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ABSTRACT 

Simulation models of different fidelity levels are often available for a complex system. High-fidelity 
simulations are accurate but time-consuming. Therefore, they can only be applied to a small number of 
solutions. Low-fidelity simulations are faster and can evaluate a large number of solutions. But their 
results may contain significant bias and variability. We propose an Multi-fidelity Optimization with 
Ordinal Transformation and Optimal Sampling (MO2TOS) framework to exploit the benefits of high- and 
low-fidelity simulations to efficiently identify a (near) optimal solution. MO2TOS uses low-fidelity 
simulations for all solutions and then assigns a fixed budget of high-fidelity simulations to solutions based 
on low-fidelity simulation results. We show the benefits of MO2TOS via theoretical analysis and 
numerical experiments with deterministic simulations and stochastic simulations where noise is negligible 
with sufficient replications. We compare MO2TOS to Equal Allocation (EA) and Optimal Computing 
Budget Allocation (OCBA). MO2TOS  consistently outperforms both EA and OCBA. 

1 INTRODUCTION 

Simulation models have been increasingly used to find optimal or near optimal solutions for complex 
systems that are intractable to traditional analytical methods. Examples include finding the optimal 
production schedule in a manufacturing system via running a simulation model to estimate the 
performance (e.g., throughput) of alternative production plans (Hsieh, Chen, and Chang 2007; Li and Yu 
2007; Rausch and Liao 2010; Schwartz, Wang, and Rivera 2006; Subulan and Cakmakci 2012; Villarreal 
et al. 2013). Such method is often referred to as simulation-based optimization or simply simulation 
optimization (Chen and Lee 2011; Lee et al. 2010). There are often multiple simulation models with 
different fidelity levels for the same system under study. High-fidelity simulation models can accurately 
predict the performance of a solution. But the simulation has high computation cost and can be very time-
consuming. As a result, only a small number of candidate solutions can be evaluated via high-fidelity 
simulations in the simulation optimization process. Low-fidelity simulation models are much faster, but 
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simulation results are much less reliable, possibly with significant bias and variability. In this paper, we 
propose a novel framework MO2TOS (Multi-fidelity Optimization with Ordinal Transformation & 
Optimal Sampling) to effectively exploit the benefits of high- and low-fidelity simulations and improve 
the efficiency of simulation optimization.     
 While the actual values of low-fidelity simulations can be very different from the “true” values, i.e., 
significant biases may exist, “good” low-fidelity models can often correctly determine the relative order 
among solutions in terms of their performance. This is because many low-fidelity simulation models are 
built by some reasonable abstractions and simplifications of the underlying physical processes. The 
MO2TOS framework builds on this property and employ an Ordinal Transformation (OT) approach to use 
low-fidelity simulations to estimate the relative orders of all solutions. Then the original decision space is 
transformed into a new one-dimensional space. To see the benefit of such a transformation, recall that the 
original solution space can be high-dimensional, have multiple locally optimal solutions spread far apart, 
and include a mix of continuous, discrete, and categorical variables. After OT, the new solution space is 
one-dimensional, display some trend (depending on how the transformation is done), and greatly 
simplifies further optimization using just a small number of high-fidelity simulations.  
 In this paper, we propose to partition solutions in the transformed space into groups based on their 
ranks in the transformed space. Compared to other ways of partitioning the original solution space, our 
approach can place solutions with similar performance into one group, which might be far apart from 
each other in the original solution space. As a result, the variability of solution quality within a group, 
which we refer to as group variance in the rest of the paper, can be reduced significantly. Furthermore, 
these groups are also more separable, i.e., the differences in quality between solutions in different groups 
tend to be larger than other partitioning schemes in the original solution space. We will measure this 
difference using the average performance of solutions in a group and refer to it as group distance in the 
following.  
  The MO2TOS framework employs an Optimal Sampling (OS) approach to select solutions in the 
transformed one-dimensional space for evaluations using the high-fidelity model. The OS step is critical 
to the actual performance of MO2TOS. This is because the bias in low-fidelity models is unknown and 
can be quite large. As a result, it is important to sample both broadly and efficiently. In this paper, we 
propose a sampling approach that works with the groups of solutions formed after the OT step. As we 
shall demonstrate later, because OT forms groups that have smaller group variance and larger group 
distances, the OS approach can work more efficiently than in the original solution space without OT.    
 There has been related work on the optimization of complex systems with multi-fidelity simulations. 
The Multi-Fidelity Sequential Kriging Optimization (MFSKO) procedure constructs kriging models to 
approximate the difference in simulation output between models of consecutive fidelity levels (Huang et 
al. 2006). MFSKO then sequentially determines the next solution to simulate and the level of fidelity for 
that simulation with an objective to maximize the expected improvement. The Value-based Global 
Optimization (VGO) procedure has a similar spirit, although there are some significant technical 
differences in how kriging models are used in determining the next solution to simulate and the fidelity 
level (Moore 2012). March and Willcox (2012) used a radial basis function (RBF) interpolation to create 
a surrogate model of the high-fidelity simulation model in the neighborhood of a trust region.  
 All these methods essentially create a surrogate model using an interpolation method (kriging, RBF, 
or polynomial) to correct the bias of the low-fidelity model and perform the optimization using the 
“corrected” low-fidelity model. While they have been shown to work reasonably well on a number of 
engineering design problems, the performance of these methods depends critically on the quality and 
applicability of the interpolation method. It is well known that interpolation methods such as kriging and 
RBF would require a large number of design points to perform well when the underlying response surface 
is highly nonlinear and multimodal, and/or the dimension of the solution space is high. In many complex 
system design problems, there are a mix of continuous, discrete, and categorical decision variables. This 
would present additional challenges to these interpolation methods.  
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 In comparison, MO2TOS is a very general and flexible framework and has the following important 
advantages: 1) MO2TOS handle a mix of continuous (through discretization), discrete, and categorical 
decision variables in a high-dimensional solution space; 2) MO2TOS is a general framework and is not 
restricted to any specific interpolation technique such as kriging; and 3) MO2TOS is amenable to different 
implementations that offer useful tradeoffs between performance and ease-of-use. 
 The rest of the paper is organized as follows. In Section 2, we illustrate the principles and benefits of 
MO2TOS using a machine application example in the context of semiconductor manufacturing. In Section 
3, we present a mathematical model and analysis to show the benefits of OT and derive a specific OS 
strategy. We also present a simulation optimization algorithm under the general MO2TOS framework in 
Section 3. Section 4 presents preliminary numerical results. We conclude the paper and point out future 
research directions in Section 5. 

