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ABSTRACT

We propose an exponential tilting method for the accurate estimation of the probability that a random

vector with multivariate student-t distribution falls in a convex polytope. The method can also be used

to simulate exactly from the corresponding truncated multivariate student-t distribution, thus providing an

alternative to approximate Markov Chain Monte Carlo simulation. Numerical experiments show that the

suggested method is significantly more accurate and reliable than its competitors.

1 INTRODUCTION

Let X∈Rd be distributed according to the multivariate student-t distribution with ν > 0 degrees of freedom.

The density of X is given by

c1×
(

1+
1

ν
‖x‖2

)−(ν+d)/2

over Rd , where

c1 =
Γ((d +ν)/2)

(πν)d/2Γ(ν/2)

is a normalizing constant. We write X∼ tν . We are interested in two closely related problems. The first

one is estimating the probability

ℓ= P(l 6CX 6 u) =
∫

Rd
c1

(
1+

1

ν
‖x‖2

)−(ν+d)/2

I{l 6Cx 6 u}dx, (1)

where I{·} denotes the indicator function and C is a d× d full rank matrix. The second problem is to

simulate exactly from the truncated (or conditional) density:

f (x) =
c1×

(
1+ 1

ν ‖x‖2
)−(ν+d)/2× I{l 6Cx 6 u}

ℓ
. (2)

Both of these problems arise frequently in statistical applications; see Genz and Bretz (2002), Genz (2004),

Genz and Bretz (2009), and the references therein.

The purpose of this article is to propose a method for estimating (1) that is more reliable and efficient

than the current state-of-the-art method of Genz (2004), also described in Genz and Bretz (2009), which

is currently the default algorithm in MATLAB
r and R. As a byproduct of the design of our algorithm, we

can also sample from the conditional density (2) in high dimensions using an efficient acceptance-rejection

scheme (Kroese et al. 2011, Chapter 3). Currently, the only practical method for simulation from the

conditional (2), when ℓ is a rare-event probability, is by (approximate) Markov Chain Monte Carlo sampling;
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see Yu and Tian (2011) and the references therein. Naturally, if ℓ is not a rare-event probability, say larger

than 10−4, then one can simulate exactly from (2) by simulating X∼ tν until the condition l 6 X 6 u is

satisfied.

The idea of our method is to apply a suitable exponential tilting to the estimator proposed by Genz

(2004). Exponential tilting is a popular way to construct a sampling density when applying importance

sampling to estimate tail probabilities for light-tailed distributions (Bucklew 2004, Asmussen and Glynn

2007, L’Ecuyer et al. 2010). However, in our numerical simulations we observed significant efficiency

gains even when they do not involve a tail probability setting, suggesting that exponential tilting is useful

beyond its typical range of applications in large deviations.

We choose the tilting parameter by solving a convex optimization problem. This idea is similar to

the recently proposed minimax exponential tilting for the multivariate normal distribution (Botev 2014),

which relies on constructing a certain log-convex likelihood ratio. The main contribution of this article is

to adapt the method for the multivariate normal to the multivariate student-t case using the fact that one

can simulate a multivariate student-t vector by multiplying a multivariate normal vector with a suitable

random scale variable. The adaptation is not a straightforward task, because we have to change the measure

of the scale variable and most of the simple and obvious changes of measure cause a loss of the crucial

log-convexity property of the likelihood ratio. Fortunately, we were able to find a change of measure of

the scale variable that preserves this desirable log-convexity property. Another contribution in this article

is the derivation of a simple nontrivial lower bound to ℓ.
The rest of the paper is organized as follows. We first describe in Section 2 the estimator originally

proposed by Genz (2004). In Section 3 we describe our choice of exponential tilting. The exponential tilting

approach allows us to both estimate ℓ accurately and simulate from the conditional density (2) in up to at

least one hundred dimensions, with minimal additional computational overhead. Finally, in Section 4, we

present numerical results demonstrating the superior practical performance of the new algorithms compared

to the existing state-of-the-art.

