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ABSTRACT

Empirical game theory experiments attempt to estimate causal effects of institutional factors on behavioral
outcomes by systematically varying the rules of the game with human participants motivated by financial
incentives. I developed a computational simulation analog of empirical game experiments that facilitates
investigating institutional design questions. Given the full control the artificial laboratory affords, simulated
experiments can more reliably implement experimental designs. I compiled a large database of decisions
from a variety of repeated social dilemma experiments, developed a statistical model that predicted
individual-level decisions in a held-out test dataset with 90% accuracy, and implemented the model in
agent-based simulations where I apply constrained optimization techniques to designing games – and
by theoretical extension, institutions – that maximize cooperation levels. This presentation describes the
methodology, preliminary findings, and future applications to applied simulation models as part of ongoing
multi-disciplinary projects studying decision-making under social and environmental uncertainty.

1 DATA

I gathered existing data from experiments conducted with human subjects playing many variations on
repeated prisoner’s dilemma games with real financial incentives (Bereby-Meyer and Roth 2006, Duffy and
Ochs 2009, Kunreuther, Silvasi, Bradlow, and Small 2009, Dal Bo and Frechette 2011, Fudenberg, Rand,
and Dreber 2012) and created standardized features of the games and behavior across the datasets. This
process resulted in a database of over 140,000 individual decisions with consistent measurements on over
60 behavioral-economics-inspired features for each observation. The features represent three categories:
(1) the history of an interaction between a player and her opponents (e.g. the player cooperated the past two
rounds and her opponent defected both rounds); (2) repeated game strategies for a player that interaction
(e.g. the action that she would take if she followed a “tit-for-tat” strategy); and (3) the rules of the game
(e.g., the payoff associated with cooperating when her opponent defects).

2 STATISTICAL MODEL

The statistical goal is to learn an approximation to a stochastic function mapping these features into cooper-
ation decisions of person i at time t in game g that minimizes prediction error on unseen data, i.e. to find the
discriminate function f (θ) that minimizes the expected value of L(Cooperateitg, f ( ~Gameg, ~History1:t−1,θ))
over the population joint distribution of the features and cooperation decisions, where L() is a loss function
specific to the learning algorithm, Gameg are the rules of the game, and History1:t−1 is i’s and the other play-
ers’ decisions and payoffs from the beginning of the game until t−1. Support-vector machines and neural
networks have a comparative advantage in extracting complex combinations of features, while binary-split
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Figure 1: 10 most important predictors for
a random forest model with just under 90%
out-of-sample accuracy. Mydecision1 and
otherdecision1 are the decisions taken in the
previous period. The rest are repeated game
strategies. The only strategies in the top 10
predictor list were variants of the famous tit-
for-tat (tft) reciprocal strategy, and the grim
strategy, where after one defection of your
partner you always defect.

tree-based models have a comparative advantage in handling noisy feature sets (Hastie, Tibshirani, and
Friedman 2009). Random forests can also provide useful feature importance rankings (see Figure 1). I
compare these alternatives1 and determine that an ensemble of neural network models has the highest
predictive accuracy, predicting individual-level decisions in a held-out test dataset with 90% accuracy.

3 SIMULATION MODEL

I took an agent-based approach to empirical modeling by modeling the game situation as the outcome of
the behavior of multiple agents making decentralized, inductive decisions with data input unique to each
agent. In order to use the empirical models of individual adaptive behavior to simulate outcomes of new
experimental designs I employ agent-based model simulations. I am using genetic algorithms to search
game parameter space of the simulation model for games, ~Gameg, that maximize average cooperation
levels, C̄. Only a few configurations of ~Gameg are tested in the data due to feasibility, but simulation allows
us to search much larger game parameter space using the highly predictive models and to control “social
context,” e.g. by using null opponents that always cooperate. The simulation results, intended to show
the size and direction of the effects of the rules of the game on cooperation levels, will be used to inform
hypotheses to empirically test in observational settings related to social dilemmas and the environment.
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1I use a Gini index as a measure of prediction error when building the trees: G = ∑
K
k=1 p̂mk(1− p̂mk), where p̂mk is the

proportion of training observations in the mth region of feature space from the kth class of the outcome. I randomly sample
observations, grow a tree on each sample, and then use the majority vote when making predictions. Randomness is also
introduced by forcing each tree to consider different randomly selected sets of features at each step. I also employ a bootstrap
aggregating procedure with feed-forward neural network models with single hidden layers. Finally, I use a support vector
machine with a radial basis kernel function, K(x,x′) = exp(−γ||x− x′||2) (Hastie, Tibshirani, and Friedman 2009).
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