2 AN ILLUSTRATIVE EXAMPLE  

We use a flexible semiconductor manufacturing system as an example to illustrate the basic principles 
and potential benefits of MO2TOS. There are two types of products and five work stations. Each product 
type has a processing sequence and needs to re-enter some work stations multiple times. Each station has 
multiple machines. Inter-arrival and service times are all independent, identical, and normally distributed 
(truncated between zero and infinity). Figure 1 shows the flow of jobs through this manufacturing system. 
When more than one type of products are waiting for the same machine, product 1 has higher priority 
over product 2. The machine can perform serial batches with two same products to save the setup time. 
The re-entrant process flow and the non-exponential inter-arrival and service times make simulation 
necessary. We need to determine the number of machines in each machine group. The objective is to 
minimize the average production time. The total number of machines in the system is 37 and the number 
of machines in each work station must be between 5 and 10. So the optimization problem has five integer 
decision variables and a total of 780 feasible solutions. 

 

Figure 1: A reentrant semiconductor manufacturing system with two product types. 

 A high-fidelity model is a discrete-event simulation model that fully captures the reentrant and 
batching aspects of the system. One possible low-fidelity simulation model can be obtained by assuming 
that all inter-arrival and service times are exponentially distributed and estimating the average production 
time using M/M/c equations. Obviously, computing these closed-form equations are faster. But the 
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simplification may lead to significant bias in final results. We use the M/M/c queuing equations as the 
low-fidelity model to estimate the production time for all 780 alternative solutions. We run a large 
number of simulations to obtain very reliable estimates of the performance of a solution according to the 
high-fidelity model.  
 In Figure 2(a), we plot high-fidelity model results. Because this is a 5-dimensional problem, we 
cannot draw the results in the original 5-dimensional space. Instead, we indexed solutions based on their 
positions in the original space and then placed them on one axis using the indices. This represents one 
possible way to partition the original solution space. We then show in Figure 2(b) both the low- fidelity 
(the blue curve above) and the high-fidelity (the red curve below) simulation estimates of all 780 
solutions after OT. The horizontal axis gives the rank of a solution as determined by the low-fidelity 
model. The left side represents solutions that are ranked to be better.    

