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ABSTRACT

We propose a new radial basis function (RBF) model for stochastic simulation, called regularized RBF
(R-RBF). We construct the R-RBF model by minimizing a regularized loss over a reproducing kernel
Hilbert space (RKHS) associated with RBFs. The model can flexibly incorporate various types of RBFs
including those with conditionally positive definite basis. To estimate the model prediction error, we first
represent the RKHS as a stochastic process associated to the RBFs. We then show that the prediction model
obtained from the stochastic process is equivalent to the R-RBF model and derive the associated mean
squared error. We propose a new criterion for efficient parameter estimation based on the closed form of
the leave-one-out cross validation error for R-RBF models. Numerical results show that R-RBF models
are more robust, and yet fairly accurate compared to stochastic kriging models.

1 INTRODUCTION

In this paper, we aim to develop a radial basis function (RBF) model to approximate a real-valued smooth
function using noisy observations obtained via black-box simulations. The observations are assumed to
capture the information on the true function f through the commonly-used additive error model,

y = f (x)+ ε(x), x ∈X ⊂ Rd ,

where the random noise is characterized by a normal random variable ε(x)∼N
(
0,σ2

ε (x)
)
, whose variance

is determined by a continuously differentiable variance function σε : X → R. In practice, the variance
function is unknown and needs to be estimated.

In general, interpolation models with outputs from stochastic simulations tend to overfit the data,
typically exhibiting strong oscillations. In statistical and machine learning, the method of regularization
has been considered as an effective way to cope with the overfitting issue arising in learning from noisy
observations. The method searches for the optimal model by minimizing a regularized loss function over
a hypothesis space of functions to which f presumably belongs. The regularized loss function consists
of a conventional loss function and a regularizer on model complexity. Examples of such methods are
Tikhonov regularization (Tikhonov and Arsenin 1977), ridge regression (Hoerl and Kennard 1970), and
LASSO (Tibshirani 1996). Rather than specifying parametric models for the hypothesis space, contemporary
nonparametric regression methods (Girosi et al. 1995, Evgeniou et al. 2000) consider a more flexible
hypothesis space called Reproducing Kernel Hilbert Space (RKHS) generated by positive definite (PD)
kernels. While the RKHS is, in fact, infinite-dimensional, the representation theorem (Kimeldorf and Wahba
1971) allows us to formulate the learning process by solving an optimization problem with a finite number
of model parameters. RBFs can be considered as a class of kernel functions. In this paper, we adopt
the regularization method over RKHS to construct an RBF-based metamodel for stochastic simulation,
called the regularized RBF (R-RBF) model. Most kernel methods for noisy observations use PD kernels,
whereas their generalizations, conditionally positive definite (CPD) kernels, are rarely considered (Steinke
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and Schölkopf 2008) because of additional technical details. Some CPD kernels are globally supported and
parameter-free. This property can improve the robustness of the resulting metamodels. With this regard,
we consider both PD and CPD types of RBFs in this paper.

The literature lacks a practical measure to evaluate the prediction uncertainty of RBF models in stochastic
simulations. The technique of bootstrap resampling (Efron and Tibshirani 1993) is a popular method to
construct pointwise confidence intervals of metamodels. However, it may introduce a significant amount of
overhead when incorporated into optimization algorithms. Also, most RBF-based metamodels studied in
statistical and machine learning consider homoscedastic noise without explicitly characterizing the model
prediction uncertainty (Haykin 1994, Poggio and Girosi 1990). The mean squared error (MSE) of kernel
smoothing estimator (Takezawa 2005) can be applied to estimate the prediction error of an RBF model.
But, it usually requires some information on the true function, which is not suitable for black-box problems.
Due to the computational shortcuts for some regression models, leave-one-out cross-validation (LOOCV)
(Hastie et al. 2008) has been widely applied as the model selection strategy in the literature. A variant of
LOOCV known as generalized cross-validation (GCV) by Golub et al. (1979) is often used in choosing
regularization parameters. GCV, however, is not applicable for R-RBF models because of different model
representations.

