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ABSTRACT

Consider a real-valued function that can only be evaluated with error. Given estimates of the function values
from simulation on a finite set of points, we seek a procedure to detect convexity or non-convexity of the
true function restricted to those points. We review an existing frequentist hypothesis test, and introduce
a sequential Bayesian procedure. Our Bayesian procedure applies for both independent sampling and
sampling with common random numbers, with known or unknown sampling variance. In each iteration,
we collect a set of samples and update a posterior distribution on the function values, and use that as the
prior belief in our next iteration. We then approximate the probability that the function is convex based on
the posterior using Monte Carlo simulation.

1 INTRODUCTION

Consider a real-valued function f : Rd→R that can only be evaluated through Monte Carlo simulation; that
is, f can only be observed with error. Suppose we wish to determine whether the true function f , restricted
to evaluation at a finite set of points, is convex or non-convex at those points. Since the Monte Carlo
simulation yields only estimates of the function values on the finite set of points, we desire a probabilistic
guarantee on the determination of convexity or non-convexity. We say that a function f , restricted to a
finite set of points, is convex if a convex function exists that coincides with f at those points.

Knowing whether a function is convex or not is useful in several ways. First, if a function is convex
over its entire domain, then any local minimum is a global minimum. Second, if a function is known
to be convex over its entire domain, then one can apply specialized algorithms such as the level method
(Nesterov 2004) for minimization. Third, one could employ a convexity test to attempt to identify “basins
of attraction” around local minima in which the function is convex. Since the function, restricted to such
a basin, is convex, one might then apply specialized techniques to obtain estimates of, or bounds on,
(local) optimality gaps through a gradient-based cutting plane procedure similar to that developed in Glynn
and Infanger (2013) for stochastic linear programs. Such estimates or bounds can then be used to define
stopping rules for optimization algorithms. Fourth, convexity can suggest important qualitative properties,
such as risk-averse or risk-seeking agent behavior (Abrevaya and Jiang 2005).

There is a vast body of literature on detecting the convexity of a function, thus we only discuss a
few methods here. Suppose we frame the problem of detecting convexity into a hypothesis test. Then the
literature can be divided into three categories based on how the null hypothesis is defined. In the first
category, the null and alternative hypotheses are:

H0 : f ∈ G v.s. Ha : f /∈ G, (1)

where f is the function that we are interested in and G is a functional cone of all convex functions. In
single dimension, Juditsky and Nemirovski (2002) use a nonparametric approach and focus on the case
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where the noise is modeled as a Gaussian process. They employ the technique of estimating functionals
and use the Lr distance between f and G as the test statistic.

The second category defines the null and alternative hypotheses as

H0 : fff ∈ C v.s. Ha : fff /∈ C, (2)

where fff is the vector of function values on a finite set of points, and C is some appropriately-defined
cone of convex functions on the finite sample points. Assuming the noise follows a multivariate Normal
distribution, Silvapulle and Sen (2001) describe a test that uses the projected distance of fff from C as
the test statistic in a likelihood-ratio test of (2), and show that the test statistic follows a Chi-bar-square
distribution whose parameters can be evaluated through simulation.

The third and most common category of literature focuses on testing structural properties by testing
properties of regression estimators. In single dimension and under certain regularity conditions, Baraud,
Huet, and Laurent (2005) show that a hypothesis test on a regression estimator is equivalent to the hypothesis
test (2), where C is appropriately defined. Diack and Thomas-Agnan (1998), Wang and Meyer (2011) and
Meyer (2012), use cubic regression splines to fit the observed samples and test if the model is convex based
on the second-order derivative at knots. In multiple dimensions, Lau (1978) uses a parametric second order
model to approximate the function and tests the convexity based on the model parameters. Lau (1978) also
provides a useful survey of the early literature. For a small and localized set of data points, Abrevaya and
Jiang (2005) define a simplex test statistic that counts all the possible convex and concave simplexes in
the data points. Aside from the literature on convexity tests, a closely related field is convex regression,
in which one fits a convex function to a given data set. There is also a vast body of literature on this topic
(e.g. Judge and Takayama 1966, Allon et al. 2007, Seijo and Sen 2010, Hannah and Dunson 2011, Lim
and Glynn 2012), among which Seijo and Sen (2010) provide a review of past work.

