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ABSTRACT

A supply chain (SC) consists of multiple entities representing the retailers, manufacturers, distributors or
suppliers. A firm can be one of the entities within the whole SC. To study the external effects on its internal
operations, the firm needs to construct a SC model. It may have sufficient data to build a detailed model
of its operational processes. However, since it has no control or visibility over the external entities, it is
difficult to construct the rest of the SC model at the same level of detail. This paper proposes a hybrid
model of the SC using integration design. It allows the whole SC to be captured at the broad view through
system dynamics, and the target firm to be represented using agent-based model. The proposed hybrid
model is therefore able to capture different behaviors of the same system, e.g, strategic planning of the
whole SC, and detailed operational process of individual entities. To demonstrate the applicability of the
hybrid model, we evaluate the model through a case study of disruption management policies.

1 INTRODUCTION

System dynamics (SD) are frequently used in high level strategic modeling of supply chain (SC) for long
term decision-making (Lättilä, Hilletofth, and Lin 2010). Since the SD focus on the macro-level details in
the SC, aggregated data is sufficient to calibrate the model. Typically, for public-listed companies, their
annual account reports regarding the total sales and production volume are publicly available. Hence,
parameters for a simulation of supply chain network (SCN) using SD could be calibrated easily based on
publicly available data.

On the other hand, discrete event simulation (DES) is often used in short-term operational planning, due
to the advantage of adaptability and modularity in modeling SC processes (Lättilä, Hilletofth, and Lin 2010).
Agent-based simulation (ABS) can be used to simulate SCN, where each agent is a business entity within
the SC, and the agents interact with each other within an environment through discrete events. However, the
complexity of DES/ABS models increases exponentially with the size of the simulated system (Rabelo et al.
2005). In addition, a company may not have visibility and control over the whole SC. Detailed operational
behaviors of all SC entities are not available, e.g., inventory or procurement policies of a business entity are
not revealed to its business partners. Therefore, building a DES/ABS for the entire SC is difficult without
all the operational behaviors and parameters.

To address these issues, this research proposes a hybrid model that combines SD with ABS in an
integration design approach to simulate the entire SC. The broad view of the SC is modeled as SD, while the
detailed operational processes of the entities are represented using agent-based model (ABM). Each entity
within the SC can be either an SD entity, or an agent, depending on the problem scope. The combined
model gives a single view of the whole SC. For instance, a firm decides to build a model of its SCN, to
study the external effects of the whole SC on its internal operations. Due to the accessibility of external
data and lacking of operation details of other entities in the SC, it restricts the applicability of the ABM.
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By using a hybrid model, it can then build highly detailed model of its own operations using ABM, while
modeling the external effects on the firm through SD.

The remaining of the paper is organized as follows: Section 2 reviews the existing hybrid approaches
to model SC. Section 3 describes a hybrid model of SC, integrating SD and ABS. Section 4 illustrates the
application of the hybrid model using a case study on supply disruption management. Section 5 describes
the experiments to evaluate the trade-offs between different SC disruption management policies. The paper
concludes in Section 6 with future works.

2 LITERATURE REVIEW

Previous research focuses on using different methods for different levels of decision domain, e.g. using
SD at strategic level, or using DES at operational/tactical level (Tako and Robinson 2012). Hybrid models
combine these approaches to provide an integrated decision-making system. There are several design
approaches for combining different models.

Sequential design first used the SD model to capture the whole system under study, and then the DES
model is used to focus on a specific process of the system (Morgan, Howick, and Belton 2017). There
is usually a linear and unidirectional relationship between the models, where the output of one model is
used as the input for the other model. Reiner (2005) proposed a combined usage of SD and DES: order
fulfillment process using DES, whose performance indicators are used in the customer-orientated process
evaluation using SD.