2 AN ESTIMATOR OF ℓ BY SEPARATION OF VARIABLES

First, note that the multivariate student-t distribution forms a location scale family. In other words, if

X∼ tν and Y = µ̆ +AX, then we can write Y∼ tν(µ̆,AA⊤), where µ̆ and AA⊤ are the location and scale

parameters, respectively. We thus have

P(l̆ 6CY 6 ŭ) = P(l 6 L̆X 6 u),

where X∼ tν(0, Id)≡ tν , Id is the d-dimensional identity matrix, l = l̆−Cµ̆,u = ŭ−Cµ̆ , and the matrix

L̆ satisfies L̆L̆⊤ = CAA⊤C⊤. Hence, without loss of generality we need only consider the standardized

versions (1) and (2).

Let L be the lower triangular Cholesky factor of the positive definite matrix CC⊤. Then, we can

decompose (1) as follows:

ℓ= P(Rl 6
√

νLZ 6 Ru),

where R follows the χν distribution with density

fν(r) =
e−r2/2+(ν−1) lnr

2ν/2−1Γ(ν/2)
, for r > 0,

and Z ∼ N(0, Id) is a d-dimensional standard normal, independent of R. This is simply the well-known

distributional result that
√

νZ/R ∼ tν ; see Kroese et al. (2011), Chapter 3. Due to the lower triangular
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structure of L, the region R = {(r,z) : r l 6
√

νLz 6 r u} can be decomposed into

l̃1(r)
def
=

r l1ν−1/2

L11

6 z1 6
r u1ν−1/2

L11

def
= ũ1(r)

l̃2(r,z1)
def
=

r l2ν−1/2−L21z1

L22

6 z2 6
r u2ν−1/2−L21z1

L22

def
= ũ2(r,z1)

...

l̃d(r,z1, . . . ,zd−1)
def
=

r ldν−1/2−∑d−1
i=1 Ldizi

Ldd

6 zd 6
r udν−1/2−∑d−1

i=1 Ldizi

Ldd

def
= ũd(r,z1, . . . ,zd−1).

Let φ(z; µ,Σ) denote the density of the d-dimensional N(µ,Σ) distribution. For the standard normal, the

density is φ(z) = φ(z;0, Id). Then, the decomposition above suggests the sequential importance sampling

estimator

ℓ̂=
fν(R)φ(Z;0, Id)

g(R,Z)

with (R,Z) distributed according to the sequential importance sampling density

g(r,z) = g(r)g(z |r) = g(r)g1(z1 |r)g2(z2 |r,z1) · · ·gd(zd |r,z1, . . . ,zd−1)

on R. It is then natural to choose g(r) = fν(r) and the truncated normal densities:

gi(zi |r,z1, . . . ,zi−1) =
φ(zi)I{l̃i 6 zi 6 ũi}

Φ(ũi)−Φ(l̃i)
, i = 1, . . . ,d,

where Φ is the one-dimensional standard normal cdf. The estimator ℓ̂ then simplifies to

ℓ̂Genz =
d

∏
k=1

(
Φ(ũk)−Φ(l̃k)

)
. (3)

This estimator, proposed by Genz (2004) and discussed in Genz and Bretz (2009), is still the best method

available for the estimation of (1). As we shall see in the numerical section, the variance of (3) can behave

erratically, especially in the tails of the multivariate student-t distribution and in cases with strong negative

correlation (as measured by Cov(LZ) = LL⊤). For this reason, in the next section we consider an alternative

importance sampling density g(r,z) that yields a reliable and accurate estimator of ℓ in both the tails of

the distribution and in the presence of negative correlation structure.