In light of the aforementioned research gap, we make the following contributions: (a) We extend RBF
interpolation models for stochastic simulations with heteroscedastic noise by applying regularization over a
RKHS associated with both PD and CPD kernels. Under a set of mild conditions on the geometry of sample
points and kernels, we compute model parameters as the unique solution to a system of linear equations. (b)
We construct a stochastic process based on the kernels and derive the same model prediction obtained by
means of regularization. Additionally, this provides us with the prediction uncertainty measured by mean
squared error (MSE). This approach also allows us to unveil similarities and differences between R-RBF
and stochastic kriging (SK) models. R-RBF models possess a lower number of degrees of freedom than SK
in terms of the number of shape parameters in the basis functions. However, this regularization also has its
benefits for stochastic simulations. R-RBF models are more robust and easier to build without sacrificing
significant amount of model accuracy (see Section 6). (c) We perform mathematical analysis on R-RBF
models. We show in Theorem 1 that models with PD and CPD kernels surprisingly share the same form of
MSE-optimal prediction and the associated prediction uncertainty, even though the underlying assumptions
and derivations differ a lot. (d) Lastly, we derive a closed-form LOOCV error for R-RBF models and
use it in a new criterion to enhance computational efficiency of estimating the regularization and kernel
parameters.

The rest of this paper is organized as follows. Section 2 presents the proposed R-RBF model based on
the regularization theory. In Section 3, we analyze R-RBF models by constructing an appropriate stochastic
process. The results also help unveil connections and differences between R-RBF and SK models in Section 4.
Section 5 describes methods of estimating the regularization parameters using LOOCV. Section 6 compares
R-RBF models with SK models via numerical examples. Section 7 concludes this paper.

2 MODEL FORMULATION

Augmented RBF interpolation models have been extensively studied by Powell (1992) and Wendland (2005).
A key element in these models is incorporating the CPD type of RBF functions in order to add flexibility in
modeling. As we want our results to be general, we present our results in terms of kernels that essentially
are symmetric functions of its arguments.

Definition 1 Suppose that Pd
m is a m̃=

(m−1+d
d

)
-dimensional linear vector space with polynomials of degree

less than m in Rd . A real-valued continuous kernel function K : X ×X →R is conditionally positive definite
of order m if and only if for any p distinct sample points Xn = {xi}p

i=1 ⊂X , ∑
p
i=1 ∑

p
j=1 λiλ jK(xi,x j)> 0,

for any nonzero vector (λ1, . . . ,λp) ∈ Rp \{(0, . . . ,0)} satisfying ∑
p
i=1 λiπ(xi) = 0 for all π ∈ Pd

m.
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Table 1: Conditionally positive definite radial basis functions.

Name K(x,x′) = ψ (r) Order mK

Multiquadrics (MQ) −
√

r2 +θ 1
Thin plate splines (TPS) r2 ln(r) 2
Cubic splines (CU) r3 2
Gaussian (GS) exp(−r2/θ) 0
Inverse multiquadrics (IMQ) (θ+ r2)−1/2 0

According to its definition, a CPD kernel is only positive definite on the subspace {λ ∈Rp : ∑
p
i=1 λiπ(xi) =

0}. Table 1 summarizes the order mK of CPD RBFs commonly-used in RBF-based models, where θ > 0 is
a tunable shape parameter and K(x,x′) becomes a radial kernel ψ (r) with r = ‖x−x′‖. As a special case,
PD kernels are basically CPD kernels of order m= 0.

In this paper, the set of sample points is represented by Sn = {(xi,yi,ni)}p
i=1 with ∑

p
i=1 ni = n, where ni

is the number of replications of simulations performed at xi, and the sample mean is yi =
1
ni

∑
ni
j=1 yi j, where

yi j denotes the noisy observation from the jth replication of simulation at xi. We refer to Xp = {xi}p
i=1 as

p design points.
RKHS H is a collection of all functions in the form of

g(x) =
p

∑
i=1

αiK(x,xi)+
m̃

∑
j=1

β jπ j(x) = Kp(x)Tα +πm̃(x)Tβ , for all p ∈ N∪{∞},xi ∈X ,αi,β j ∈ R, (1)

where the weight vectors are α = {αi}p
i=1 and β = {β j}m̃j=1, and {αi}p

i=1 must satisfy ∑
p
i=1 αiπ(xi) = 0,

for all π ∈ Pd
m. The column vectors are defined as Kp(x) = {K(x,xi)}p

i=1, πm̃(x) = {π j(x)}m̃j=1, and a set of
functions {π j(·)}m̃j=1 forms a basis of Pd

m. In this paper, we use a linear tail, that is, m= 2, m̃= d+1, and
πm̃(xi) = (1,xTi )T. H is equipped with a seminorm, |g|2H = ∑

p
i=1 ∑

p
j=1 αiα jK(xi,x j) = αTKα , for all g ∈H,

where the constraint on α ensures the nonnegativeness of the seminorm. Notice that only when K is CPD
of order 0, H carries with a norm ‖g‖2

