
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

SIMPLIFIED SIMULATION INTEROPERABILITY USING THE COCOBASIM APPROACH

Jörg Henss
Karlsruhe Institute of Technology

Karlsruhe, Germany
henss@kit.edu

ABSTRACT

When composing simulations from multiple domains, developers can choose from a long list of possible
solutions. However, creating a functional and valid composition from existing simulation building blocks
can be cumbersome. Existing solutions are often limited to specific platforms or require extensive and
complex implementations. The Coupled and Component-based Simulation (CoCobaSim) approach aims at
simplifying the development of an interoperable simulation composition using state-of-the-art model-driven
techniques. It uses a component-based approach and employs interaction contracts to define simulation
interactions. Based on the modeled information and a chosen simulation platform, developers can choose
from several patterns and tactics to generate platform specific interoperability adapters and a suitable
execution workflow.

1 INTRODUCTION

The theoretical problems of model composition and simulation interoperability have been tackled for years
and many solutions have been proposed (Tucker and Gross 2013, Petty et al. 2014). Still, simulation
developers tend to develop interoperable simulations over and over again. One reason is that no universally
applicable solutions have been developed so far. Moreover, many proposed solutions are restricted to
specific modeling formalisms and specific platforms or require a lot of additional implementation effort.

Interoperable simulations are commonly composed using the concept of simulation building blocks that
encapsulate behavioral knowledge that shall be reused. This knowledge is often persisted in (semi-formal)
models and executable code. When assembling a simulation from existing building blocks, problems are
often caused by a lack of information on used concepts, parameter units and expected interaction sequences
of these simulation building blocks. Furthermore, no information on the validity and pristine objectives of
executable models is usually found in the definition of interfaces. This makes it difficult for developers to
define a valid, credible and interoperable simulation composition (Law 2009).

Our approach is primarily aimed at supporting developers in the definition of interoperable simulation
executions. This is especially difficult for semi-formal and purely code-based simulation models. The
approach therefore supports additional patterns to enable interoperable simulations. These patterns are
adjoined by interoperability tactics that can be chosen on component instance level.

2 APPROACH

The CoCobaSim approach combines a platform independent simulation component model with sophisticated
model-driven techniques to simplify the development of interoperable simulations. A conceptual level
simulation component model is used to define domain entities and Simulation Component Types reflecting
a selection these entities. Furthermore, developer can use a textual DSL to define Interaction Contracts
that specify interaction points of component types (Helm et al. 1990). These artifacts are domain specific
and can be reused for other simulations in the same domain.

Developers assign component types and interactions to existing and newly developed simulation
building blocks, thus creating Simulation Component Instances. While modeled component types are

4009978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Henss

platform independent, these component instances are platform dependent. There can be multiple component
instances resembling the same component type, e.g., for representing different levels of granularity or
different platforms. Component instances can refine the interaction contracts and define constraints on
the exchanged data. This mechanism is also used to define the parameter ranges that have already been
validated. Component instances are assembled to a system composition of coupled components. During
this mapping step, syntactic and semantic gaps have to be identified and can be later on resolved.

Interoperability Patterns are the key concept of CoCobaSim that define how components and contracts
are mapped to a specific execution on a chosen simulation platform. Examples for patterns are federations,
iterative exchange and formalism-transformations. Furthermore, each pattern is accompanied with multiple
Adaptation Tactics. Developers commonly choose and instantiate tactics on component level. Examples
for tactics are the usage of gateway and proxy objects, model-transformations, and statistical-sampling
methods.

Based on the chosen tactics and the previously defined component assembly, Component Adapters are
generated using model-driven techniques. These adapters are used to bridge technological and semantic
gaps, e.g. by adding missing parameters, creating additional events or doing unit conversion. In some cases
only stubs can be generated that developers have to implement manually. When using statistical sampling
tactics, these adapters encapsulate the statistical models.

Furthermore Contract Guards for checking the interaction contracts can be generated. These guards
check for valid property ranges of exchanged entities and can implement final state machines for detecting
invalid interaction sequences. If contract violations are detected, a warning is issued that a possible
interoperability problem was detected. As some of the generated artifacts require manual addition of
implementation details, a component repository stores these artifacts. Based on stored informations on the
specific domain and platform, components can be reused in further compositions.

An Interoperability Workflow Model that allows defining interoperable simulation workflows com-
plements the approach. The workflow model incorporates the actions derived from the chosen patterns
and tactics and is generated semi-automatically. Moreover, it can include manual input, repeated and
conditional actions, e.g. for deciding when an iterative fixed-point simulation has reached a stable state.
Simulation results are persisted in a result repository alongside the used setup for enhancing reproducibility
and credibility of results.

3 CONCLUSION

We presented the CoCobaSim approach for simplifying the development of interoperable simulations.
It uses model-driven techniques to generate artifacts that ease the definition of valid compositions from
existing simulation components.

In the future we aim at extending the supported set of platforms and add further interoperability
patterns and tactics. On top of that, reverse-engineering approaches can be used to derive entity and
contract information from existing code-based models. Finally, we are currently doing some studies on the
applicability of the approach in different settings.

REFERENCES

Helm, R., I. M. Holland, and D. Gangopadhyay. 1990. Contracts: specifying behavioral compositions in
object-oriented systems, Volume 25. ACM.

Law, A. M. 2009. “How to build valid and credible simulation models”. In Simulation Conference (WSC),
Proceedings of the 2009 Winter, 24–33. IEEE.

Petty, M. D., J. Kim, S. E. Barbosa, and J.-J. Pyun. 2014. “Software Frameworks for Model Composition”.
Modelling and Simulation in Engineering 2014.

Tucker, W. V., and D. C. Gross. 2013. “What More Do We Want in Modeling and Simulation Interoperability
and Reuse?”. GCMS ’13, 27:1–27:8. Vista, CA.

4010