3 ESTIMATING FOR ℓ BY AN EXPONENTIALLY TILTED DISTRIBUTION

3.1 The Exponential Tilting

Instead of the Genz choice of importance sampling density described in the previous section, consider the

alternative in which g(r,z) is given as follows, where η and µ1, . . . ,µd are real-valued parameters that

remain to be chosen:

g(r) =
φ(r;η ,1)

1−Φ(−η)
=

φ(r;η ,1)

Φ(η)
, for r > 0

gk(zk |r,z1, . . . ,zk−1) =
φ(zk; µk,1)I{l̃k 6 zk 6 ũk}
Φ(ũk−µk)−Φ(l̃k−µk)

, for k = 1, . . . ,d.

(4)

382



Botev and L’Ecuyer

In other words, if TN(a,b)(µ,σ
2) denotes the N(µ,σ 2) distribution truncated to the interval (a,b), then

R∼ TN(0,∞)(η ,1)

Zk |R,Z1, . . . ,Zk−1 ∼ TN(l̃k,ũk)
(µk,1), k = 1, . . . ,d.

Denoting µ = (µ1, . . . ,µd)
⊤, we can write the logarithm of the likelihood ratio as

ψ(r,z;η ,µ) =
‖µ‖2

2
− z⊤µ +

η2

2
− rη +(ν−1) lnr+ lnΦ(η)+ const.

+
d

∑
k=1

ln
[
Φ(ũk(r,z1, . . . ,zk−1)−µk)−Φ(l̃k(r,z1, . . . ,zk−1)−µk)

]
,

so that ℓ = E
[
eψ(R,Z;η ,µ)

]
for (R,Z) ∼ g(r,z). It remains to choose the parameters η and µ so that the

estimator ℓ̂1 = eψ(R,Z;η ,µ) has a well-behaved relative error. A simple (heuristic) way of selecting (η ,µ)

in our setting is to minimize the worst possible behavior of the likelihood ratio eψ(r,z;η ,µ). In other words,

we solve the optimization program

inf
η ,µ

sup
(r,z)∈R

ψ(r,z;η ,µ). (5)

A prime motivation for minimizing (5) is that

Var[ℓ̂1] = E [exp(2ψ(R,Z;η ,µ))]− ℓ2 ≤ exp
[
2 sup
(r,z)∈R

ψ(r,z;η ,µ)
]
− ℓ2,

and we want to select the parameter values that minimize this upper bound on the variance. Another

appealing feature of (5) is that it has a unique solution that can be found by solving a convex optimization

program. The idea is similar to the one described in Botev (2014), where ψ depends only on z and µ .

Thus, we can see in retrospect that the importance function g(r) and its tilting parameter η were chosen

so that this convexity is preserved as shown in the following theorem, proved in Appendix A.

Theorem 3.1 (Parameter Selection). For ν > 1 the saddle-point program (5) has a unique solution, denoted

(r∗,z∗;η∗,µ∗), which coincides with the solution of the convex optimization program:

max
r,z,η ,µ

ψ(r,z;η ,µ)

subject to: ∂ψ/∂η = 0, ∂ψ/∂ µ = 0, (r,z) ∈R .
(6)

Note that without the constraint (r,z) ∈R, the solution of (5) is obtained by setting the gradient of

ψ with respect to all of the parameters to zero. This gives the following system of nonlinear equations

(i = 1, . . . ,d and Z ∼ N(0,1)):

∂ψ

∂ r
=

ν−1

r
−η +∑

k

ukφ(ũk−µk)− lkφ(l̃k−µk)√
νLk,kP(l̃k 6 Z +µk 6 ũk)

∂ψ

∂η
= η− r+

φ(η)

Φ(η)

∂ψ

∂ zi

=−µi +
d

∑
k=i+1

(
Lk,i

Lk,k
− I{i = k}

)
φ(ũk−µk)−φ(l̃k−µk)

P(l̃k 6 Z +µk 6 ũk)

∂ψ

∂ µi

= µi− zi +
φ(ũk−µk)−φ(l̃k−µk)

P(l̃k 6 Z +µk 6 ũk)
.