Interaction design is frequently used to capture the operational processes and interactive influences
acting upon them (Morgan, Howick, and Belton 2017). Compared to sequential design, interaction design
has bi-directional feedback between the models. For example, Wang et al. (2013) proposed a hybrid model:
ABM models different departments within the SC, SD is used predict the production output and adjust
the production rate based on the input from sale department (agent), and DES simulates the assembling
process based on the production rates from the production planning (SD model). The assembled products
are input to the sale department (agent) to be sold to customers.

Integration design combines DES and SD in the same model, taking the same view of the system.
The two methods are inseparable and need to function together as a single model. This gives a concise
and coherent view of the model, instead of separate results from each model to the end-users. Helal et al.
(2007) proposed integrating DES and SD to simulate integrated manufacturing enterprise. An overall SD
will be built for the enterprise system, and a number of DES models will be designed for the selected
entity in the system as dictated by analysis needs.

The proposed model in this paper uses an integration design to integrate SD and ABM to form a single
model. However, this model is flexible such that each entity in the SCN can be either a SD entity or an
agent. Detailed description of the model is given in the next section.

3 SUPPLY CHAIN HYBRID MODEL

3.1 Supply Chain Network Model

The SC model studied in this paper is based on a typical multi-echelon manufacturing SC. First, the entire
SCN is modeled as a flow network. Each node in the network represents a SC entity, e.g., manufacturers
or suppliers. Given a single SC with three entities, upstream entity (eh), current entity (ei) and downstream
entity (e j), there are two directed edges between each entity: the information flow (demand flow) from the
downstream entity to the upstream entity, and physical flow (supply flow) from the upstream entity to the
downstream entity.
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Figure 1: Casual loop diagram of a single SC entity. Solid arrows represent positive feedback loop while
dotted arrows represent negative feedback loop.

3.2 System Dynamics Model

The SD model is created by simplifying the SD supplier model, originally proposed in (Tao, Lee, and
Chew 2016), only considering the backorders, product inventory and production. It also includes part
inventories. The model is extended to support multi-echelon manufacturing SCN instead of a two-echelon
retail SCN. Figure 1 shows the casual loop diagram of a SC entity ei. The definitions of model variables,
parameters and generic equations that describe the relationships of the variables are described below, with
the corresponding units.

In Figure 1, there are three stocks in the entity (shown in rectangles): orders o j from each downstream
entity e j, part inventory Ipart and the product inventory Iproduct . The arrows show the cause and effect
relationships between the variables, with the solid arrows indicating positive feedback, and dotted arrows
indicating negative feedback. The entity ei has a set of downstream entities E in

i where e j ∈ E in
i , and a set

of upstream entities Eout
i where eh ∈ Eout

i . Entities are connected to each other through the demand and
supply flows. Each entity is constrained by the production capacity, which is the volume of products or
services that can be produced by the entity.

First, the current pending orders o j(t) from each downstream entity e j is the aggregation of the demand
flow from each downstream entity din

j (t) with the unfulfilled demand from the last period o j(t−1), minus
the out-going supply sout

j (t) which is the fulfilled orders (1a). The total order quantity Oi(t) is the sum of
all pending orders (1b). The total outgoing demand Dout

i (t) is the total order quantity subtracted by the
existing product inventory Iproduct

i (t) (1c). If there are available products in the inventory, it will be used
to fulfill the demand directly. Then, the total outgoing demand is distributed according to the available
upstream entities (1d).

Orders from e j, o j(t) = o j(t−1)+din
j (t)− sout

j (t−1) [Orders] (1a)

Total Order Quantity, Oi(t) = ∑
e j∈E in

i

o j(t) [Orders/Period] (1b)

Total Outgoing Demand, Dout
i (t) = Oi(t)− Iproduct

i (t) [Orders/Period] (1c)

Demand Outflow to eh, dout
h (t) =

Dout
i (t)
|E in

i |
[Orders/Period] (1d)

The supply inflow sin
h (t) is aggregated with left-over parts from the last period Ipart

i (t−1) (2a), subtracted
by amount of parts used in production Pi(t−1), to form the current part inventory Ipart

i (t). Based on the
production capacity Ci, current total demand Oi(t) and available parts Ipart

i (t), product is manufactured (2b).
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Figure 2: Agent model for a single SC entity.