The work on testing (2), developed in the statistics and economics literature, mostly applies to the
context where the number of samples is predetermined and fixed. However in our simulation context,
we have the ability to draw samples sequentially, and thus choosing a sample size in advance may be
undesirable: if the sample size at each sampled point is too small, then the test may fail to reject the null
hypothesis and draws no conclusion. On the other hand, choosing a large sample size a priori could be
expensive in both sampling cost and computational time. Hence, we wish to derive a sequential procedure
that iteratively obtains samples of the function value at a fixed set of points until we are confident enough
to conclude whether the function, restricted to those points, is convex or not. A frequentist sequential test
based on the results in Silvapulle and Sen (2001) might be designed (Siegmund 1985), although determining
the stopping region may prove to be challenging.

In this paper we use a Bayesian approach, providing a sequential procedure to estimate the posterior
probability that the function, restricted to a finite set, is convex. Since we only ever evaluate the function at
a finite set of points, we can never conclude that the function on its continuous domain is convex; the best
we can hope for with our methods is to assert that with high probability there is a convex function consistent
with the function values on the finite set of points we have tested, or to assert with high probability that the
function is not convex. In a Bayesian setting, we always regard the function values at a finite set of points
as a random vector, and we maintain a belief about its distribution. As we collect more information about
the unknown function, a posterior distribution on the random vector is updated and used as a prior for later
sampling. At any stage we can estimate the posterior probability that the function, restricted to the finite
set of points, is convex using Monte Carlo. In this way, the Bayesian framework gives us a natural way
to utilize the information from sequential sampling. Using standard Monte Carlo can be computationally
burdensome, because at each generated point we need to solve a linear feasibility problem. We show how
to re-use past samples using a change-of-measure technique that ensures that the resulting estimator of the
posterior probability of convexity is unbiased.

The structure of this paper is as follows. Section 2 describes the problem more precisely. Sections 3
and 4 give preliminary details on updating the Bayesian posterior and testing for convexity. Section 5
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contains the main algorithm, and Section 6 presents the change-of-measure technique. We provide some
initial numerical results in Sections 7 and discuss them in Section 8.

In this paper, AT denotes the transpose of the matrix A. For a set S, S◦ denotes its interior. We use⇒
for convergence in distribution. Let 1{·} denote an indicator function that takes the value of 1 if event {·}
is true and 0 otherwise.

2 PROBLEM STATEMENT, ASSUMPTIONS, AND NOTATION

Consider a (deterministic) function g : S→R where S⊆Rd . We are given a set of points xxx = {xxx1,xxx2, . . . ,xxxr}
at which we can obtain noisy estimates of g, where each xxxi ∈ S◦. The number of points, r, is finite
and fixed. Let the (deterministic) vector of function values associated with the points in xxx be denoted
ggg = (g(xxx1),g(xxx2), . . . ,g(xxxr))∈Rr. We want to determine whether or not ggg∈C, where C=C(xxx1,xxx2, . . . ,xxxr)
is a set in Rr representing the set of convex functions evaluated on xxx. (We define C precisely in Section 4.)
A vector yyy ∈C if and only if there exists a convex function that goes through points (xxxi,yyyi), i = 1,2, . . . ,r.
We say that the vector of function values yyy is “convex” if yyy ∈C. Also, let C◦ be the set of strictly convex
functions evaluated on xxx. We say yyy is “strictly convex” if yyy ∈ C◦.

In our Bayesian setting, ggg is viewed as an unknown realization from the (prior) distribution of a random
vector fff . When we say we obtain noisy estimates of ggg on xxx, we mean that we obtain realizations of a
random, r-by-1 vector YYY = fff +ξξξ , where ξξξ ∈Rr is random and represents the noise in function evaluations.
Let Yi j be a random variable representing the jth (noisy) function evaluation at xxxi, for i = 1,2, . . . ,r and
j = 1,2, . . ., and denote a realization of Yi j by yi j.

We make the following assumptions:

1. Conditional on fff , the noise ξξξ is normally distributed with mean 000 and covariance matrix Γ, i.e.,
YYY −−− fff ∼ N(000,Γ).

2. Conditional on fff , the sequence (yyy j : j = 1,2, . . .) consists of i.i.d. random vectors, where yyy j denotes
the r-by-1 vector giving the samples (Yi j : i = 1,2, . . . ,r) obtained at the jth stage of sampling.