(7)
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Thus, one way of solving (6) is to solve the nonlinear system (7) and verify that its solution lies in R. If

the solution lies in R, then there is nothing else to do. This can be much faster than calling a constrained

optimization solver to solve the convex program (6). However, if the solution of (7) does not lie in R,

then we must use a proper convex solver to tackle (6).

Note that we need not simulate Zd , because the log-likelihood ratio ψ does not depend on zd . In fact,

the independence from zd forces µd = 0 always, reducing the dimension of the optimization (6) from 2d

to 2(d−1). The proposed estimator is summarized in the following algorithm.

Algorithm 1 : Estimating ℓ.

Require: vectors u, l of dimension d and lower triangular matrix L. Sample size n.

Solve the convex optimization program (6) to find the unique (η∗,µ∗).
for i = 1, . . . ,n do

Simulate R∼ TN(0,∞)(η
∗,1)

for k = 1, . . . ,d−1 do

Simulate Zk ∼ TN(l̃k,ũk)
(µ∗k ,1)

Z← (Z1, . . . ,Zd−1,0)
⊤

ℓi← exp(ψ(R,Z;η∗,µ∗))
ℓ̂← 1

n ∑n
i=1 ℓi

σ̂ 2← 1
n ∑n

i=1(ℓi− ℓ̂)2

return ℓ̂ and its estimated relative error σ̂/(
√

n ℓ̂).

If ψ∗ = ψ(r∗,z∗;η∗,µ∗) and ℓL is a lower bound to ℓ, we can bound the relative error of the estimator

ℓ̂ by √
Var(ℓ̂)

ℓ
6

1√
n

(
ψ∗

ℓL

−1

)
.

One possibility for constructing a nontrivial lower bound on ℓ is given in Section 3.3.

3.2 Exact i.i.d. Sample From Conditional Density

In the previous algorithm, all the n samples are kept, and they are given different weights in the estimator.

But if we want an exact i.i.d. sample of fixed size n (without weighting the observations) from the conditional

density (2), we must proceed differently. The following algorithm does it by acceptance-rejection. It uses

the fact that ψ∗ yields a nontrivial upper bound to the likelihood ratio exp(ψ(r,z;η∗,µ∗))6 exp(ψ∗) and to

the probability ℓ= E [exp(ψ(R,Z;η∗,µ∗))]6 exp(ψ∗). This upper bound leads to an acceptance-rejection

scheme with proposal density g(r,z;η∗,µ∗) defined via (4). The acceptance probability in this algorithm

is ℓ/ψ∗.

Algorithm 2 : Exact simulation from f (x) in (2) via acceptance-rejection.

Require: vectors u, l, lower triangular L, and optimal (r∗,z∗;η∗,µ∗).
repeat

Simulate R∼ TN(0,∞)(η
∗,1)

for k = 1, . . . ,d do

Simulate Zk ∼ TN(l̃k,ũk)
(µ∗k ,1)

Simulate E ∼ Exp(1), independently.

until E > ψ(r∗,z∗;η∗,µ∗)−ψ(R,Z;η∗,µ∗)
return X←√νZ/R
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3.3 A Simple Lower Bound for ℓ

Using Jensen’s inequality, it is possible to construct a simple lower bound for ℓ= P(l 6CX 6 u), which

as we shall see in the numerical section can sometimes (but not always) be quite tight. Let Y∼ tν(0,Σ),
where Σ = CC⊤, and let h be a density on [l,u] ⊆ R

d . Then, ℓ = P(l 6 Y 6 u) and applying Jensen’s

inequality to the function x−2/(ν+d) we obtain

(P(l 6 Y 6 u))−2/(ν+d) = c
−2/(ν+d)
2

(
Eh

[(
1+ 1

ν Y⊤Σ−1Y
)−(ν+d)/2

h(Y)

])−2/(ν+d)

6 c
−2/(ν+d)
2 Eh

[
1+ 1

ν Y⊤Σ−1Y

[h(Y)]−2/(ν+d)