The manufactured product is added to the product inventory Iproduct
i (t), including surplus of products from

last period Iproduct
i (t−1) (2c), and subtracting the fulfilled supply sout

j (t−1). The total outgoing supply
Si(t) depends on the current orders Oi(t) and existing products in the inventory (2d). Outgoing supply
sout

j (t) is distributed among the downstream entities proportional to the pending demand (2e).

Part Inventory, Ipart
i (t) = Ipart

i (t−1)+ ∑
eh∈Eout

i

sin
h (t)−Pi(t−1) [Parts] (2a)

Production, Pi(t) = min(Oi(t),Ci, I
part
i (t)) [Products/Period] (2b)

Product Inventory, Iproduct
i (t) = Iproduct

i (t−1)+Pi(t)−Si(t−1) [Products] (2c)

Total Outgoing Supply, Si(t) = min(Oi(t), I
product
i (t)) [Products/Period] (2d)

Supply Flow to e j, sout
j (t) =

o j(t)
Oi(t)

×Si(t) [Products/Period] (2e)

3.3 Agent-Based Model

In ABM, each entity is modeled as agents, which interacts with others by generating discrete events. There
are two types of discrete events: orders represent the demand, and shipment represent the supply. The
simulation is executed by time-step, where each time step represents a day of operation in the SC. At
every time step, each agent interacts with each other by exchanging orders and shipments. Every agent
has the same general behavior, which is shown in Figure 2. This is an extension of the agent-based model
of manufacturing SC, originally proposed in (Tan, Li, and Cai 2015), including production operations in
the entity.
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At the start of each time step, the agent will collect all the pending orders from its downstream agent
in an order queue. Assuming one unit of part is required to manufacture one unit of product, the agent
makes part orders to its upstream agents based on its inventory policy. When the inventory level falls below
the safety stock, the agent will generate a replenishment order to the upstream agent that will restore the
inventory to the safety stock. The review period is set to every time step. When the upstream agent fulfills
the part orders and delivers the part downstream, the agent will collect the part shipments and increase the
part inventory according to the shipment quantity received.

Based on the availability of parts, pending orders and production capacity (Ci), new production is
generated. The manufacturing process completes the production based on the production time, and adds
the produced quantity to the product inventory. According to the pending orders and available product in
the inventory, shipment will be created and sent downstream.

3.4 Hybrid Model

Agent

Demand Flow Orders Orders Demand Flow

Supply Flow Supply Flow

DF2O O2DF

SH2SF SF2SH
ShipmentShipment

UpstreamDownstream

Figure 3: Integration of Agent model with SD.

This hybrid model uses the integration design (Morgan, Howick, and Belton 2017), where both models
have the same view of the system and executes together. SD uses continuous time (executing in fixed time
step with integration interval) to interact with ABS executing at fixed time step. ABS executes at time step
(tD), while SD is executes in time step (tC). To synchronize between the continuous and discrete simulation,
tC is at a finer time resolution compared to tD. The data exchange occurs at the discrete time step tD.

By replacing a SC entity in the SD model with the corresponding agent model, this allows the agent
model represents the high level details of a SC entity, while allowing the SD model to capture the broad
view of the whole SC. Adapters need to be created to wrap around an agent to convert between the discrete
events and corresponding flows, as shown in Figure 3.

Continuous to discrete adapters contain buffers to accumulate flows during the continuous time.
Discretization of the flows depends on the lot size defined for the order and shipment. In the real world
SC, the lot size is determined by the two entities when they are performing the transaction. The value
of lot size depends on the modeler. At each discrete time step, the adapter will generate discrete events
based on the lot size. Similarly, discrete to continuous adapters receive the discrete event, and generate
the corresponding flow quantity. Given the order lot size Lorder, and shipment lot size Lshipment , conversion
procedure for continuous to discrete adapters are shown in Table 1, and discrete to continuous adapters in
Table 2.

