
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

A GLOBAL AND LOCAL SEARCH APPROACH TO QUAY CRANE SCHEDULING
PROBLEM

Kyrylo Perelygin
Joseph J. Kim

Department of Civil Engineering and Construction Management

California State University, Long Beach
1250 Bellflower Boulevard

Long Beach, CA 90840, USA

ABSTRACT

The container flow in terminals at a port is often bottlenecked due to the slow operations of the quay
cranes in a scarce terminal land space. The quay crane scheduling problem (QCSP) is a major problem
because of the assignment of expensive quay cranes to multiple vessel-holds for container discharging
and loading operation. This paper presents a hybrid QCSP Solver, which combines genetic algorithms for
global search with steepest ascent hill climbing for local search. Numerical experiments are performed
with small- and large-sized random QCSP instances. The experimental results revealed that the hybrid
QCSP Solver provides a better solution than the stand-alone QCSP Solver. By scheduling the dynamic
operation of quay cranes it is expected that the developed decision making tool will provide terminal
planners with a guideline to enhancing the assignment of quay cranes to a vessel.

1 INTRODUCTION

The QCSP is a major problem because of the assignment of expensive quay cranes to multiple vessel-
holds for container discharging and loading operations. Thus, the feasible optimal and/or near-optimal so-
lutions affect the overall operational performance of the whole terminal containers. The main goal of
studying the QCSP is to determine the sequence of discharging and loading operations for a quay crane
(QC) to perform with the objective function of minimizing the completion time of a ship operation. The
characteristics of the QCSP are that it is similar to the m-parallel machine problem and that it is different
because precedence relationships exist among tasks and because certain tasks cannot be performed simul-
taneously. In other words, cranes could not cross with each other. Inputs necessary for the QCSP include
a ship stowage plan with all constraints, time required to carry out each task, crane travel time between
different tasks, and crane ready time. Attention has mainly focused on a variety of objective functions to
find a solution for the QCSP. Examples of such an objective function include minimization of the aggre-
gate vessel delay cost (Peterkofsky and Daganzo 1990; Daganzo 1989 and 1990), maximization of the to-
tal profit by finding a crane-to-job match (Lim et al. 2004), minimization of the maximum relative tardi-
ness of vessel departures (Liu et al. 2005), and minimization of the vessel’s overall completion time (Kim
and Park 2004; Sammarra et al. 2007; Lee et al. 2008; Legato et al. 2008).
 Since quay crane service times are not deterministic, the use of the IP formulation to search for the
optimal solution is no longer truly representative of the discharge/loading operations in port container
terminals. Also, most mathematical models do not account for uncertainty. Various meta-heuristic ap-
proaches, such as genetic algorithms (GAs), are increasingly applied to the complex non-deterministic
hard problem due to its remarkable capabilities of overcoming the existing methods. Many researchers
have attempted to find the optimality for the QCSP to reflect reality. One of the trends in the genetic algo-
rithm research domain is to develop a new meta-heuristic method using artificial intelligence and biologi-

1563978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Perelygin and Kim

cally inspired techniques. The concept of a hybrid genetic algorithm is becoming increasingly popular and
has been successfully applied to many engineering optimization problems as well as a variety of problems
in different fields, such as aerodynamic design, signal analysis, and water resources planning and man-
agement, among others. Although hybrid approaches using meta-heuristic methods are becoming increas-
ingly popular and have been successfully applied to many engineering problems, the use of a hybrid ap-
proach, which combines a global search with a local search to the QCSP, needs to be more explored. The
development of an adaptive hybrid genetic algorithm for the optimization of the QCSP is driven and mo-
tivated by both the lack of success in finding an efficient optimal solution algorithm to the QCSP and the
need for an adaptive hybrid global-local search approach to the QCSP.

