly created worker;
(b) working — simulation is running;
(c) completed — simulation completed and can take up a new job;
(d) error — simulation finished with an error, but worker is ready to start a new simulation job;
(e) down — node will not be available — for example due to failure or unavailability (e.g. worker

assigned to other tasks by a cluster administrator);
2. job:

a number of currently simulated alternative; if status is not equal to working it is undefined;
3. output:

a value returned after simulation execution; if status is not equal to completed it is undefined.

A complete state transition diagram for worker attributes can be found in Figure 1. The attribute job
is additionally stored on the master machine in order to be able to retrieve it in case the worker status
becomes down, whereupon it might even be impossible for the master to communicate with it. When a
worker goes down it is removed from the set W . Similarly new workers can be added to set W at any
instance in the main loop in Algorithm 1 execution. In the case of a new worker being added it must have
set its status set to free.

Similarly to the standard KG procedure, initial beliefs µ(0),i and σ(0),i must be supplied by the researcher.
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At the start of Algorithm 1 there are |W | free workers. In order to keep the algorithm simple we assume
that they are assigned to tasks sequentially. However, it is possible to find an optimal initial allocation
s that maximizes knowledge gain under the constraint that ∑

N
i=1 si = |W | and assign tasks to workers

simultaneously — an approach equivalent to solving problem given by the equation (3) from Frazier and
Powell (2010). Notice, however, that for large |W | and N this could be a computationally expensive task.

Algorithm 1 Asynchronous Knowledge Gradient procedure for the master node
1: procedure AKG_MASTER

2: Initialize µ(0),i and σ(0),i
3: si← 0 for all i ∈ {1,2, . . . ,N}
4: k← 0
5: worker.status ← free for all worker ∈W
6: repeat
7: wait until (exists worker ∈W : worker.status not equal to working)
8: or (loop was externally interrupted)
9: i ← worker.job

10: if worker.status equals completed then . collect results from a completed job
11: k← k+1
12: y ← worker.output
13: Update µ(k),i and σ(k),i.
14: end if
15: if worker.status is not free then . decrease scheduled computation counter
16: si← si−1
17: end if
18: if worker.status equals down then . remove crashed workers from the pool
19: W ←W −{worker}
20: if for all worker ∈W worker.status equals down then . terminate if no workers are left
21: break
22: end if
23: else
24: Calculate next point to simulate AKG(k,s)
25: sAKG(k,s)← sAKG(k,s) +1;
26: worker.job ← AKG(k,s)
27: start simulation computation on worker
28: end if
29: until Stopping condition is true
30: return argmaxi∈{1,2,...,N} µ(k),i . return currently best alternative
31: end procedure

The master spends most of its time in the wait step of the algorithm. Workers finish their jobs
asynchronously so it is possible that several workers finish computations at almost the same time. If
the master encounters a situation that it has several available workers, the most efficient case is when it
processes workers in the following status sequence: down, completed, error, free.

Lastly let us note, as mentioned in the introduction, that we assume that the algorithm can have an
arbitrary stopping conditions or even can be externally interrupted at any time. This reflects the fact that
in practice the stopping conditions can have different forms, for example: computing budget (expressed
in money or in processor time), execution time (the total time allowed to run all simulations) or criteria
based on predicted values of considered alternatives µ(k),i.
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freefree

entry/job = AKG(k,s)
exit/output = y

working

entry/job = AKG(k,s)
exit/output = y

working

completedcompleted errorerror

downdown

Create worker

Start by master

Start by master

Execution sucess

Execution error

Worker crashed or killed

Start by master

Figure 1: State transition diagram for worker status.

Here it should be noted that arbitrary stopping of AKG algorithm might introduce a slight bias in
obtained evaluations of µ(k),i. The reason for such a situation is that simulation completion times might
be correlated with observed values of yi. For a broader discussion of this problem see Ni, Hunter, and
Henderson (2013). This means that at an arbitrary algorithm stopping moment it is more probable that
simulations that are “under computation” have large completion times. Therefore it is recommended that, if
possible, after stopping of the main loop of the algorithm all started simulations are finished and their outputs
are taken into account. If this policy is applied the obtained evaluations µ(k),i will be unbiased. However,
it should be noted that this problem is becoming less important when the number of collected samples
is increasing. Additionally, for the same reasons as explained above, if we have the strong correlation of
simulation completion times with yi, the Bayesian updating proposed in this paper is only an approximation
because the distribution of yi does not have to be exactly normal with zero bias and variance σ2

ε . This
might lead to a bias in the knowledge gradient evaluation. In this paper we assume that this problem has
a negligible influence of the outcome of the procedure for larger samples because then the proportion of
“fast” and “slow” computations for each alternative i will be approximately correct.