There are four types of adapters to convert between the flows and the discrete events, as shown in
Figure 3. Demand flow to Orders (DF2O) converts the demand flow into discrete orders to be sent to the
agent. It accumulates the demand flow during the continuous time into a buffer, and discretizes into discrete
orders based on the order lot size. After processing the orders, the agent may submit orders to suppliers if
there are insufficient parts. Orders to Demand Flow (O2DF) receives the part orders, and convert them to
demand flow upstream. The upstream entity processes the demand flow, and generates the corresponding
supply flow downstream. Supply Flow to Shipment (SF2SH) accumulates the supply flow into a buffer, and
discretizes into discrete part shipment based on the shipment lot size. Shipment to Supply Flow (SH2SF)
receives the product shipment, and convert them to supply flow downstream.
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Table 1: Continuous to Discrete Adapters.

Adapter Continuous Discrete
Demand Flow to Or-
ders (DF2O)

Bufferd += d j while Bufferd > Lorder do
Generate new Order(Quantity = Lorder, Time = tD)
Bufferd −= Lorder

end while
Supply Flow to Ship-
ment (SF2SH)

Buffers += sh while Buffers > Lshipment do
Generate new Shipment(Quantity = Lshipment )
Buffers −= Lshipment

end while

Table 2: Discrete to Continuous Adapters.

Adapter Discrete Continuous
Orders to Demand Flow (O2DF) dh += Order.Quantity dh→ upstream

Shipment to Supply Flow (SH2SF) s j += Shipment.Quantity downstream← s j

4 CASE STUDY

4.1 Disruption Management Policies

There are two general approaches to handle the impact of disruptions. Mitigation policies are those in
which the firms take some action in advance of a disruption, and thus incur cost of the action regardless
of whether the disruption occurs (Tomlin 2006). One of the common practices for mitigation policies is
sourcing from more than one supplier. If the one of the suppliers is down during the disruption, other
suppliers can still fulfill the demand of the firm. However, multi-suppliers can be more costly due to the
increase in ordering costs (Arda and Hennet 2006). During normal scenario, the demand is split between
the suppliers, reducing the quantities ordered per supplier. Therefore, it is difficult to negotiate for lower
price of the supplies due to economies of scale.

Contingency policies are actions that are only taken when the disruption occurs. Hence, the cost of
action is incurred only during activation of the contingency policy. Contingent re-routing seeks alternative
suppliers during disruption, where the demand will be rerouted to the backup supplier when the primary
supplier is not available (Tomlin 2006). However, a backup supplier often charges a higher cost than regular
suppliers (Tomlin 2009). The backup supplier may need to activate additional manpower in order to fulfill
the increase in demand, which transmit into higher costs.

4.2 Supply Chain Network

One of the SCNs (SC01) from the data set of multi-echelon SCs has been selected to be used in the case
study (Willems 2007). This SCN is simplified to consider a single product, where the manufacturer only
requires one type of parts to manufacture one type of products. There are three retailers in the network
(R1, R2 and R3), two manufacturers (M1 and M2), and one part supplier (P1), as shown in Figure 4a. The
arrows in the network represent the supply flow. The firm of interest is M1, where it is modeled using an
agent. Other entities are modeled using SD.

The most common way to model disruption is to assume that the supply process has two states:
functioning normally, and disrupted (Snyder et al. 2016). During disruption, supplier P1 will be down, and
it will be up after the disruption. Disruptions can be infrequent but long, or frequent but short. Figure 4
shows three disruption management policies that are examined in this case study. The acceptance policy is
shown in Figure 4a, where there is only a single supplier. Contingent policy is shown in Figure 4b, where
the backup supplier P2 is only utilized during disruption. As a contingent supplier, P2 is configured with
the same parameters as P1. The demand will be re-routed to P2 during the disruption. Figure 4c is shows
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Figure 4: Different SC disruption management policies.

the mitigation policy where dual suppliers (P1 and P2) are used. The demand is split evenly between the
two suppliers, where each supplier provide half of the total supply required by M1. During disruption,
only the remaining supplier will be able to fulfill half of the total demand.