H = αTKα , and has K as its reproducing kernel.
Throughout this article, we impose the following set of mild geometric conditions on Xp:

Assumption 1 For a CPD kernel K of order mK and a polynomial space Pd
m, the matrix Π, whose (i, j)

element is [Π]i j = π j(xi), has full column rank, equivalently, Xp is unisolvent for Pd
m with m≥mK .

Assumption 2 The unknown function f belongs to a RKHS H associated with a CPD kernel K and the
polynomial space Pd

m.

Under the assumptions 1-2, and given Sn and Pd
m, an augmented RBF interpolation model takes form

of (1) with p = n, and Powell (1992) proves that its weight vector is the unique solution to the linear system,(
K Π

Π
T 0m̃×m̃

)(
α

β

)
=

(
yp
0m̃

)
, (2)

where [K]i j = K(xi,x j), i, j = 1, . . . , p. In the interpolation context, yp = { f (xi)}p
i=1 and ni = 1 for all

i = 1, . . . , p. We show that the weight vector of a regularized RBF model satisfies a similar condition as
(2), except that a diagonal matrix is added to K.

We present our analysis by assuming that all model parameters are known. Issues regarding parameter
estimation are resolved in Section 5. Given a set Sn of evaluated samples, a kernel K, and Assumption 2,
the statistical learning theory suggests that one possible estimate of f can be obtained by minimizing a
regularized loss over a RKHS H,

min
g∈H

Rn(g) :=
1
p

p

∑
i=1

(
1
ni

ni

∑
j=1

(yi j−g(xi))
2

σ2
ε (xi)/ni

)
+λreg |g|2H (3)
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The first term in (3) measures the squared Mahalanobis length of the residual vector that is also used in
generalized least squares. This term represents the fidelity of the approximation model. In general, we have
no access to the noise variance function σ2

ε (·). Instead, we estimate σ2
ε (xi) with the sample variance of

noisy observations,σ2
s (xi) =

1
ni−1 ∑

ni
j=1(yi j−yi)

2. We interpret the second term as a penalty imposed on the
model complexity measured by RKHS seminorm. Finally, the trade-off between model fidelity and model
complexity is controlled by a single regularization parameter λreg, the estimation of which is efficiently
addressed via LOOCV in Section 5.

By the semiparametric representer theorem (Schölkopf and Smola 2001), the optimal solution to (3)
takes the form of (1), where the weight vectors α and β are computed by replacing g in (3) with MK,Sn (x)
of the form (1) and minimizing the following optimization problem,

min
α∈Rp,β∈Rm̃

Rn(MK,Sn ) Subject to Π
T

α = 0m̃, (4)

where Rn(MK,Sn ) =
1
p

p

∑
i=1

(
1
ni

ni

∑
j=1

(yi j−Kp(xi)
Tα −πm̃(xi)

Tβ )2

σ2
ε (xi)/ni

)
+λreg

∣∣MK,Sn

∣∣2
H

=
1
p
(Kα +Πβ −yp)

T
Σ
−1
ε (Kα +Πβ −yp)+λregα

TKα +
1
p

p

∑
i=1

ni

∑
j=1

(yi j− yi)
2

σ2
ε (xi)

,

where the column vector yp = (y1,y2, . . . ,yp)
T and the matrix Σε is a diagonal matrix with its diagonal

elements being {σ2
ε (xi)/ni}p

i=1. A remarkable feature of the semiparametric representer theorem is that the
optimal solution to (3) lies in a finite-dimensional space represented by (1) with a finite p, although the
dimension of H is essentially infinite.