4 SIMULATION EXPERIMENTS

The goal of this section is to present the numerical results of AKG method tests. We benchmark the AKG
algorithm vs the standard sequential KG. The test scenarios for algorithm performance are based on KG
tests proposed by Frazier and Powell (2007).

The layout of this section is as follows. Firstly, we propose a testbed for asynchronous SO algorithms
— virtual computing cluster emulator for R&S (VCCE4RS). Secondly, we describe the details of the
experiment design. Finally, we discuss the results of simulation experiments and compare the ability of
AKG to find an optimal solution vs KG performance.
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N

|W |
1

1

SimState«interface»
Steppable

CompClusterEmulator

computingTime : LogNormalDistribution

RandomStreamFactory

random : MersenneTwisterFast
numberOfStreams : int

RSpoint

distribution : NormalDistribution
stream : RandomStream

generate_y() : double

Worker

«interface»
RSalgorithm

getNext_x(optimizationState) : int

KG_RSalgorithm AKG_RSalgorithm

Figure 2: The class diagram for virtual computing cluster emulator for R&S (VCCE4RS).

4.1 Virtual computing cluster emulator for R&S (VCCE4RS)

To test the efficiency of our AKG algorithm we have created a simulation model that emulates a computing
cluster. The virtual computing cluster emulator for R&S simulation-optimization (VCCE4RS) is a simulation
framework for testing SO algorithms programmed in Java and we use the MASON library version 17
(http://cs.gmu.edu/ eclab/projects/mason/), see Luke et al. (2005).

For probability density functions and integration we use Apache Commons — Math version 3
(http://commons.apache.org/proper/commons-math/).

The Eclipse (http://www.eclipse.org/) project containing source code and binaries of VCCE4RS
is available for download at http://bogumilkaminski.pl/pub/AKGv1.1.zip.

The VCCE4RS can simulate a computing cluster with an arbitrary amount of workers |W | for any
given number of points |N|. We assumed a star topology where the simulation is controlled by a central
node (master) and the calculations are performed by subsidiary nodes — workers.

The class diagram of VCCE4RS is presented on Figure 2. The main class of our simulation environment
is the class CompClusterEmulator. The object of the CompClusterEmulator class contains the
following fields:

• R&S points — represent various alternatives presented by random variables (Y1,Y2, . . . ,YN);
• Workers — represent computing nodes in a cluster;
• R&S algorithm that can be plugged-in to test of various SO algorithms on the virtual cluster.

The points represent alternatives {1,2, . . . ,N}. The virtual simulation process is represented by gen-
erating a point from the normal distribution.

In our computing cluster model, the workers are represented as agents (in MASON terminology they
implement the Steppable interface). The virtual computing times are represented by delays of workers.
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Table 1: Scenarios for simulation experiments

algorithm N workers — |W | steps — k repetitions
KG {5,10} 1 85 114122

AKG {5,10} {1,2,3,4,5} 85 114122
KG 20 1 85 107560

AKG 20 {1,2,3,4,5} 85 107560

In our framework, R&S algorithms can be plugged-in through an interface. Hence, we can easily
compare different SO algorithms. We have implemented only KG and AKG algorithms within the proposed
framework but other algorithms can easily be added by implementing the RSalgorithm interface.

In order to ensure the comparability of experiments for different SO algorithms, the VCCE4RS
uses a common random numbers technique (Law 2007). More precisely, we use the leap-frog approach
for handling CRN (Pawlikowski, Schoo, and McNickle 2006). We utilize a single Mersenne Twister
(Matsumoto and Nishimura 1998) random number generator and split it’s random numbers into N + |W |
streams with 1 random number stream for each R&S point and |W | streams utilized for generating virtual
computing for the workers. The main loop described in Algorithm 1 is run within the simulation state
class CompClusterEmulator.

The proposed VCCE4RS can be utilized to test and benchmark various asynchronous or synchronous
simulation-optimization algorithms in R&S problems. Notice that in the master-slave setting the design
assumptions behind our simulator are robust to typical problems encountered in cluster computing such as
network latency. This is due to the fact that all the synchronization of slave nodes is ensured by a centralized
simulation dispatch on the master node. If we had considered decentralized computation architectures, like
for example peer-to-peer, the design of the algorithms would have taken such issues into account.

4.2 Experiment design

The goal of the simulation experiments is to calculate the speed of convergence of the KG and AKG
algorithms. For the model parametrization initialization we follow the approach proposed by Frazier and
Powell (2007).