Assumption 1 ensures that the observed noise is Gaussian. Assumption 2 ensures that the set of
samples obtained for different iterations j are conditionally independent of one another. Importantly, this
assumption does not require conditionally independent sampling across the points xxxi, i = 1,2, . . . ,r. Thus
Γ is not necessarily diagonal. In fact, Common Random Numbers (CRN) should probably be used to
attempt to induce positive correlation amongst the function value estimates at each i, thereby reducing the
variability in the estimated overall function “shape” (Chen, Ankenman, and Nelson 2012).

Let A0 denote the σ -field generated by {xxx1,xxx2, . . . ,xxxr,µ0,Λ0}, where µ0 and Λ0 represent our prior
belief of the mean and covariance of fff . (We allow the points xxx to be random perhaps because they are
sampled in some preliminary study, but from our perspective they are deterministic and hence included
in A0.) Denote the σ -field generated by A0, together with the set of all collected data points to iteration
n, {(xxxi,Yi j), i = 1, . . . ,r, j = 1, . . . ,n}, n = 1,2, . . .) by An. Thus, {An}n=1,2,... defines a filtration, and An
represents the information we have collected up to and including iteration n.

We will successively update the prior distribution, obtaining a posterior distribution that represents our
belief about the function ggg. In particular, we will be interested in computing P( fff ∈ C|An), which is the
posterior probability that fff is convex, i.e., our belief that ggg is convex.

3 POSTERIOR UPDATES

We use a conjugate prior, which ensures that the posterior is easily computed, whether or not the sampling
covariance matrix Γ is known. The updates given in this section are standard see, e.g., DeGroot (1970),
Gelman et al. (2003), Bernardo and Smith (2008).
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3.1 Conjugate Prior under Known Sampling Variance

Our (initial) prior belief on the function values is fff |A0 ∼ N(µ0,Λ0), where µ0 ∈Rr and Λ0 ∈Rr×r. When
we have little or no prior information on fff we adopt a non-informative prior by choosing µ0 to be a
constant and Λ0 to be a diagonal matrix with huge diagonal values relative to the sampling variance, i.e.
the diagonal of Γ. Other methods that carefully elicit a more informative prior are possible.

Recall that we assumed YYY − fff to be multivariate normal with mean 000 and covariance matrix Γ, where
000 is an r× 1 vector of all zeros. If the sampling covariance matrix Γ is known, then our normal prior
is conjugate. For the nth iteration we have prior belief fff |An−1 ∼ N(µn−1,Λn−1) and obtain s samples
(yyy j, j = 1,2, . . . ,s), where each yyy j ∈Rr represents a set of noisy function evaluations at each of the r points.
These samples have likelihood yyy j| fff ∼ i.i.d N( fff ,Γ), j = 1,2, . . . ,s. The posterior distribution is

fff |An ∼ N(µn,Λn).

The parameters are updated by

Λ
−1
n = Λ

−1
n−1 + sΓ

−1

µn = Λn(Λ
−1
n−1µn−1 + sΓ

−1ȳyy), (3)

where ȳyy is the sample mean s−1
∑

s
j=1 yyy j. If only one new set of samples yyy is generated at iteration n, then

s = 1 and ȳyy = yyy. Although one can allow s > 1, we use s = 1 for this paper.
A careful implementation of the update (3) avoids matrix inversion and employs Cholesky factorization

and/or the Sherman-Woodbury-Morrison formula (Golub and Van Loan 1996), but we omit the details due
to space constraints.

3.2 Conjugate Prior under Unknown Sampling Variance

When the sampling variance Γ is unknown, the conjugate prior for Normal with unknown mean and unknown
covariance is Normal-inverse-Wishart. A common non-informative prior used for this is the Jeffery’s prior,
in which the prior joint density P( fff ,Γ|A0) is proportional to |Γ|−(r+1)/2 (Gelman et al. 2003). We transition
this non-informative prior into the conjugate prior of Normal-inverse-Wishart by an initial sampling stage.
Suppose in the initial stage, we collect a set of samples yyy j ∈ Rr, j = 1,2, . . . ,s of the function values fff
with sample average ȳyy, then the corresponding posterior density is Normal-inverse-Wishart (Gelman et al.
2003):

Γ|A0,yyy∼ Inv-Wishartυ0(Ξ
−1
0 )

fff |Γ,A0,yyy∼ N(µ0,Γ/κ0),
(4)

where

µ0 = ȳyy; κ0 = s; υ0 = s−1; Ξ0 = (
s

∑
j=1

(yyy j− ȳyy)(yyy j− ȳyy)T )−1.