By assuming that λreg and Σε is known, the KKT conditions for the solutions α and β give rise to the
following linear system,

2
p KTΣ

−1
ε (Kα +Πβ −yp)+2λregKα +ΠηCPD = 0p,

2
p Π

T
Σ
−1
ε (Kα +Πβ −yp) = 0m̃,

Π
T

α = 0m̃,

 (5)

where ηCPD ∈ Rm̃ is a vector of Lagrange multipliers associated with the equality constraint Π
T

α = 0m̃.
Proposition 1 The unique solution to (5) is given by ηCPD = 0m̃ and α and β satisfy(

K+ pλregΣε Π

Π
T 0m̃×m̃

)(
α

β

)
=

(
yp
0m̃

)
, (6)

and hence the R-RBF model prediction is MK,Sn (x) = Kp(x)Tα +πm̃(x)Tβ .

Proposition 2 below proves that the existence and the uniqueness of a solution to the linear system (6).
Since there exists a unique solution to (5), this solution is also the global optimum of (4). Indeed, (6) shares
a similar structure with (2) whose solution is the desired weight vector of an augmented RBF interpolation
model. This similarity allows us to extend the LOOCV results obtained for RBF interpolation models to
regularized RBF models (see Section 5)

Proposition 2 Under Assumption 1, C̃ =
(

K+pλregΣε Π

Π
T 0m̃×m̃

)
is invertible and the linear system (6) is thus

uniquely solvable.

3 PREDICTION ERROR ANALYSIS

In Section 2, we derived the R-RBF model prediction by applying regularization theory. A measure of the
model prediction uncertainty is of great use in metamodel-based optimization to allocate computational
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budgets for promising regions. By constructing an appropriate stochastic process, this section focuses on
deriving the same model prediction as in Section 2 and additionally the prediction uncertainty measured
by MSE. This section is divided into two parts. We first consider PD kernels that are qualified to be
covariance functions of a stochastic process, and derive the MSE-optimal predictor and its associated
prediction uncertainty. It is followed by a generalization of PD kernels to CPD kernels of arbitrary order,
which cannot be directly used as covariance functions. Despite these crucial differences, we prove in
Theorem 1 that models with PD and CPD kernels of arbitrary order share the same form of MSE-optimal
prediction and the associated prediction uncertainty.

3.1 Positive Definite Kernels

We present the noisy observation on replication r at design point x using the following model,

Yr(x) =
m̃

∑
j=1

β jπ j(x)+
√

κZZ(x)+ εr(x) (7)

where κZ > 0 is a positive constant and κZ reflects our prior knowledge on the smoothness of the underlying
function, {Z(x),x∈X } is a stochastic process with zero mean and a covariance function Cov [Z(x),Z(x′)] =
K(x,x′). The noise εr(x),εr(x), . . . at x is assumed to be identically and independently distributed.

In the following, we try to derive the Best Linear Unbiased Prediction (BLUP) by following the
procedures in Stein (1999) and Ankenman, Nelson, and Staum (2010). We consider the predictor of the
form λ0+λ

TYp, where Yp = ( 1
n1

∑
n1
r=1Yr(x1), . . . ,

1
np

∑
np
r=1Yr(xp)). The unbiasedness constraint implies that

E[λ0 +λ
TYp] = E[Y(x)], equivalently, λ0 +λ

T
Πβ = πm̃(x)Tβ , for all β ∈ Rm̃. This simply means that

λ0 = 0 and Π
T

λ = πm̃(x). The λ that yields the BLUP is obtained by minimizing the MSE of the prediction
subject to the unbiasedness constraint,

min
λ

MSEK,Sn (x) := E
[
(Y(x)−λ

TYp)
2
]
= κZK(x,x)−2κZλ

TKp(x)+λ
T(κZK+Σε)λ

subject to Π
T

λ = πm̃(x),

where the same notations from Section 2 are used. With the KKT conditions, we show that the optimal λ

and the Lagrange multiplier η associated with the constraint Π
T

λ = πm̃(x) satisfy,(
2(K+κ−1

Z Σε) Π

Π
T 0m̃×m̃

)(
λ

−η

)
=

(
2κZKp(x)

πm̃(x)

)
.