]
,

where c2 = c1/det(Σ1/2) is a normalizing constant. Therefore,

(ℓ/c2)
−2/(ν+d) 6

∫
[h(y)]

2
ν+d

+1dy+
1

ν

∫
[h(y)]

2
ν+d

+1(y⊤Σ−1y) dy

6

∫
[h(y)]

2
ν+d

+1dy

(
1+

1

ν
Eq[Y

⊤Σ−1Y]

)
,

where the density q is defined via h through

q(y) =
[h(y)]

2
ν+d

+1

∫
[h(y)]

2
ν+d

+1dy
,

so that ∫
[h(y)]

2
ν+d

+1dy =

(∫
[q(y)]

ν+d
ν+d+2 dy

)−(ν+d+2)/(ν+d)

.

Rearranging the last inequality then yields

ℓ > c2

(∫
[q(y)]

ν+d
ν+d+2 dy

)(ν+d+2)/2(
1+

1

ν
tr(Σ−1Varq(Y))+

1

ν
Eq[Y]⊤Σ−1

Eq[Y]

)−(ν+d)/2

(8)

All terms on the right-hand side of (8) can be computed analytically if we choose the product form

q(y) = ∏k qk(yk), where qk is the density of the univariate student-t distribution truncated to the interval

[lk,uk] and with νk degrees of freedom, location µk, and scale σk. The exact analytical expressions for the

right-hand side of (8) are given in Appendix B.

The best lower bound is obtained by maximizing the right-hand side of (8) with respect to {νi,µi,σi, i =
1, . . . ,d}. This is the lower bound we use in the numerical experiments in Section 4.

4 A NUMERICAL STUDY

In this section we compare the numerical performance of our estimator with that of Genz.

In all examples the computing time to find the optimal tilting parameter (η∗,µ∗) was insignificant

compared to the time it took to evaluate the n iid replications in the ‘for’ loop of Algorithm 1. One reason

for this was that the solution of the nonlinear system (7) always belonged to the set R and was thus identical

to the solution of the program (6), obviating the need for a convex optimization routine. For this reason,

we only report the relative error of the estimators in our comparison. Note that although in general there

are many ways of decomposing Σ =CC⊤, the proposed methods do not depend on the choice of C for a

given Σ.
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Example 4.1 (Negative Correlation). Consider estimating ℓ, where CC⊤ = Σ is defined via the precision

matrix (Fernández, Ferrari, and Grynberg 2007):

Σ−1 =
1

2
Id +

1

2
11⊤

In the following Table 1 we list the estimates from both methods in columns three and four with their

estimated relative variances in bold font. In addition, we list: a) the best lower bound from (8) in column

two; b) the upper bound ψ∗ in column five; and c) the estimated acceptance probability ℓ̂/ψ∗ in column

six.

Table 1: Estimates of ℓ for [l,u] = [−1,∞]d with ν = 10 using n = 105 replications.

d lower bound ℓ̂Genz ℓ̂ ψ∗ accept. prob.

5 0.15 0.197 (0.21%) 0.197 (0.18%) 0.33 59%

10 0.013 0.032 (0.49%) 0.032 (0.20%) 0.063 50%

20 1.16×10−4 0.00161 (1.8%) 0.00163 (0.23%) 0.00385 42%

30 1.24×10−6 1.53×10−4 (2.8%) 1.51×10−4 (0.26%) 3.92×10−4 38%

40 1.54×10−8 1.81×10−5 (5.4%) 2.08×10−5 (0.29%) 5.68×10−5 36%

50 2.17×10−10 3.63×10−6 (15%) 3.74×10−6 (0.25%) 1.06×10−5 35%

100 3.35×10−19 3.44×10−9 (51%) 6.99×10−9 (0.28%) 2.11×10−8 33%

150 1.29×10−27 6.35×10−11 (47%) 9.29×10−11 (0.27%) 2.85×10−10 32%

From the table we can conclude the following. First, the lower bound (8) is not useful in this example.