From Figure 2, it is quite remarkable that despite the big bias in low-fidelity results, the relative order 
among solutions is actually quite accurate, which is shown by the roughly monotonic trend in the high-
fidelity model result curve. Figure 2 also compares the drastically different groups that could be formed. 
It is quite obvious that we can partition solutions in Figure 2(b) into three groups, as shown in the figure. 
Solutions within the left and the middle groups have quite similar performance and thus these two groups 
have quite small group variance. While the right group shows substantial variability, it is less a problem 
because these three groups have large group distances and we can safely sample within the left and 
middle groups to search for the optimal solution. In comparison, the partition in Figure 2(a) would only 
lead to groups with high group variance and very small group distances. Therefore,  a sampling strategy 
would have to keep sampling from all three groups.  

 

           

Figure 2: (a) left: High-fidelity simulation results plotted in the original solution space;  and (b) right: 
Low- and high-fidelity simulation results after OT. 

For this particular example, the low-fidelity model results agree very well with the high-fidelity 
results in terms of ordinal ranking and thus the partition based on the low-fidelity results turns out to be a 
very good one. Based on this partition, one may be tempted to conclude that the middle and right groups 
can be thrown away and sampling should only focus on the left group. In general, we would not know a 
priori whether the partition based on low-fidelity model results alone is good or not. Therefore, it is 
important to design an OS strategy that focuses on more promising groups and at the same time also 
sample other groups to avoid being misled by the unknown bias in the low-fidelity model.   

We summarize the key observations in this illustrative example below: 
 OT allows us to partition solutions into groups with small group variances and large group 

distances, which is very difficult to achieve with any partitioning scheme in the original solution 
space; 

 The small group variances and large group distances allow an OS strategy to efficiently search for 
the optimal solution. 

OT 
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3 MATHEMATICAL MODEL, ANALYSIS, AND ALGORITHM  

In this section, we use a mathematical model to analyze MO2TOS and show its benefits in terms of 
reduced group variances and enlarged group distances in a rigorous manner. We also propose a practical 
two-stage algorithm as a specific implementation of MO2TOS.   

3.1 Ordinal Transformation  

Without loss of generality, we work on a minimization problem. We first introduce our notations below 
 X: an alternative solution; 

 N: the total number of feasible solutions; 

 g(X) / f(X): the result of the low-fidelity/high-fidelity simulation model evaluated at solution X. In this 
paper, we restrict our attention to deterministic cases and will study stochastic simulation models in 
our future work 

 δ(X): the bias of the low-fidelity model at solution X  

We thus have the following equation: 
)()()( XXgXf      (1) 

 The quality of the low-fidelity model has a major impact on the performance of MO2TOS. We 
propose to measure the quality of a low-fidelity model by ρ, the correlation between g(X) and f(X). We 
make the following assumptions on g(X), f(X), and δ(X).  
 
Assumption 1 f(Xi)’s, i=1,2,…,N, are N i.i.d realizations of a random variable with finite variance c2; 
g(Xi)’s, i=1,2,…,N, are N i.i.d realizations of a uniformly distributed random variable; for each solution 
Xi, g(Xi) and δ(Xi) are independent.  
 
Notice that the independence of g(Xi) and δ(Xi) means that the bias in the low-fidelity model is 
independent of solution Xi.  For simplicity, we consider equal group size in this paper and assume we 
form k groups each containing  solutions (for simplicity, we assume N is divisible by k). So the total 
number of solutions is N=kn. As a benchmark, we form equal-size groups in the original solution space 
by random sampling. In comparison, with the OT procedure in the MO2TOS framework, we rank all 
solutions using the low-fidelity model. The solution deemed to be the best by the low-fidelity model 
receives a rank of 1 and the worst receives a rank of N. We then partition solutions into equal size groups 
based on their ranks. For example, if n=100, then the first group includes solutions with ranks 1 to 100, 
and the second group includes solutions with ranks 101 to 200, etc. We want to point out this is an equal-

quantile (of g(X)) partitioning strategy. We use jf  to denote the group mean of group j 
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When the group is formed by i.i.d. sampling n solutions from the original space, group variance is 

simply the variance of f(X), which we will denote as 2))(Var( cXf  . Under Assumption 1, we have 
Theorem 1 on the reduction of group variance described in (2) after OT. 
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Theorem 1: Under equal-size grouping, the group variances after OT are smaller than that of random 
sampling from the original solution space when k≥3 and n≥3. 