Proposition 3 The R-RBF model prediction is given by

MK,Sn (x) =
(

λ
T −ηT

)(yn

0m̃

)
=

(
Kp(x)
πm̃(x)

)T(K+κ−1
Z Σε Π

Π
T 0m̃×m̃

)−1(yp
0m̃

)
,

and the MSE associated with the prediction MK,Sn (x) is given by,

MSEK,Sn (x) = κZ

(
K(x,x)−

(
Kp(x)
πm̃(x)

)T(K+κ−1
Z Σε Π

Π
T 0m̃×m̃

)−1(
Kp(x)
πm̃(x)

))
.

Notice that if we define κ−1
Z = pλreg, then the prediction MK,Sn (x) possesses the same form as the one

computed by minimizing the regularized loss in Section 2. The advantage of using a stochastic process is
that it provides the MSE associated with the prediction. Furthermore, if Z(x) is Gaussian, then we obtain a
conditional distribution of the unknown function value given Sn is N

(
MK,Sn (x),MSEK,Sn (x)

)
.
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3.2 Conditionally Positive Definite Kernels of Arbitrary Order

Except PD kernels, a CPD kernel K of arbitrary order is not the reproducing kernel for the RKHS H, since
K is only positive definite on a subspace, thus is not a valid covariance function. Direct substitution of a
CPD kernel into (7) is not suitable. One way of constructing the stochastic process is to transform a CPD
kernel into a PD kernel. In other words, we need the reproducing kernel for H. The way of finding such a
reproducing kernel has been discussed in the literature Wahba (1990) and Wendland (2005), and it is given
by

K̃(x,x′) := K(x,x′)−
m̃

∑
i=1

li(x)K(x′,ξ i)−
m̃

∑
i=1

li(x′)K(x,ξ i)+
m̃

∑
i, j=1

li(x)l j(x′)K(ξ i,ξ j)+
m̃

∑
i

li(x)li(x′), (8)

where Ξ = {ξ 1, . . . ,ξ m̃} forms a Pd
m-unisolvent subset, and the set of {li(·)}m̃i=1 is a Lagrange-type basis

of Pd
m. One example of Ξ is Ξ = {x1, . . . ,xm̃}. Therefore, any π ∈ Pd

m can be uniquely reconstructed as
π(x) = ∑

m̃
i=1 li(x)π(ξ i). Since this equality holds for arbitrary π ∈ Pd

m, we plug in the set of function
{π j(x)}m̃j=1 used in defining the RKHS H and establish,π1(ξ 1) · · · π1(ξ m̃)

...
...

...
πm̃(ξ 1) · · · πm̃(ξ m̃)


 l1(x)

...
lm̃(x)

=

π1(x)
...

πm̃(x)

 . (9)

Assumption 1 guarantees the unique solution to (9). Now, the reproducing kernel K̃ for H is available, thus
the R-RBF model prediction is in the form of MK̃,Sn (x) = ∑

m̃
j=1 β̃ jπ j(x)+∑

p
i=1 α̃iK̃(x,xi), where α̃ = {α̃i}p

i=1

and β̃ = {β̃ j}m̃j=1 are the weight vectors of MK̃,Sn (x). Correspondingly, we can construct a stochastic process
similar to (7) except that the covariance function of {Z(x),x ∈X } is now K̃. Following similar derivations
in Section 3.1, we obtain the following proposition.
Proposition 4 The regularized RBF model with a CPD kernel is given by

MK̃,Sn (x) =
(

K̃p(x)
πm̃(x)

)T(
K̃+κ−1

Z Σε Π

Π
T 0m̃×m̃

)−1(yn

0m̃

)
,

The MSE associated with the prediction MK̃,Sn (x) is given by,

MSEK̃,Sn (x) = κZ

(
K̃(x,x)−

(
K̃p(x)
πm̃(x)

)T(
K̃+κ−1

Z Σε Π

Π
T 0m̃×m̃

)−1(
K̃p(x)
πm̃(x)

))
.

In general, computation of K̃ involves repeatedly solving (9) for {li(x)}m̃i=1, and the form of K̃ is not
suitable for further analysis. Theorem 1 proves that the computation of MK̃,Sn (x) and MSEK̃,Sn (x) can be
accomplished without resorting to K̃, which is a new contribution of this paper.
Theorem 1 Given Sn , a CPD kernel K, and its corresponding PD kernel K̃ obtained by Equation (8), we
obtain the following equality,

MK̃,Sn (x) = MK,Sn (x), and MSEK̃,Sn (x) =MSEK,Sn (x).