From a range of simulations we found that the bound is typically tight only when we consider tail-like

regions such as [γ,∞]d for γ > 0, which is not the case here. Second, as d increases the performance

of the Genz estimator rapidly deteriorates. In contrast, the relative error of ℓ̂ remains stable for all d.

The acceptance probability in column six indicates that Algorithm 3.2 is useful for simulating from the

conditional density. Note that a naive acceptance-rejection scheme in which we simulate X ∼ tν until

l 6CX 6 u is only practical up to about dimension d = 30, beyond which the acceptance probability ℓ is

too small.

Now, consider the same setting, but this time with the orthant region [l,u] = [0,∞]d .

Table 2: Estimates of ℓ for [l,u] = [0,∞]d with ν = 10 using n = 105 replications.

d lower bound ℓ̂Genz ℓ̂ ψ∗ accept. prob.

5 0.00190 0.00193 (0.39%) 0.00192 (0.15%) 0.0030 63%

10 1.55×10−7 1.69×10−7 (2.2%) 1.58×10−7 (0.16%) 2.67×10−7 59%

20 2.76×10−17 1.18×10−17 (43%) 2.98×10−17 (0.16%) 5.34×10−17 55%

30 3.29×10−28 1.29×10−33 (98%) 3.79×10−28 (0.13%) 6.99×10−28 54%

40 6.89×10−40 − 8.48×10−40 (0.15%) 1.58×10−39 53%

50 4.00×10−52 − 5.23×10−52 (0.21%) 9.91×10−52 52%

100 1.02×10−118 − 1.71×10−118 (0.19%) 3.33×10−118 51%

150 5.18×10−191 − 1.03×10−190 (0.30%) 2.02×10−190 50%

The results in the table above indicate that the lower bound is now useful. Another interesting point is

that the performance of the Genz estimator now degrades much more rapidly and fails to give meaningful

estimates for d > 20.

Although not displayed here, the effect of the exponential tilting is even more dramatic with the tail-like

region [1,∞]d . In fact, we conjecture that the proposed estimator exhibits bounded relative error as γ ↑ ∞

when ℓ(γ) = P(CX > γCC⊤l∗), where l∗ > 0. This would mean that limsupγ↑∞ Var(ℓ̂)/ℓ2 < ∞ (L’Ecuyer
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et al. 2010). See also Asmussen and Glynn (2007) and Kroese et al. (2011), Chapter 10 for discussions

of efficiency measures when estimating rare-event probabilities.

Example 4.2 (Positive Correlation). Consider the case [l,u] = [1,2]d with

Σ =CC⊤ = (1−ρ)Id +ρ11⊤,

where ρ = 0.95. The table below displays the results, which suggest that in cases with strong positive

correlation, the estimator ℓ̂Genz is more accurate and reliable. Further, we observed that the improvement

due to exponential tilting in such cases is marginal and the lower bound (8) is not tight.

Table 3: Estimates of ℓ for [l,u] = [1,2]d with ν = 10 using n = 105 replications.

d lower bound ℓ̂Genz ℓ̂ ψ∗ accept. prob.

5 0.046 0.099 (0.19%) 0.099 (0.21%) 0.22 44%

30 0.010 0.060 (0.27%) 0.060 (0.29%) 0.20 29%

50 0.0059 0.0520 (0.38%) 0.0518 (0.46%) 0.20 25%

100 0.0022 0.0424 (0.46%) 0.0424 (0.35%) 0.19 22%

150 0.0012 0.037 (0.59%) 0.037 (0.49%) 0.18 20%

Example 4.3 (Random Covariance Matrix). In this example we consider test cases in which Σ =CC⊤ is a

random draw from a large sample space of possible covariance matrices. A popular method for simulating

random positive-definite test matrices is that of Davies and Higham (2000), who simulate correlation

matrices with eigenvalues uniformly distributed over the simplex {λ : ∑i λi = d, λi > 0}. Table 4 and

Figure 4.3 below show the five-number summary and boxplots of the empirical distributions of the relative

errors of estimators ℓ̂ and ℓ̂Genz based on 100 independent trials (100 replications of the entire scheme with

a sample size n each). For each trial we simulated a different (random) scale matrix Σ according to the

mechanism of Davies and Higham (2000). In this example we set [l,u] = [1,∞]100 and for each of the 100

independent trials we used n = 105.