  
Proof: Due to space constraint, please see Xu et al. (2014).        
 

We next examine the benefit of OT in terms of increased group distance 
21, jj between two 

neighboring groups after OT. We first formally define group distance as the difference between the 
expected value of the group mean performance  
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We have Theorem 2 on the increased group distance between any two groups after OT.  

 
Theorem 2: Under equal-size grouping, the magnitude of group distance after OT is larger than that of 
random sampling from the original solution space. 

 
Proof: Due to space constraint, please see Xu et al. (2014).        
 
 We plot the percentage of group variance reduction and the increase in group distance after OT as a 
function of ρ for n=5, k=5 in Figure 3. The parameter c is set to 1.  
 

  

Figure 3: (a) left: Percentage of group variance reduction through OT; (b) right: Group distance between 
two neighboring groups. 

3.2 Optimal Sampling 

It is not advisable to only use high-fidelity models to evaluate “top” solutions, or the “best” group 
according to the low-fidelity model after OT. The reason is the unknown and potentially significant bias 
in low-fidelity model. Therefore, it is important to balance using high-fidelity models to closely examine 
groups of solutions that appear to be good according to the low-fidelity model, and to broadly explore 
groups of solutions that appear to be not as attractive. The partitioning of solutions into groups after OT 
has the benefits of reducing group variance and increasing group distances. These two benefits make it 
possible to design an efficient OS strategy that intelligently maintains such balance and improves the 
efficiency of MO2TOS.  
 We have the following theorem on the OS to select the best group (i.e., with the best average group 
performance). We assume that the distribution of f(X) within a group can be approximated by a normal 
distribution with an unknown but constant group mean and variance. The goal is to design an OS strategy 
that optimally allocates the sampling efforts using the high-fidelity model among the groups to maximize 
the probability of correctly selecting the best group, i.e, the group with the largest group mean.  
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 In this paper, we propose to use an OS strategy based on the Optimal Computing Budget Allocation 
(OCBA) (Chen et al. 2000; Chen et al. 2014; Yan, Zhou, and Chen 2012). We state the result in Theorem 
3. The proof of this theorem can be easily adapted from the theorem.  
 
Theorem 3: Assume f(X)’s are independent and normally distributed for all X in a group. Let b be the 
index for the group of solution with the best group mean thus far. Let Nj be the number of high-fidelity 
evaluations allocated to group j, j=1,2,…,k. An approximation of the probability of correctly selecting the 
best group, i.e., the group distance  is asymptotically maximized when  
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From Theorem 3, we see that the larger the group distance between group l and the current observed 

best group b, the smaller the number of high-fidelity evaluations allocated to group l. This is reasonable 

as such a group is unlikely to contain better solutions. However, if the group variance 2
l is larger, group 

j should also receive more high-fidelity evaluations because there is more uncertainty about the 
performance of the solution in this group.  

Equation (6) also illustrates the benefit of the OT step. Compared to using the same OS prior to OT, 

OT typically reduces group variances 2
j  and increases group distances b,i. As a result,  more computing 

budget would be spent on exploring more promising groups rather than reducing uncertainty in each 
group. It is reasonable to expect that the OS strategy will be able to work more efficiently and lead to 
even more savings in computing budget.    