Theorem 1 allows us to compute MK̃,Sn (x) and MSEK̃,Sn (x) by simply replacing K̃ with the CPD kernel
K in Proposition 4.
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4 CONNECTIONS BETWEEN R-RBF AND STOCHASTIC KRIGING

At first glance, R-RBF and SK models differ in many aspects. A R-RBF model approximates the true
function with a weighted sum of radial kernels indexed by Euclidean distances between evaluated points,
whereas a SK model makes predictions with a weighted sum of evaluated function values. The connections
between R-RBF models and stochastic kriging are established in two parts depending on the properties
of the kernel function. Because of Theorem 1, we suppress the explicit dependence on K in MK,Sn (x) and
MSEK,Sn (x) from now on. First, we reformulate the SK predictor given by Ankenman, Nelson, and Staum
(2010) as follows,

Ŷ (x) = β0 +ΣM(x, ·)T(ΣM+Σε)
−1(yp−β01p) =

(
ΣM(x, ·)

1

)T(
ΣM+Σε 1p

1Tp 0

)−1(yp
0

)
,

with β0 = (1Tp (ΣM+Σε)
−11p)

−11Tp (ΣM+Σε)
−1yp and the optimal MSE associated with the SK predictor is

MSE(x) = ΣM(x,x)−ΣM(x, ·)T(ΣM+Σε)
−1

ΣM(x, ·) = ΣM(x,x)−
(

ΣM(x, ·)
1

)T(
ΣM+Σε 1p

1Tp 0

)−1(
ΣM(x, ·)

1

)
.

Analysis in Section 3 suggests that for R-RBF models using PD or CPD kernels, the MSE associated with
MSn (x) can be rewritten as

MSESn (x) = κZK(x,x)−
(

κZKp(x)
πm̃(x)

)T(
κZK+Σε Π

Π
T 0m̃×m̃

)−1(
κZKp(x)
πm̃(x)

)
.

SK models consider a constant term β0 representing the mean of the stochastic process, and ΣM(x, ·) is
the correlation vector between x and evaluated points, and ΣM is the correlation matrix among evaluated
points. From the above reformulations, we observe some differences and similarities between these two
models.

For PD kernels, both ΣM(x, ·) and κZKp(x) can be interpreted as the covariance function of a stochastic
process, although R-RBF models have less degrees of freedom since they assume the same degree of
covariance for all dimensions. Our analysis, however, accommodate CPD kernels that are not analyzed by
Ankenman, Nelson, and Staum (2010). Moreover, a CPD κZKp(x) is no longer a valid covariance function
since the corresponding covariance matrix is not positive definite. Indeed, in the case of CPD kernels,
κZK̃p(x) forms the underlying covariance function. Surprisingly, Theorem 1 states that the choice of kernels
does not alter the form of model prediction and MSE.

For CPD kernels, the polynomial space in R-RBF models needs to satisfy m≥mK , where the value of
mK for each radial kernel is given in Table 1. Meanwhile, for PD kernels, no restrictions are imposed on
the choice of Pd

m for R-RBF models and the regression model in SK models. It is because PD kernels are
essentially CPD of order mK = 0. Besides, CPD kernels are not allowed in SK models.

5 REGULARIZATION PARAMETER ESTIMATION

As discussed in Section 2, the optimal weight vector (αT,βT)T is available through (6) but conditioned
upon a known λreg. Selection of λreg is essentially the model selection problems. Maximum likelihood
estimation is the most well-known method for estimating unknown parameters based on evaluated points;
see Ankenman et al. (2010), Santner et al. (2003). In statistics, cross validation is another famous method for
model selection and parameter estimation, especially in the regularization theory (Fang 2006). Wahba (1990)
argued that cross validation methods should be more robust as they do not require the model assumption to
be fulfilled. Therefore, we apply the frequentist cross validation method (Hastie, Tibshirani, and Friedman
2008) to estimate λreg and kernel parameters θ.
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Consider the way of constructing R-RBF models in (6), we define Sp = {xi,yi}
p
i=1. LOOCV partitions Sp

into p parts. For each part, it constructs a model MS−i with the ith part of Sp removed, that is, S−i = Sp\{(xi,yi)}.
Then the LOOCV cross validated residual of MSn is V(yi,MS−i(xi)) =