The impact of various costs on the attractiveness of a given policy is of an interest to the firm. By
simulating across a spectrum of disruption profiles, we can analyze the cost-effectiveness in terms of two
metrics: backorder cost and ordering cost. Backorder cost is the cost incurred by a firm when it is unable
to fill an order and must complete it later. The backorder cost accumulates at a constant rate proportional
to both the backorder volume and backlog duration (Hu, Kim, and Banerjee 2009). Purchasing or ordering
cost is the cost involved in sourcing the product from the suppliers, which a simple model assumes the
cost to be linear to the amount purchased (Scarf 1959).

Trade-offs between these policies and trade-off between backorder cost and ordering cost are analyzed
and shown in the next section.

5 EXPERIMENT

5.1 Setup

The SD model is calibrated with the demand data from Willems (2007). Based on the demand data, the
supply or production capacity for each entity is assumed to be 10% more than the demand on the entity.
This is to allow flexibility in the SC such that it is possible to clear the back-orders.

The entity M1 is modeled as an agent. Other than the demand data, the production lead time and
ordering cost from Willems (2007) is also used to calibrate the parameters for the agent. The remaining
parameters are based on assumptions. There is an ordering lead time of 1 day, and shipment lead time of
1 day (Tan, Li, and Cai 2015). The order lot size Lorder and shipment lot size Lshipment are both set to 50
units. Assuming that the production lead time for ei is t production

i , ordering lead time torder, and shipment
lead time tshipment , the safety stock for ei is si = Ci× (t production

i + torder + tshipment).
The simulation is executed for a period of 2 years, after running for 1 year as warm up. The agent

is executed with a time step of 1 day, while the system dynamic entities execute at a time step of 1
2 day.

Disruption length and interval between disruptions are configured according to the experiment in the next
sections. However, a firm may not respond immediately to a disruption at a supplier (Arda and Hennet
2006). For this case study, contingent supplier is activated at the middle of the disruption, for a period
equals to the disruption length. Assume that the start of the disruption is at time ts for a duration of Td ,
the time when contingent supplier is activated equals ts + Td

2 .
Two metric are used to measure the performance of the agent M1: backorder cost B and ordering

cost C. To differentiate the additional expense of applying disruption management policies, there is a
cost multiplier on the backorder cost α and the ordering cost β for both polices. Assume that the cost
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Figure 5: Optimal Disruption-management Policies (M → Multi-suppliers, C → Contingent Supplier).

of ordering from the regular supplier is 1, if the ordering cost per unit for multi-suppliers or contingent
supplier is 20% more than regular supplier, β = 1.2. For an agent ei, the backorder cost for time step t is
defined as B(t) = Oi(t)×α . While the ordering cost for time step t is defined as:

C(t) =

{
dout

h (t)×β , if h is contingent or multi-supplier
dout

h (t) , if h is regular supplier
(3)

The cost multiplier for each policy may not be the same, depending on the experiment.

5.2 Disruption Scenarios

Figure 5 shows the optimal disruption-management policies across different disruption scenarios. The
length of disruption, and the duration between each disruption are varied. Disruptions are frequent but
short at the bottom left of the figure, and rare but long at the top right. Cost multipliers are set as β = 1
and β = 1.2. The heat map shows the region for a more optimal policy. If multi-suppliers is more optimal
compared to contingent supplier, the heat map will be labeled as M, with reddish color as the intensity of
comparison. Otherwise, if contingent supplier is more optimal, it is labeled as C, with bluish color as the
intensity of comparison.