−0.5

0

0.5

1

1.5

2

1 2

lo
g 1

0
(R

el
.
E
rr
o
r
in

%
)

ℓ̂ ℓ̂Genz

Figure 1: Empirical distribution of relative errors of ℓ̂ and ℓ̂Genz when [l,u] = [1,∞]100 and n = 105.
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Table 4: A five number summary of the distributions of the relative errors.

min 1-st quartile median 3-rd quartile max

rel. error of ℓ̂ 0.26% 0.48% 0.56% 0.65% 1.08%

rel. error of ℓ̂Genz 33% 75% 89% 99% 100%

ψ∗/ℓ̂ 16 46 66 100 470

It is clear that ℓ̂Genz is not a useful estimator in this setting, because in the best of cases it could only

manage a relative error of about 30%. The last row of Table 4 displays the average number of trials needed

before acceptance in Algorithm 3.2.

For a more challenging example suppose each element of matrix C is Cauchy distributed with location 0

and scale 0.012. In other words, Ci, j
iid∼ t1(0,0.012) and Σ=CC⊤. Here we consider the case [l,u] = [0,∞]100.

The following table and graph display the empirical distributions of the relative errors of ℓ̂ and ℓ̂Genz based

on 1000 independent replications of the experiment.
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Figure 2: Empirical distribution of relative errors of ℓ̂ and ℓ̂Genz when [l,u] = [0,∞]100 and n = 105.

Table 5: A five number summary of the distributions of the relative errors.

min 1-st quartile median 3-rd quartile max

rel. error of ℓ̂ 0.20% 0.84% 1.0% 1.4% 3.33%

rel. error of ℓ̂Genz 8.4% 38% 53% 75% 99.9%

ψ∗/ℓ̂ 80 500 900 1600 14000
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5 CONCLUDING REMARKS

We have presented a new method for simulation from the truncated multivariate student-t distribution

and estimation of the normalizing constant of the associated truncated density. The method combines

exponential tilting with convex optimization. Numerical experiments suggest that the method is effective

in many different settings and not just in the tails of the distribution. The numerical results also suggest

that the approach yields insignificant improvement over the Genz estimator when we have strong positive

correlation. One reason for this seems to be that the Genz estimator already works quite well in such

settings, making it difficult to improve upon. At the same time the Genz estimator performs extremely

poorly in the absence of positive correlation structure. All of these observations invite further theoretical

study. For example, it would be interesting to see if an efficiency result, such as vanishing relative error, can

be established in an appropriate tail asymptotic regime. We intend to investigate these issues in upcoming

work.

APPENDIX A: PROOF OF THEOREM 1

We show that ψ is a concave function of vector (r,z) and a convex function of (η ,µ). To this end, recall

that if f : Rd1×R
d2 → R is a log-concave function, then the marginal

g(x) =
∫

R
d2

f (x,y)dy

is a log-concave function as well, see Prékopa (1973). Also recall that the indicator function I{x ∈ C }
of a convex set C is a log-concave function of x and that the product of log-concave functions is again

log-concave. We can write

I

{
Lkk(x+µk)+

k−1

∑
i=1

Lkizi−
rlk√

ν
> 0

}
= I{(r,z) ∈ C1}

and

I

{
Lkk(x+µk)+

k−1

∑
i=1

Lkizi−
ruk√

ν
6 0

}
= I{(r,z) ∈ C2}

for some convex sets C1 and C2. It follows that

ln
[
Φ(ũk−µk)−Φ(l̃k−µk)