∣∣yi−MS−i(xi)
∣∣ , where the absolute

loss function is applied. Theorem 2 defines a new criterion for parameter estimation based on LOOCV. Its
main idea is that suppose MSn is reasonably accurate, then the 1

p ∑
p
i=1

∣∣yi−MS−i(xi)
∣∣/√MSEK,S−i(xi) should

be close to 1. A similar statement for interpolation models is given in (Cressie 1993, p. 102).
Theorem 2 The kernel parameters θ and regularization parameter λreg are determined by minimizing,

LOO(MSn ) =
1
p

p

∑
i=1

∣∣∣∣∣∣1−
∣∣yi−MS−i(xi)

∣∣√
MSES−i(xi)

∣∣∣∣∣∣= 1
p

p

∑
i=1

∣∣∣∣∣∣1− |αi|∣∣∣[C̃−1]i,i

∣∣∣
√

1
MSESn (xi)

− 1
σ2

ε (xi)

∣∣∣∣∣∣ (10)

where MSESn (xi) is the prediction MSE at sample point xi and can be readily computed given MSn . The
weight αi and coefficient matrix C̃−1 are known given MSn .

In the implementation, we replace σ2
ε (xi)with the sample variance σ2

s (xi). For kernels with parameters, not
restricted to be radial kernels, we use conventional numerical algorithms (sequential quadratic programming
(SQP) (Nocedal and Wright 2006) with multiple starting points) to search for (θ,λreg). While for other radial
kernels as CU and TPS, (10) reduces to a one-dimensional minimization problem of λreg, optimization of
LOO(MSn ) requires repetitive evaluations of the inverse matrix C̃−1. We apply Proposition 5, which is an
immediate result from the Woodbury matrix identity (Woodbury 1950), to avoid such procedure and thus
improve the computational efficiency.
Proposition 5 With eigendecomposition, we show that(

K+ pλregΣε Π

Π
T 0m̃×m̃

)−1

= GDiag

(
1

pλregδ1 +1
, . . . ,

1
pλregδp+m̃+1

)
G−1

(
K Π

Π
T 0m̃×m̃

)−1

,

where G and Diag
(
δ1, . . . ,δp+m̃

)
are from the eigendecomposition,(

K Π

Π
T 0m̃×m̃

)−1(
Σε 0p×m̃

0m̃×p 0m̃×m̃

)
= GDiag

(
δ1, . . . ,δp+m̃

)
G−1.

Proposition 5 extracts λreg from an inverse matrix thus multiple times of inverting matrices can be

avoided. Matrices G,{δi}p+m̃
i=1 , and

(
K Π

Π
T 0m̃×m̃

)−1
can be precomputed, significantly reducing computational

efforts of estimating λreg. Instead of solving (10) using nonlinear optimization algorithms for CU and TPS
radial kernels, we can approximate the optimal solution by evaluating LOO(MSn ) with a list of λreg, and
choosing the one introducing the lowest LOOCV error.

6 NUMERICAL EXPERIMENTS

6.1 One-dimensional Randomly-generated Function

We first illustrate R-RBF and SK models with a simple example. In this example, we assume the observations
are from a randomly generated function and are distorted by white noise with a nonconstant variance
function σ2

ε (x) = 0.2 f (x). The noise variance is estimated from replications of simulations. Both regularized
RBF model and stochastic kriging are constructed with p = 30 design points, and ni = 5 replications of
simulation at each point {xi}p

i=1.
Figure 1a portraits a regularized RBF model constructed using CU basis functions, and its 95% confidence

interval. Figure 1b illustrates the stochastic kriging model based on a Gaussian correlation function. The
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codes of constructing a stochastic kriging model are downloaded from http://stochastickriging.net/. Figure 1c
demonstrates the estimation of the regularization parameter λreg, where the optimal λreg is shown in red star.
As can be seen in Figure 1, the regularized RBF model fits well with the noisy observations and the true
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Figure 1: Model comparisons in the heteroscedastic case with an unknown noise variance function.

function is within the 95% confidence interval of the prediction. Notice that the confidence interval inflates
at points close to the boundary, since these points are distant from evaluated points and its radial kernel
function value increases quickly with the distance when using a CU kernel.