Figure 5a shows a heat map of the range of average per day backorder cost for multi-suppliers or
contingent supplier. Color intensity represents the average backorder cost, with darker color for higher
cost. The policy with lower backorder cost is more optimal. We can see that when the interval between
the disruptions is low, contingent suppliers will have a lower backorder cost compared to multi-suppliers.
Even thought the disrupted supplier recovered after disruption, it does not have sufficient capacity to fulfill
the back-orders. Since the contingent supplier is engaged even after the disruption ended, it is able to clear
the backorders.

When the interval between the disruptions increases, a multi-suppliers has a lower backorder cost
compared to contingent suppliers. With sufficient time between disruption, multi-suppliers are able to clear
the backorders. Since contingent supplier is only activated after certain period after the disruption, the
firm is unable to manufacture anything during this period, resulting in high backorder cost. Whereas with
multi-suppliers, at least the firm is able to continue with production at lower capacity, depending on the
remaining supplier. At around 20 to 30 days between disruptions with disruption length of 50 to 60 days,
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Figure 6: Ordering Cost trade-off between Contingent Supplier and Multi-Suppliers. Gradient g of each
line is shown in the legends.

both policies result in high backorder cost (showing dark red or dark blue). When the length of disruption
increases, backorder cost will have the most impact when there is insufficient time to clear the back-orders.

Figure 5b shows a heat map of the difference between average per day ordering cost for multi-suppliers
and contingent suppliers. Color intensity represents the amount of the absolute difference, with darker
color for higher amount. When the interval between the disruptions is low and disruption length is high,
multi-suppliers seem to have a lower ordering cost compared to contingent supplier. This is due to the
multi-suppliers having lower order fulfillment compared to contingent supplier, resulting in lower overall
ordering cost. The cost difference is highest at both up-left and bottom-right corners. Multi-suppliers incur
higher ordering cost over time if there are few disruptions. The firm is paying for additional costs without
any benefits from using multi-suppliers. Overall, contingent supplier will be cost-effective in terms of
ordering costs if the multi-suppliers and contingent suppliers have the same cost multiplier.

5.3 Ordering Costs Trade-off

Figure 6 compares the trade-off between the policies based on different cost multiplier for each policy.
The x-axis shows the cost multiplier for the multi-supplier (βm), while y-axis shows the cost multiplier for
the contingent supplier (βc). There are four different disruption scenarios, varying between the disruption
length (short or long), and interval between disruptions (frequent with short intervals or infrequent with
long intervals). The lines represent the ordering cost where multi-suppliers is equals to the contingent
supplier.

For most disruption scenarios, contingent suppliers are generally more cost effective in terms of ordering
cost compared to multi-suppliers (g< 1). This is more prominent when the disruption is short and infrequent
(dot line), where g = 0.20. It is because it only incurs very little addition cost to engage the contingent
supplier only during a few short disruptions. However, multi-suppliers seems more cost-effective than
contingent supplier for long and frequent disruption (dot-dash line), where g = 1.05. From the previous
subsection, the lower ordering cost comes from lower order fulfillment.

To interpret this diagram, we can compare the ordering cost between polices under different disruption
scenarios. For example, given a short and infrequent disruption, and the cost multipliers for different
policies are βm = 1.8 and βc = 1.1. The point (1.8,1.1) is under the dot line. This indicates that contingent
supplier will be more cost-effective in terms of ordering cost compared to multi-suppliers given the cost

501



Tan, Cai, and Zhang

multiplier and disruption scenario. For another example, if βc = 1.3, the point (1.8,1.3) is above the dot
line. This means that multi-suppliers will be more cost-effective.