Recall that a random r× r matrix Γ−1 has Wishart distribution with parameters υ and Ξ if the density
function is proportional to |Ξ|υ/2|Γ|−(υ−r−1)/2 exp{−tr(ΞΓ−1)/2}, where tr(·) is the trace of a matrix. The
matrix Γ then follows a Inv-Wishart distribution with the same degrees of freedom υ and parameter Ξ−1.

After the initial sampling stage, we perform the conjugate posterior updates as follows. At iteration
n, with joint prior beliefs Γ|An−1 ∼ Inv-Wishartυn−1(Ξ

−1
n−1), fff |An−1,Γ∼ N(µn−1,Γ/κn−1), and s samples

yyy j ∼ i.i.d N(µ,Γ), j = 1, . . . ,s with each yyy j ∈ Rr, the posterior parameters are (Gelman et al. 2003):

µn =
κn−1

κn−1 + s
µn−1 +

s
κn−1 + s

ȳyy; κn = κn−1 + s; υn = υn−1 + s;

Ξn = Ξn−1 +S+
κn−1s

κn−1 + s
(ȳyy−µn−1)(ȳyy−µn−1)

T ,
(5)
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where S = ∑
s
j=1(yyy j− ȳyy)(yyy j− ȳyy)T . If only one sample yyy is generated in iteration n, then s = 1, and yyy j = ȳyy = yyy

and S = 0. As noted in the previous section, while one can allow s > 1, we use s = 1.
The joint posterior distribution is:

Γ|An ∼ Inv-Wishartυn(Ξ
−1
n )

fff |Γ,An ∼ N(µn,Γ/κn).
(6)

From (6), the marginal distribution of the posterior mean fff |An is

fff |An ∼ t(υn−r+1)(µn,Ξn/(κn(υn− r+1))), (7)

where t(υn−r+1)(µn,Ξn/(κn(υn− r + 1))) is a multidimensional Student-t distribution with (υn− r + 1)
degrees of freedom, location parameter µn, and scale matrix Ξn/(κn(υn− r+1)). The density function of
fff |An is proportional to |Ξn/(κn(υn− r+1))|−1/2{1+( fff −µn)

T [Ξn/(κn(υn− r+1))]−1( fff −µn)}−(υ+1)/2

(Gelman et al. 2003).
The Wishart distribution is the chi-squared distribution generalized to higher dimensions. Thus, random

matrices with the Wishart distribution can be generated by summing the “squares” of multivariate normal
random vectors. Recall that Γ−1 ∼ Wishartυ(Ξ) if and only if Γ ∼ Inv-Wishartυ(Ξ−1). To simulate
Γ−1 ∼Wishartυ(Ξ), one can simulate υ independent random vectors W1, . . . ,Wυ from the (r-dimensional)
multivariate N(0,Ξ) distribution, then set Γ = ∑

υ
i=1WiW T

i . This works as long as υ ≥ r, where r is the
dimension of Ξ, which equals the number of sampled points in our problem.

4 CONVEXITY

Recall that for a function g : Rd→R, we say that the vector of function values ggg = (g(xxx1),g(xxx2), . . . ,g(xxxr))
is convex if and only if there is a convex function on the continuous domain that takes these values at the
points in xxx. This happens if and only if ggg lies in a certain convex closed polyhedral cone C. We define
this cone indirectly through the following equivalent condition; see p. 539 of Murty (1988) and Atlason,
Epelman, and Henderson (2004): the vector ggg is convex if and only if we can fit a supporting hyperplane
aaaT

i xxxi +bi at each point (xxxi,g(xxxi)) such that the hyperplane lies below all other points ((xxx j,g(xxx j)) : j 6= i).
In other words, ggg ∈ C if and only if all of the r linear systems (indexed by i = 1,2, . . . ,r)

aaaT
i xxxi +bi = g(xxxi)

aaaT
i xxx j +bi ≤ g(xxx j), for all j 6= i and j ∈ {1, . . . ,r}.