2 PROBLEM DEFINITION

The QCSP is a search problem involving the loading and unloading of containers with the use of quay
cranes. The proposed algorithm assumed that a berth schedule has already been provided, although in
practice the berth scheduling problem is affected by the vessel handling time which is dependent on the
distance between the berthing position of the vessel and the storage area, the number of quay cranes as-
signed to the vessel, and the number of internal transport vehicles assigned to vessels’ quay cranes (Boile
et al. 2009). The objective is to find a way to minimize the time a ship must wait in port (load/unload the
containers as rapidly as possible) and maximize the effective use of quay cranes available (they should
not be idle). To simplify the complexity of the problem, a few assumptions are made: (1) QCs are identi-
cal in terms of productivity that loads and unloads containers, and (2) A berth schedule has already been
provided. Consider just the ship and the QCs assigned to the ship. The QCSP has the following con-
straints: (1) QCs are on one track, and therefore cannot cross each other (if quay crane k handles ship bay
b and quay crane k' handles ship bay b' then k + 1 ≤ k'), (2) Each QC is functional and can be used at any
time (if it’s not already in use), (3) Some tasks precede others (A > B implies that A needs to be finished
before B can start), (4) Some tasks cannot be performed simultaneously due to QCs interfering with each
other, and (5) Every ship bay is handled by only one QC, and a QC can handle only one ship bay at any
time.

3 HYBRID GENETIC ALGORITHM

This section presents a hybrid strategy to develop a hybrid QCSP Solver using genetic algorithm for
global search and steepest ascent hill climbing for local search, followed by the step-by-step procedure of
the algorithm development. The step-by-step procedure for development of a hybrid QCSP Solver in-
cludes chromosome encoding, fitness evaluation and objective function, GA input parameters, selection
operation, reproduction operation using one-point crossover, invert mutation operation, local search using
steepest ascent hill climbing algorithm, and termination conditions.

The elitist genetic algorithm (EGA), which is used as a base platform in developing an adaptive hy-
brid genetic algorithm for the QCSP, employs four basic operators, such as elite roulette wheel selection,
one-point crossover, invert mutation, and steepest ascent hill climbing for local search. The initial popula-
tion of possible solutions to the QCSP is created to apply the algorithm in the very first step of the global
search. A fitness value of an individual in an initial population is calculated by constructing the sequence
of quay cranes. The selection of the parent individuals is made through the elitist roulette wheel selection
operator for the next generation. Using the parent individuals obtained from the selection operator, one-
point crossover operator is performed by exchanging parent individual segments and then recombining
them to produce two resulting offspring individuals. The invert mutation operator is performed to play the
role of random local search, which searches a much smaller portion than hill climbing algorithm. The in-
vert mutation is kept as a simple mutation to avoid conflicts with hill climbing algorithm. The local
search using the steepest ascent hill climbing is then achieved before the move to the new population em-
bedded in the EGA.

1564

Perelygin and Kim

An integer string is used because it has the added advantage of readability compared to a binary rep-

resentation. The fitness value calculated is the reciprocal of the objective function. The objective function
is formulated using Weighed (α, alpha) time at which all tasks are completed + Weighed (β, beta) total
quay crane completion time. The two default values for weighing are alpha = 0.75, and beta = 0.25. Note
that the time at which all tasks are completed is the makespan. The hybrid algorithm continuously keeps
track of the chromosome that represents the current most-fit solution. Upon the algorithm reaching the
termination condition, that chromosome is generated as an output. The makespan is calculated by con-
structing a schedule out of the DNA sequence. It is assumed that the quay cranes can be correctly posi-
tioned since the start. So, if the start of the sequence is {1, 6, 7}, the quay cranes #1, #2, and #3 will be in
position 1, 6, and 7 respectively. The hybrid algorithm is developed in five steps as follows:

Step 1: Choose two quay cranes that can work on bay k. Let’s call them qcl and qcr. These quay
cranes are chosen by looking to the left and right of bay k, and selecting the first two quay
cranes encountered (one from both sides). This ensures that the constraint that the quay
cranes cannot cross each other is enforced. If there is only one quay crane, then that’s the
winner and therefore the quay crane that is used for loading and unloading the bay – go to
step 4. However, if there are two quay cranes, then go to step 2.