3.3 The MO2TOS Algorithm  

We present a specific implementation of the MO2TOS framework in this section. The total budget for 

high-fidelity simulation is fixed and given a priori. Because we do not know 2
j  and b,i in practice, we 

propose to equally allocate n0 high-fidelity evaluations to all groups at the end of the OT step to obtain 

initial estimates of 2
j  and b,j in the OS step. Then for the remaining computing budget, we plug in the 

estimates of 2
j  and b,j into (9) to determine the number of high-fidelity samples for each group. We 

then randomly sample without replacement from each group for high-fidelity simulations.  
 Because the initial estimates based on n0 high-fidelity evaluations can be quite unreliable, this process 
can be refined into an iterative process. Each iteration only assigns a fixed number of high-fidelity 

evaluations, denoted as ΔT, based on the allocation rule in (6) and the estimates of 2
j and b,i at that 

iteration. The algorithm iterates until all computing budget has been used. The flowchart of the algorithm 
is given in Figure 4.   

4 NUMERICAL EXPERIMENTS 

We present preliminary experiments of the MO2TOS Algorithm in this section. In the following 
experiments, the initial sample size for both OCBA and MO2TOS is set to n0=2. All experiment results 
are based on 10,000 IID replications and the average results are plotted. In each replication, we follow the 
same steps but when we randomly sample solutions from a group for high-fidelity evaluations, we use 
independent random number streams.  
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Figure 4: Flowchart of the MO2TOS algorithm. 

 The first example is the machine allocation problem described in Section 2. We consider three 
different approaches to find the best solution in this simulation optimization problem. This problem 
requires running stochastic simulations on a solution when high-fidelity evaluation is needed. As 
explained in Section 2, we do not study how to optimally determine the number of stochastic simulation 
replications in this paper. Instead, we assume that each high-fidelity evaluation involves a sufficiently 
large number of simulation replications to deliver a very accurate result. Sampling within each group is 
random sampling without replacement. In all of experiments, we only examine the performance of the 
algorithms for a relatively small total computing budget. So we never exhaustively sample a group with 
the high-fidelity model. This represents the realistic situation where high-fidelity models are extremely 
time-consuming to run and thus only a small fraction of solutions can be evaluated. 
 We compare three procedures in the experiment. The first procedure is equal allocation. We first 
partition solutions into equal-sized groups based on the positions of these solutions in the original 5-
dimensional space. We then equally allocate high-fidelity samples to all groups. While different partitions 
would lead to different results, we would not know a priori which partitioning would give the best result. 
So our experiment represents one typical run of such an equal allocation procedure on the original 
solution space. The second procedure is using OCBA procedure on the groups of solutions formed on the 
original solution space. The partitioning is the same as in the equal allocation case. We will see the 
benefit of using an OS strategy by comparing results of this procedure to the equal allocation case. 
Finally, we report MO2TOS results, which show the benefit of using an OS strategy after OT.   

Figure 5 plots the performance of the best solution found by these three procedures as a function of 
total computing budge. We partition the 780 solutions into 10 groups with 78 solutions in each group. We 
notice that OCBA achieves significant savings compared to equal allocation. The experiment confirms 
that MO2TOS achieves further savings in computing budget on the machine allocation problem. For 
example, in order to find a solution with a production time of 2450, OCBA needed about 75 high-fidelity 
simulations. In comparison, MO2TOS only used about 65 high-fidelity simulations, representing a 13% 
savings in computing budget. This benefit comes from using OT with the low-fidelity model to partition 
solutions into groups that have lower group variances and larger group distances.  
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Figure 5: Results of the machine allocation optimization problem. 

 We test MO2TOS on another test problem, which is a maximization of a one-dimensional multimodal 
function given by  
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 Note that the low-fidelity function is adapted from a test function in simulation optimization literature 
(Xu et al. 2013). The maximum value of this function is 1.4277. We discretize the solution space by a 
grid of 0.1resulting in 1000 solutions. We form 10 groups, each with 100 solutions. We plot the high- 

 

Figure 6: The high-fidelity and low-fidelity functions of the multi-modal test problem. 
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fidelity and low-fidelity function in Figure 6, which shows that the low-fidelity function only provides a 
fair approximation to the high-fidelity function, and has significant bias in the entire solution. Specially, 
the location of global and local optimal solutions are quite different. But as we see from Figure 7,  
MO2TOS was still able to achieve quite substantial savings in computing budget compared to OCBA.  

 

 

Figure 7: Results of the multi-modal test function. 