(LS(i))

are feasible in the variables aaai ∈ Rd and bi ∈ R.
The posterior probability P( fff ∈C|An) that fff is convex is the probability that a random vector falls into

a convex cone, which may be difficult to compute exactly. However, we can approximate this probability
using Monte Carlo simulation. We simulate m random vectors {yyy1,yyy2, . . . ,yyym} from the posterior distribution
of fff |An. For each k = 1,2, . . . ,m, we then set g(xxxi) = yyyk(i) for each i = 1,2, . . . ,r in turn and determine
whether the systems (LS(i)) are feasible for all i = 1,2, . . . ,r or not. The proportion of yyyk’s for which all
the systems are feasible is then our Monte-Carlo estimate of the desired posterior probability.

5 SEQUENTIAL ALGORITHM

The general idea of our sequential algorithm is as follows. At the beginning of each iteration of the method,
we have a prior belief of the function values at xxx1,xxx2, . . . ,xxxr that comes from the information gathered so
far. During the iteration, we obtain a set of new samples of the function values at these points using CRN
and update the prior to a posterior distribution on the function values. Then we estimate the probability
that the function is convex based on this posterior distribution using Monte Carlo, and decide whether to
proceed to the next iteration. If another iteration is needed, the posterior will become our prior belief for
the next iteration. In this section we present the detailed algorithmic form for this general idea, and show
the asymptotic validity of our algorithm.

3896



Jian, Henderson, and Hunter

5.1 Main Algorithm

Algorithm 1 A sequential method for testing for convexity of the function

Require: Prior mean µ0 and variance Λ0 of the function values at xxx1,xxx2, . . . ,xxxr. Maximum number of
iterations N.

1: Initialize n = 1.
2: while n≤ N do
3: Obtain a new set of samples yyyn at xxx1,xxx2, . . . ,xxxr.
4: Update the posterior distribution of fff |An from the new samples yyyn using fff |An−1 as the prior.
5: Estimate pn = P( fff ∈ C|An) from the distribution of fff |An obtaining a confidence interval

[p̂n−hn, p̂n +hn] by Algorithm 2.
6: Set n = n+1.
7: end while
8: return A confidence interval [p̂N−hN , p̂N +hN ] of p from the last step.

In Step 4, when Γ is known, the posterior distribution of fff |An is multivariate normal, and its parameters
are updated using (3); otherwise, the joint posterior distribution is normal-inverse-Wishart, and its parameters
are updated using (5). For the estimation in Step 5, the Monte Carlo algorithm described in the previous
section can be employed. A more detailed description is given in Section 5.3. We give a computationally
more efficient method in Section 6. This algorithm loops through iterations until the runlength N is achieved,
but one can stop after any number of iterations n with an interval estimate of P( fff ∈ C|An).

5.2 Asymptotic Validity

We would like the posterior probability of convexity to converge to 1 in the event that the realized value
of fff from the prior distribution is convex, and to converge to 0 when it is nonconvex. In the “knife-edge”
case where the realized value of fff is convex but not strictly convex, we cannot hope for convergence to 0
or 1 because the realized value of fff lies on the boundary of C. We establish this convergence in the case
where the sampling covariance matrix Γ is known in Theorem 1 below. We conjecture that convergence
also holds in the unknown sampling case.
Theorem 1 Assume Γ is known and positive definite. Let pn = P( fff ∈C|An) be the n-iteration posterior
probability that fff is convex as in Algorithm 1. As the number of iterations n→∞, pn−1{ fff ∈C}→ 0 a.s.

Proof. (Sketch.) We use the fact that Λ
−1/2
n (µn− fff )⇒ N(0, I) as n→ ∞, along with the fact that Λn is

asymptotically Γ/n to conclude that µn− fff → 0 in probabilty as n→ ∞. Conditional on An, the posterior
probability, pn, is the probability that a normal random vector with mean µn and covariance Λn is contained
in C. The probability that fff is on the boundary of the convex cone C is 0, so it suffices to consider the
two cases fff ∈C◦ and fff /∈C. In the first case, the normal random vector is eventually mostly concentrated
in a ball around µn that is wholly contained in C, and so pn→ 1 in probability as n→ ∞. In the second
case, fff can be strictly separated from C and since the normal distribution eventually concentrates outside
C, pn→ 0 as n→ ∞ in probability. Since (pn : n ≥ 0) is a uniformly integrable martingale, it converges
almost surely, and hence the almost-sure limit is 1{ fff ∈C}.