6.2 A Borehole Example

We also investigate a case study commonly used in the literature, such as Morris et al. (1993) and Fang
(2006). This engineering example describes the flow rate of water through a borehole from an upper
aquifer to a lower aquifer separated by an impermeable rock layer. To emulate noisy observations, we
add heteroscedastic noise while evaluating sample points, that is, y = f (x)+ ε(x), where ε(x) is normally
distributed with mean 0 and standard deviation σ 2

ε (x) = 0.1 f (x).
All experiments are carried out using Matlab 7.11 installed on a Windows machine with Intel(R) Xeon(R)

2.80GHz processor. We construct R-RBF models with a CU radial kernel and SK models with a Gaussian
correlation function. Throughout the experiments, we conduct a fixed ni = 10 replications of simulations at
each sample point xi, and the maximum number of function evaluations is Nmax = 9000. For a given number
p of design points, we construct the SK and R-RBF model using the same data. We compare these two
types of models based on performance measures computed using a set Xtest of 3×104 randomly-generated
test points. The performance measures include (a) CPU time for constructing metamodels; (b) The average
relative error at all test points; (c) The average empirical coverage of the confidence interval measured by
the percentage of test points in Xtest whose true function values lie in the 95% predictive confidence interval.

Figure 2a presents the CPU time of constructing metamodels when the sample size increases. Overall, the
construction time of SK models increases much faster than R-RBF models. The reason is straightforward: here
SK models estimate d+2 correlation parameters using maximum likelihood estimation. These parameters
include d parameters in the correlation function, variance of the random field and the overall surface mean.
In contrast, R-RBF models estimate 2 parameters (the shape and regularization parameters) by minimizing
(10). The worst-case complexity of nonconvex global optimization is exponential in the problem dimension
(Vavasis 1991). Therefore, we expect that the time complexity of building a R-RBF model to be smaller
than that of building a SK model. In case of CPD basis functions such as CU and TPS, the time complexity
is further reduced since only the regularization parameter needs to be estimated.
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(a) Time to build models.
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(b) Average relative error at test points.
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(c) Empirical coverage probabilities.
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(d) 95% confidence intervals at test points.

Figure 2: Comparisons between R-RBF and SK models.

A reduced number of parameters increases the robustness of metamodels for stochastic simulations.
This comes at the price of certain loss in model fidelity. However numerical results suggest that the resulted
R-RBF models are still of acceptable quality compared with SK models. Figure 2b measures the average
relative error at test points. Overall, R-RBF models makes predictions with relative error less than 5%.

Figure 2c illustrates the empirical coverage probabilities of 95% confidence intervals of each metamodel.
Figure 2d presents the confidence intervals at a subset of test points, demonstrating the model prediction and
the true function values of test points. Overall, confidence intervals of R-RBF models predict the true function
values with high coverage probabilities. Although R-RBF models exhibit lower model fidelity than SK
models, the confidence intervals of R-RBF models can compensate such disadvantages in metamodel-based
optimization. Appropriate utilizations of both model predictions and associated prediction errors measured
by MSE can guide the algorithm to explore promising regions more effectively.

7 CONCLUSIONS

In this paper, we propose RBF-based metamodels for stochastic simulations with heteroscedastic noise,
creating regularized RBF models. We first develop the R-RBF model prediction by minimizing the regularized
loss over an infinite-dimensional function space H associated with RBF functions. The R-RBF model is
unique under some mild assumptions. Furthermore, by constructing an appropriate stochastic process, we
derive the same model as well as an estimate of its prediction error measured by MSE. We contribute to
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mathematical analysis of R-RBF models with CPD kernels of arbitrary order, showing that they share a
unified form of model prediction and pointwise prediction errors. We also develop an efficient method to
estimate the model parameters (θ,λreg) by proposing a new criterion based on LOOCV error of R-RBF
models. When kernels are parameter-free, we further exploit the structure of the estimator and enhance the
estimation process by means of eigen-decomposition. Finally, two numerical results are used to compare
R-RBF and SK models, showing that R-RBF models are faster and more robust to construct while being
reasonably accurate.
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