5 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we report a novel framework for multi-fidelity optimization. The new MO2TOS framework 
provides a flexible, effective, and easy to implement approach to exploit simulation models of different 
fidelity levels. Instead of directly modeling the bias as most existing approaches do, the proposed 
MO2TOS framework takes on a drastically different approach and instead uses the lower-fidelity model to 
find information on the relative orders of feasible solutions. That ordinal information is then used to 
transform the original solution space, which may be high-dimensional and highly nonlinear and 
multimodal, into a one-dimensional and much better behaved solution space. We show through a rigorous 
theoretical analysis how groups formed after OT have reduced group variances and enlarged group 
distances. These features facilitate the adoption of an OS strategy and enhanced its efficiency. We 
conduct numerical experiments comparing MO2TOS to equal allocation and OCBA on a multi-model 
function (deterministic) and a realistic machine allocation problem (stochastic but noise reduced to 
negligible levels with a large number of replications). Results demonstrate how MO2TOS can be applied 
in practice.  
 The proposed MO2TOS framework is very general and flexible and opens up a new research avenue. 
While this study is preliminary, it points out to many future research directions that may provide a solid 
theoretical and algorithmic foundation for successful MO2TOS-based optimization algorithms. We 
highlight the following key questions that need to be further explored: 
1. When there are multiple lower-fidelity models, how should we measure the quality of these models 

and choose which model(s) to use and how to combine their predictions when performing OT?  
2. When lower-fidelity models’ computing cost is not negligible, how should we optimally allocate 

computing budget among different models?  
3. When stochastic simulation noise is present (i.e., reducing noise to negligible levels for all solutions 

is not possible due to limit on simulation budget), how should we optimally allocate computing 
budget among different models and design points?  

3949



Xu, Zhang, Huang, Chen, Lee, and Celik 
 

ACKNOWLEDGMENTS 

Jie Xu, Si Zhang, and Chun-Hung Chen have been supported by the National Science Foundation under 
Grant CMMI-1233376. 

REFERENCES 

Chen, C.-H., and L.-H. Lee. 2011. Stochastic Simulation Optimization: An Optimal Computing Budget 
Allocation. Singapore: World Scientific Publishing Co. 

Chen, C. H., J. Lin, E. Yücesan, and S. E. Chick. 2000. “Simulation Budget Allocation for Further 
Enhancing the Efficiency of Ordinal Optimization.” Discrete Event Dynamic Systems 10(3):251-270. 

Chen, W., S. Gao, C.-H. Chen, and L. Shi. 2014. “An Optimal Sample Allocation Strategy for Partition-
based Random Search.” IEEE Transactions on Automation Science and Engineering, 11(1):177-186. 

David, H. A., and H. N. Nagaraja. 2003. Order Statistics. Wiley. 
Hsieh, B. W., C.-H. Chen, and S. C. Chang. 2007. “Efficient Simulation-based Composition of 

Scheduling Policies by Integrating Ordinal Optimization with Design of Experiment.” IEEE 
Transactions on Automation Science and Engineering 4(4):553-568. 

Huang, D., T. T. Allen, W. I. Notz, and R. A. Miller. 2006. “Sequential kriging optimization using 
multiple-fidelity evaluations.” Structural and Multidisciplinary Optimization 32(5): 369-382. 

Lee, L.-H., C.-H. Chen, E. P. Chew, J. Li, N. A. Pujowidianto, and S. Zhang. 2010. “A Review of 
Optimal Computing Budget Allocation Algorithms for Simulation Optimization Problem.” 
International Journal of Operations Research 7(2):19-31. 

Li, Y., and S.-M. Yu. 2007. “A coupled-simulation-and-optimization approach to nanodevice fabrication 
with minimization of electrical characteristics fluctuation.” IEEE Transactions on Semiconductor 
Manufacturing 20(4):432-438. 

March, A., and K. Willcox. 2012. “Provably Convergent Multifidelity Optimization Algorithm Not 
Requiring High-Fidelity Derivatives.” AIAA Journal 50(5):1079–1089. 

Moore, R. A. 2012. “Value-based global optimization.” Ph.D. thesis. Department of Mechanical 
Engineering, Georgia Institute of Technology, Atlanta, GA. 