The experiment scenarios are represented in Table 1. We consider three values for N: 5, 10 and
20 points. For each design point i ∈ {1, . . . ,N}, we generate the expected values µ̃i (‘unknown’ to the
KG/AKG algorithm) from the standard normal distribution i.e. µ̃i ∼ N(0,1). For each point we assume
that measurement standard deviations are equal to 1 i.e. σ 2

ε = 1. We run the AKG simulation with
|W |= {1,2,3,4,5} workers. It should also be noted that we run AKG with one worker in order to validate
our implementation — AKG with one worker should have performance identical to KG. Altogether 12
different simulation scenarios have been considered with more than 100,000 repetitions for each scenario.

Testing the AKG algorithm requires simulation of computing times. We have assumed that those times
are log normally distributed, i.e. computingTime∼ LN(0,1).

The goal of our simulation experiments is to measure how the parallelization of the KG method
decreases the speed at which the algorithm converges. Hence, when testing the AKG on VCCE4RS, we do
not consider simulation execution errors, worker crashes or scenarios where a new worker is being added
to the computing grid. In our simulations the workers can have only three states presented in Figure 1:
free, working, completed.

4.3 Simulation results

The simulation results for the AKG algorithm are presented in Figures 3 and 4 (KG simulation results were
the same as results reported by the AKG with 1 worker – see the discussion of experiment design in Section
4.2). As a measure of algorithm efficiency we use an expected loss of reward E(maxi µ̃i− µ̃argmaxi µ(k),i)
after obtaining k simulation outcomes (i.e. performing k simulations). The expected loss is the difference
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Figure 3: The expected loss for different number of workers |W |, number of successfully executed simulations
k and alternatives N. For each point we present the mean and 95% its confidence interval.
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between the objective value for a truly optimal solution and the expected objective value of the solution
selected by the algorithm. In Figure 3 it can be seen that with increasing number of workers the expected loss
increases. However, the performance differences are very small (we had to run around 100000 simulation
replications to be able to detect statistically significant differences).

In order to assess the level of the performance loss in Figure 4 on the left we plot the ratio of the
expected loss generated by AKG relative to the expected loss for KG (one worker) for N = 20. We can see
that the AKG performance degrades when the number of worker increases, but it is not more than ∼25%
for 5 workers. Considering the fact that with 5 workers we can work 5 times faster we conclude that the
benefit of parallelization is substantial. For N ∈ {5,10} the loss ratio is lower and has a similar shape.
The right subplot compares the number of calculated outcomes and the log of expected loss for varying
number of workers. We can see that in order to achieve the expected loss gained after 50 evaluations
(horizontal grey line) in the standard KG algorithm we need not more than 60 evaluations for AKG with
5 workers. Moreover adding each worker produces lower increase in number of evaluations needed, as
we need 50 evaluations for 1 worker, 54 for 2 workers, 57 for 3 workers, 59 for 4 workers and 60 for 5
workers (vertical grey lines).

The simulation results show that use of parallelization (i.e. moving from KG to AKG) can lead to
significant computation time savings when multiple workers are available.

5 CONCLUDING REMARKS

In this paper we have proposed an asynchronous version of the knowledge gradient algorithm for ranking
and selection problems. In this procedure when a new computation task is initiated information about types
of computation tasks that are started but have not finished yet is taken into account.

We have validated our approach with a simulation and determined that the AKG method scales very
well — adding new worker nodes to a computing cluster almost linearly decreases the time required to find
an optimal solution. However, what remains for further work is to develop a formal theory that establishes
bounds on the efficiency loss of the AKG policy vs. the sequential KG policy.

In this text we have restricted our consideration to the master-slave architecture where a centralized
master server controls many worker nodes. This design choice was made because it is a typical scenario for
cluster computing and rental of computational power. Another reason is that the master-slave protocol is
simple and easy to implement. However, other approaches can be also considered, such as the peer-to-peer
communication in computing grids as discussed for stochastic optimization by Agarwal and Duchi (2012).

The proposed asynchronous master-slave approach can be also easily applied to other SO algorithms.
In particular a natural venue for extension of the proposed asynchronous optimization approach is to apply it
in combination with OCBA-type or multi-step ahead policies. Moreover, the developed Virtual Computing
Cluster Emulator for R&S simulation-optimization (VCCE4RS) can be utilized to test other algorithms.

Finally an important area for further consideration is analyzing of the consequences of the numerical
instability of KG and AKG algorithms in general. We have discovered that in many scenarios the choice
of next point E

(
V(k)|s+ei

)
leads to tie or near-tie situations and the next point AKG(k,s) can be chosen due

to numerical error rather than a maximal expected value.
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