5.4 Total Relative Cost

Assuming β = 1, given that the average backorder cost for multi-suppliers is Bm, and contingent supplier
is Bc, the normalized backorder cost for the multi-suppliers B̂m and for contingent supplier B̂c is shown
below:

B̂m =
Bm

max(Bm,Bc)
×α B̂c =

Bm

max(Bm,Bc)
×α

Similarly, the average amount of orders fulfilled for multi-suppliers is defined as Cm, and contingent
supplier is Cc. Assuming β = 1.5, the normalized ordering cost for the multi-suppliers Ĉm and for contingent
supplier Ôc is shown below:

Ĉm =
Cm

max(Cm,Cc)
×β Ĉc =

Cc

max(Cm,Cc)
×β

After normalizing the costs (back-order cost and ordering cost) between the policies, the total relative
cost is calculated by aggregating the weighted metrics. Assume the weight for the ordering cost is w1 where
0≤ w1 ≤ 1, and the weight for the backorder cost is w2 = 1−w1. The total relative cost for multi-suppliers
TotalCostm and contingent supplier TotalCostc is shown below:

TotalCostm = B̂m×w1 +Ĉm×w2 TotalCostc = B̂c×w1 +Ĉc×w2

Figure 7 shows the trade-off between backorder cost and ordering cost based on the two policies. X-axis
represents the weight of the ordering cost w1. Increasing w1 will decrease the weight for the backorder
cost w2. Y-axis is the total relative cost. Policy with lower total relative cost is a more optimal.

In Figure 7a, multi-suppliers is always more expensive than contingent supplier, as it is difficult to clear
the backorders. These results shows that considering only ordering cost as shown in Figure 6 is insufficient
for comparison between policies under short and frequent disruptions. In Figure 7b, multi-suppliers is
generally more expensive than contingent suppliers due to the unfulfillment of back-orders. Multi-suppliers
only becomes cheaper when w1 > 0.9. This is similar in Figure 6 for the long and frequent disruptions
(dot dash line), where multi-suppliers seems more cost-effective. Hence, frequent disruptions has a huge
impact on the backorder cost for multi-suppliers (large gap between policies at lower w1).

On the other hand in Figure 7c, multi-suppliers is cheaper compared to contingent supplier when w1
is low. This is because multi-suppliers tend to have lower backorder cost compared to contingent supplier,
as shown in Figure 5a at the top left. When w1 increases, contingent supplier will be more cost-effective
due lower ordering cost. This is similar in Figure 7d.

In summary, when the backorder cost is high (lower w1): for frequent disruptions, multi-suppliers is
more expensive due to the inability to clear backorders; for infrequent disruptions, contingent supplier is
more expensive due to higher backorders. On the contrast, when the ordering cost is high (higher w1),
contingent supplier is generally more cost-effective.

6 CONCLUSION

A hybrid model of SC is proposed, combining SD and ABS using an integration design approach. Each
entity in the SC can be represented by either a SD entity or an agent, interacting with each other through
special adapters that convert between the continuous flow and discrete events. The number of agents in the
model depends on (i) the availability of data to calibrate agent model parameters, or (ii) the level of detail
needed for the study. There are several benefits of using the hybrid model. First, this allows the firm to
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(a) Short and Frequent Disruption.
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(b) Long and Frequent Disruption.
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(c) Short and Infrequent Disruption.
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(d) Long and Infrequent Disruption.

Figure 7: Trade-off between Backorder Cost and Ordering Cost.

construct a broad view of the whole SCN based on aggregated data through SD. Next, it allows the firm to
perform in-depth analysis regarding its own performance by modeling detailed processes using an agent.

A case study on disruption management policies is used to illustrate the applicability of the hybrid
model. A firm is interested to find out the optimal disruption management policies during disruption. Two
disruption management policies are studied: mitigation policy using multi-suppliers and contingency policy
using contingent supplier. Trade-offs between these policies and trade-offs between backorder cost and
ordering cost are analyzed and shown in the experimental results.

As for future works, further validation on the interaction between SD model and agent model is required,
especially considering the effects of lead-time delays in the SC. This will involve performing the same
experiment with different mixture of SD models and agent models. Additional operational behaviors, e.g.
production scheduling, can be implemented in the agent model, to study the external effects on the internal
operations of the firm. Similarly, internal disruptions, such as changes to the production process, can be
investigated. This will extend the applicability of this model to the analysis of real world issues.
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