5.3 Algorithm for Convexity Test

We can use the following method for estimating pn = P( fff ∈ C|An). The method generates m samples of
the function based on the current posterior belief and approximates the probability using the Monte-Carlo
method.
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Algorithm 2 Method for obtaining an estimation p̂n to pn = P( fff ∈ C|An).

Require: Posterior distribution of fff |An obtained from Algorithm 1; Number of Monte Carlo samples m
allowed.
Initialize an m×1 array In = [I1

n , I
2
n , . . . , I

m
n ] = [1, . . . ,1].

2: for k = 1, . . . ,m do
Generate an r×1 Normal random vector yyyn = (yn(xxx1),yn(xxx2), . . . ,yn(xxxr))

T from the distribution of
fff |An.

4: for i = 1, . . . ,r do
Solve the feasibility problem (LS(i)) with g(xxx j) = yn(xxx j), j = 1,2, . . . ,r.

6: if LS(i) is infeasible then
Ik
n = 1{yyyn ∈ C}= 0;

8: BREAK the inner loop and go to next k.
end if

10: end for
end for

12: Calculate the mean pm
n and standard deviation sm

n of In.
return p̂n = pm

n as an estimator of P( fff ∈ C|An), along with the half-width hn = 1.96∗ sm
n√
m of a 95%

confidence interval.

Step 5 of Algorithm 2 can be achieved using a linear program solver. We also present the following
corollary regarding the convergence of the estimator of the probability that fff is convex. The proof is
omitted due to space limitations.
Corollary 2 Assume Γ is known and positive definite. Let pm

n be the m-sample estimator of P( fff ∈C|An)
from Algorithm 2. As the number of iterations of Algorithm 1 n→ ∞ and the number of Monte Carlo
samples in Algorithm 2 m→ ∞, pm

n −1{ fff ∈ C}→ 0 in probability.

6 CHANGE OF MEASURE

In Algorithm 2, the probability that fff is convex is estimated by solving up to m feasibility problems LS(i),
which is more computationally expensive than the Bayesian updates. Here we introduce a change-of-
measure idea to avoid generating new samples from the posterior and solving the linear systems every time
we update the posterior.

Suppose for iteration n, with inputs µn, Λn, and m, Algorithm 2 generates m i.i.d. samples {YYY k
n : k =

1,2, . . . ,m} of YYY n ∼ N(µn,Λn), giving {Ik
n = 1{YYY k

n ∈ C} : k = 1,2, . . . ,m} after solving the m feasibility
problems. Then, at iteration n+ `, for `≥ 0, pn+` = P( fff ∈C|An+`) can be estimated by a sample average
of iid replicates of p̂n+` = 1{YYY n ∈ C}Ln, where the likelihood ratio Ln is a ratio of normal densities with
parameters µn+`,Λn+` (numerator) and µn,Λn (denominator). In other words, we can re-use the m samples
from N(µn,Λn), thereby avoiding solving m new feasibility problems. Such an estimator has finite variance
in the case where Γ is known, as we show in Theorem 3 below. We conjecture that this is also true for the
unknown Γ case.

Given this result, one might be tempted to simply generate a single sample at the outset of Algorithm 1,
and re-use that sample from then on in every iteration. While such an estimator does have finite variance,
it is likely that the variance grows as ` increases, so we recommend instead that this estimator be used
only for small `, say `≤ 5. (We are exploring the quality of the estimators as a function of `.)
Theorem 3 Suppose Γ is known and positive definite. Then the estimator p̂n+` of pn+` = P( fff ∈C|An+`)
is unbiased and has finite variance.
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Proof. The conditional distribution of fff , conditional on An, which we write as fff |An, is multivariate
normal for any n, and so fff |An is absolutely continuous with respect to fff |An+`. It immediately follows
that E(p̂n+`|An+`) = pn+`, so p̂n+` is unbiased. It remains to show that E(p̂2

n+`|An+`) < ∞, so that the
estimator has finite second moment and hence variance.