]
= ln

∫
φ(x;0,1)× I{(r,z) ∈ C1}× I{(r,z) ∈ C2}dx

is concave in (r,z) by Prékopa’s result. Since ln(r) is concave and the sum of concave functions ∑k ln(Φ(ũk−
µk)−Φ(l̃k−µk)) is concave, it follows that ψ is concave in (r,z). Next, note that 1

2
η2− rη + lnΦ(η) is

convex in η , because (up to a normalizing constant)

1

2
η2 + lnΦ(η) = ln

∫ 0

−∞
φ(x)exp(−xη)dx+ const.

is the cumulant function of the normal distribution, truncated to the interval (−∞,0]. A similar reasoning

shows that
1

2
µ2

k − zkµk + ln

∫ ũk−µk

l̃l−µk

φ(x)dx

is convex in µk and since a sum of convex functions is convex, ψ is convex in the vector (η ,µ). Thus,

the concave-convex function ψ(r,z;η ,µ) satisfies the saddle-point condition infη ,µ supr,z ψ(r,z;η ,µ) =
supr,z infη ,µ ψ(r,z;η ,µ). Recall that if for each y the function f (x,y) is convex, then the pointwise

supremum supy f (x,y) is also convex. Therefore, infη ,µ supr,z ψ(r,z;η ,µ) has the same value as the

concave optimization supr,z ψ(r,z;η ,µ) subject to the gradient of ψ with respect to (η ,µ) being equal to

the zero vector. Imposing the restriction (r,z)∈R, where R is a convex set, does not change the argument,

which leads us to the optimization problem (6).
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6 APPENDIX B: ANALYTICAL EXPRESSIONS FOR LOWER BOUND

The right-hand side of (8) is available analytically as follows. Let

tν(x) =
Γ((ν +1)/2)√

νπ Γ(ν/2)
(1+ x2/νi)

−(ν+1)/2

denote the density of univariate student-t distribution with ν degrees of freedom, and let

Tν(x) = 1− 1

2

1

B(ν/2,1/2)

∫ ν/(ν+x2)

0
t

ν
2
−1(1− t)−

1
2 dt

be the corresponding cdf. Then, we can define and compute the following quantities:

αi
def
=

li−µi

σi

, βi
def
=

ui−µi

σi

, ci
def
= Tνi

(βi)−Tνi
(αi)

qi(xi)
def
=

1
σi

tνi

(
xi−µi

σi

)

ci

, xi ∈ [li,ui]

Eqi
[Xi]−µi

σi

=
1

ci

νi

νi−1
(tνi

(αi)− tνi
(βi))+

1

ci

1

νi−1
(tνi

(αi)α
2
i − tνi

(βi)β
2
i )

Eqi

[
Xi−µi

σi

]2

=
(νi−1)νi

νi−2

Tνi−2(βi

√
(νi−2)/νi)−Tνi−2(αi

√
(νi−2)/νi)

ci

−νi

These calculations give us all quantities on the right-hand size of (8), except for
∫
[q(y)]

ν+d
ν+d+2 dy =

∏i

∫
[qi(yi)]

ν+d
ν+d+2 dyk. To compute the last integral let ξi =

(νi+1)(ν+d)
ν+d+2

− 1, and then use the following

analytical expressions:

∫ ui

li

[qi(x)]
ν+d

ν+d+2 dx =

(
Γ((νi +1)/2)

Γ(νi/2)
√

νiπσici

) ν+d
ν+d+2

∫ ui

li

(
1+

(x−µi)
2

νiσ 2
i

)− νi+1

2
ν+d

ν+d+2

dx,

where νi+1
2

ν+d
ν+d+2

= ξi+1
2

and

∫ ui

li

(
1+

(x−µi)
2

νiσ2
i

)− ξi+1

2

dx = σi

√
ν/ξi

√
ξiπ Γ(ξi/2)

Γ((ξi +1)/2)

(
Tξi

(βi

√
ξi/ν)−Tξi

(αi

√
ξi/ν)

)
.
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