Rausch, M., and H.-T. Liao. 2010. “Joint Production and Spare Part Inventory Control Strategy Driven by 
Condition Based Maintenance.” IEEE Transactions on Reliability 59(3):507–516. 

Schwartz, J. D., W. Wang, and D. E. Rivera. 2006. “Simulation-based optimization of process control 
policies for inventory management in supply chains.” Automatica 42(8):1311-1320. 

Subulan, K., and M. Cakmakci. 2012. “A feasibility study using simulation-based optimization and 
Taguchi experimental design method for material handling-transfer system in the automobile 
industry.” International Journal of Advanced Manufacturing Technology 59(5-8):433–443. 

Villarreal, S., J. A. Jimenez, T. Jin, and M. Cabrera-Rios. 2013. “Designing a Sustainable and Distributed 
Generation System for Semiconductor Wafer Fabs.” IEEE Transactions on Automation Science and 
Engineering 10(1):16-26. 

Xu, J., B. L. Nelson, and L. J. Hong. 2013. “An Adaptive Hyperbox Algorithm for Discrete Optimization 
via Simulation.” INFORMS Journal on Computing 25(1):133-146. 

Xu, J., S. Zhang, E. Huang, C.-H. Chen, and L.-H. Lee. 2014. “MO2TOS: Multi-fidelity Optimization 
with Ordinal Transformation and Optimal Sampling.” Submitted for publication. 

Yan, S., E. Zhou, and C.-H. Chen. 2012. “Efficient Selection of a Set of Good Enough Designs with 
Complexity Preference.” IEEE Transactions on Automation Science and Engineering 9(3):596-606. 

AUTHOR BIOGRAPHIES 

JIE XU is an Assistant Professor in the Department of Systems Engineering and Operations Research at 
George Mason University. His research interests include Monte Carlo simulation, simulation-based 

3950



Xu, Zhang, Huang, Chen, Lee, and Celik 
 

optimization, computational intelligence, and applications in risk management and aviation. His email 
address is wsc14tolk@gmail.com. 
 
SI ZHANG is a post-doctoral fellow in the Department of Systems Engineering and Operations Research 
at George Mason University. Her research interests include stochastic simulations and simulation 
optimization. Her email address is szhang18@gmu.edu.  
 
EDWARD HUANG is an Assistant Professor in the Department of Systems Engineering and Operations 
Research at George Mason University. His research interests include stochastic simulation, manufacturing 
systems, and model-based system engineering. His email address is chuang10@gmu.edu. 
 
CHUN-HUNG CHEN is a Professor of Systems Engineering and Operations Research at George Mason 
University. Sponsored by the NSF, NSC, FAA, Air Force, and NASA Dr. Chen has led research projects 
in stochastic simulation and optimization. He served as Co-Editor of the Proceedings of the 2002 Winter 
Simulation Conference and Program Co-Chair for 2007 Informs Simulation Society Workshop.  He has 
served on the editorial boards of IEEE Transactions on Automatic Control, IEEE Transactions on 
Automation Science and Engineering, IIE Transactions, Journal of Simulation Modeling Practice and 
Theory, and International Journal of Simulation and Process Modeling. He received his Ph.D. degree 
from Harvard University in 1994. His email address is cchen9@gmu.edu.  
 
LOO HAY LEE is an Associate Professor and Deputy Head (Graduate Studies and Research) in the 
Department of Industrial and Systems Engineering, National University of Singapore. He received his 
B.S. (Electrical Engineering) degree from the National Taiwan University in 1992 and his Ph.D. degree in 
1997 from Harvard University. He is currently a senior member  of IEEE, a member of INFORMS and 
ORSS. His research interests include simulation-based optimization, maritime logistics and supply chain 
systems. His email address is iseleelh@nus.edu.sg.  
 
NURCIN CELIK is an assistant professor at the Department of Industrial Engineering at the University 
of Miami. She received her M.S. and Ph.D. degrees in Systems and Industrial Engineering from the 
University of Arizona. Her research interests include architectural design and application of dynamic 
data-driven adaptive simulations for distributed systems. She has received several awards, including 
AFOSR Young Investigator Research Award (2013), UM Provost Award (2011), IAMOT Outstanding 
Research Project Award (2011).  Her email address is celik@miami.edu.  

3951