Since Γ is known, we have Λ−1
n = Λ

−1
0 +nΓ−1 for every n from (3). Hence, assuming YYY is sampled

from N(µn,Λn),

E(p̂2
n+`|An+`) = E(1{YYY ∈ C}L2

n|An+`)

=
|Λn|r

|Λn+`|r
E(1{YYY ∈ C}exp{−[(YYY −µn+`)

T (Λ−1
0 +(n+ `)Γ−1)(YYY −µn+`)

− (YYY −µn)
T (Λ−1

0 +nΓ
−1)(YYY −µn)]}|An+`)

=
|Λn|r

|Λn+`|r
E
(
1{YYY ∈ C}eφ(YYY )|An+`

)
,

where we define φ(YYY ) implicitly in the last step. Thus if we can show E[eφ(YYY )|An+`]< ∞, then the proof
is complete. To that end,

φ(YYY ) =−(YYY −µn+`)
T

Λ
−1
0 (YYY −µn+`)− (n+ `)(YYY −µn+`)

T
Γ
−1(YYY −µn+`)

+(YYY −µn)
T

Λ
−1
0 (YYY −µn)+n(YYY −µn)

T
Γ
−1(YYY −µn)

=−`YYY T
Γ
−1YYY +aT

n YYY + cn,

for some an ∈ Rr and cn ∈ R that can be expressed in terms of Λ0,Γ,µn,µn+`. Hence an and cn can be
treated as constant when we condition on An+`. It immediately follows that φ(·) is bounded above, by M
say, where M is a random variable that is measurable with respect to An+`, because the bound above is a
negative-definite quadratic function. Hence 0≤ eφ(YYY ) ≤ eM and so E[eφ(YYY )|An+`]< ∞.

7 NUMERICAL RESULTS

We implemented Algorithms 1 and 2 in Matlab and tested them on strictly convex, strictly concave, and
linear functions. For each case, we observed the behavior of the estimated P( fff ∈C|An) and its confidence
interval as n grows.

For functions in dimension d, we sample r = 2d + 1 points in space. The choice of r is somewhat
arbitrary, at least at this stage in our work, although we must have r > d+1, since a linear function fits any
set of up to d+1 points. The sampled points are generated by Latin Hypercube Sampling to ensure that the
samples are evenly spread in each dimension. Again, this is a somewhat arbitrary choice and something
that requires further work. As the sampling variance is usually unknown in practice, all of the following
tests are based on the normal-inverse-Wishart updates with a non-informative prior. When the number of
iterations of Algorithm 1 grows large, we use the change-of-measure method to reduce the computation.
The Matlab linear program solver linprog() is used to solve the problems LS(i) in Algorithm 2.

7.1 Strictly Convex and Concave Functions

Consider the squared norm function g1(xxx) = ‖xxx‖2 = ∑
d
i=1 xxx(i)2,xxx ∈ [−1,1]d that is strictly convex. We let

d = 30 and use a (symmetric) sampling covariance matrix that has independent U(0,1) off-diagonal entries
and 104 on the diagonal. The number of Monte Carlo samples in each iteration generated by Algorithm 2
is set to m = 100. Note that m controls a major part of the computational time since it is the number of
feasibility problems we need to solve in each iteration of the posterior update.

In one realization of this example with design points chosen by Latin Hypercube sampling, it appears
that Algorithm 1 and Algorithm 2 behave well. The trajectory of pm

n is given in Figure 1. The solid line
gives the estimator and the dashed lines are the upper and lower 95% confidence bounds for P( fff ∈C|An).
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We can see that the confidence interval becomes 1±0 after 30 iterations. (Of course, for sufficiently large
m the estimator will never exactly equal 1 since pn < 1 for all n, but for modest m the estimator can indeed
exactly equal 1.) The computational time for this experiment is 1307 seconds.
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Figure 1: The probability estimation within 30 iterations for a 30-dimensional squared norm function.

Now with the same level of noise, consider the function g2(xxx) =−g1(xxx) that is strictly concave. We
found that Algorithm 2 sometimes converges erroneously to 1 when the r = 2d + 1 randomly sampled
points xxx happen to be the vertices of their convex hull. In this case, connecting the points (xxxi,g2(xxxi)) forms
a convex polytope, whose faces lie on the hyperplanes that are defined by (aaai,bi) feasible to LS(i). If
we increase the number of sampled points, the chance of this happening can be reduced. Figure 2 shows
an example in dimension d = 10 with r = 100 sampled points where pm

n slowly converges to 0 after 100
iterations. An alternative way is to ensure that at least one point is sampled in the interior of the convex hull
of the exisiting points. For example, in Figure 3, we subsequently added the origin xxxr+1 = 000 to the set of
sampled points xxx and re-ran the algorithm with the same stream of random numbers. The resulting graph is
given in Figure 3. With the new set of sampled points, our algorithm was able to detect the structure more
easily. The test took only 20 iterations to converge and required only r = 2d +2 = 22 points, which is a
significant saving in computational effort. With this improvement, further research is needed to determine
other appropriate sampling methods and the associated sampling quantity.
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Figure 2: The estimation with increased sample size.
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Figure 3: The estimation with origin sampled.

7.2 A Linear Function

We now test our algorithm on g(xxx) = 0,xxx ∈ [−1,1]d , d = 2, with noise N(000,Γ) where Γ is equal to 4 on the
diagonal and uniform between 0 and 1 off the diagonal. This function is convex, but it lies on the boundary
of the cone C, and therefore we cannot expect the posterior probability of convexity to converge to 0 or 1.
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In this example, our algorithm is inconclusive, as shown by the trajectory of pm
n in Figure 4. This result is

consistent with the notion that a linear function is the least favorable configuration in a convexity test.
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Figure 4: The probability estimation for a 2-dimensional linear function.

7.3 A Function of Unknown Structure

We also test our algorithm on a function with unknown structure — a modified version of the Ambulance
Bases problem from SimOpt (Pasupathy and Henderson 2007). In this problem there is a single ambulance
in the unit square [0,1]2. Calls arrive independently according to a Poisson process at a random location
that follows a density function that is independent of the arrival time. For each call, the ambulance travels
at a constant rate to the call and spends a gamma distributed scene time at the call location. The ambulance
responds to the calls in FIFO order. The objective of this problem is to choose the base location of the
ambulance such that the long-run average response time is minimized. The more detailed problem statement
and suggested parameter values can be found at the SimOpt website.

We chose 5 points randomly in [0,1]2 and ran the algorithm for n = 50 iterations, with m = 100 Monte
Carlo samples within each iteration. The resulting confidence interval for P( fff ∈C|A50) is 1±0. Figure 5
shows the posterior mean µn after n = 50 iterations. It can be seen that the estimated function values at the
6 sampled points form a convex basin. This suggests that a good guess for a local minimizer lies inside
the convex hull of these 6 sampled points, and would probably be near the sample point (0.50,0.50).
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Figure 5: The posterior expected response time as a function of the location of the base.
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8 DISCUSSION

The numerical experiments reported in the previous section provide some interesting observations. First,
the choice of sampling points xxx at which to observe the function value plays an important role. In our
experiment on the function g2(·) = −‖xxx‖2, it is clear that sampling at the origin and a few points away
from the origin is the best strategy for detection of nonconvexity. However, when the function is unknown,
as is typical, our algorithm may provide the wrong conclusion when the function values at the sampled
points do not reflect the structure well. This observation suggests that we should improve our sequential
method to accommodate a “poor” selection of sampled points. For example, we might dynamically expand
the set xxx of sampling points based on what we observe in the iterations.

Second, the number of points in the set xxx affects the result of the test. As we add more points, the
distance between points shrinks, and on smaller length scales even strongly convex functions can appear
to be approximately linear. In such a situation, if the sampling variance is sufficiently large relative to the
“signal” we are trying to detect, we might struggle to detect convexity. Therefore we might need to choose
a modest number of points wisely to obtain an accurate result.

Third, linear functions are the least favorable configuration in the test, and in that case the resulting
estimated probability oscillates. This is not surprising because as our function gets closer to linear, or
more generally close to the boundary of the cone C, any small fluctuation in the function values at each
point can easily change the feasibility of LS(i). To help deal with near-linear functions, in future we might
attempt to modify the feasibility problems LS(i) to output a “distance” of the input function values to the
boundary of the convex cone C instead of just a 0-1 indicator.

Finally, given that computing an estimator of the posterior probability of convexity is the computational
bottleneck in our procedure, it is worth searching for more efficient approaches to estimate this probability
beyond the change-of-measure approach given here.
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