Step 2: Choose the quay crane with the smaller completion time. This will be the winner – move on to
step 4. If the completion times of qcl and qcr are equal, go to step 3.

Step 3: Out of the two quay cranes, choose the one that is closer to bay k. (Absolute value of [current
quay crane position – bay position]). Move on to step 4.

Step 4: Check all the other quay cranes, and if their completion times are smaller than the winner that
we have chosen, set their completion time to the completion time of the winner. This is done
because since other quay cranes weren’t chosen for this bay, it means they were blocked by
the winner, and so for their next move they would have to wait for the winner to move on to
the next bay.

Step 5: Add the completion time of bay k, to the completion time of the winner QC. Set the position
of the winner to the position of bay k, and repeat from step 1. Once the schedule has been con-
structed, and all the different time values have been summed up, the fitness value is calculated.

The selection operation is implemented with a method called stochastic sampling or more commonly
known as the “Roulette Wheel” selection method. The selection operation generally plays a role of choos-
ing parent chromosomes for crossover operation. This method allows for ‘elitism,’ because the more fit
chromosomes will get chosen more frequently, however, lower fitness solutions also get a chance. The
reproduction of the population is handled with a one-point crossover technique. A crossover operator
combines pieces of information coming from different individuals in a population. The one-point crosso-
ver operator can preserve schemata in a more effective manner because it keeps the first half of both par-
ents intact and is less random than the UX3. The probability of disrupting short defining length is rather
low, even though the crossover operation in the beginning of an individual is likely to disrupt schema
(Goldberg 1989). This involves randomly determining a crossover point in the integer chromosome repre-
sentation and swapping all the data beyond that point in both parents. Therefore, the offspring has data
before the pivot point from parent A and data after the pivot point from parent B.

In the hybrid genetic algorithm, a technique called “invert” mutation is employed. The invert muta-
tion consists of choosing two random points in the chromosome and inverting the order of everything be-
tween those two points. The invert mutation is proved to be the most effective mutation technique out of
the four well-known four mutations of swap, insert, invert, and scramble mutations. This is mainly due to
the no-crossing of quay cranes constraint during the construction of the schedule. For example, let us as-
sume that two quay cranes are available at positions 3 and 8, respectively and the sequence in the DNA is
{5, 4, 6}. Quay crane 1 starts work on bay number 5 because it is closer than quay crane 2. Now bay 4 is
available in the sequence, but quay crane 2 cannot access it since it would have to cross quay crane 1 (so
it is effectively ‘blocked’). Quay crane 2 is now forced to wait until quay crane 1 is completed with its

1565

Perelygin and Kim

work. However, if the order of those two last numbers is switched and the sequence becomes {5, 6, 4},
quay crane 2 would be allowed to start working on bay 6 while quay crane 1 is on bay 5. This occurs con-
stantly when solving the QCSP and thus, a well-timed mutation can lead to finding a better solution. It is
important to note that while in the example above, a simple ‘swap’ mutation might do the trick it is much
more efficient to do an ‘invert’ mutation since the swap would only work if the swap occurs between two
adjacent numbers in the DNA sequence. The range of numbers to invert mutation is not chosen at ran-
dom, but instead it is the number of quay cranes. This allows the user to overcome problems like in the
example described above, but with more than two quay cranes sometimes swap mutation wouldn’t be
suitable.

This procedure is repeated five times for each chromosome in the population (Kim and Ellis 2009). It
can be argued that the current mutation operation that is implemented here is redundant as it performs a
function like the local search. Instead it can be used for a more extreme exploring of the search space by
making very large mutations in the DNA sequence. This, however, has not shown a noticeable improve-
ment in the results because for accurate results the hybrid QCSP Solver is run a couple of times for each
problem. While the more complex mutation might play a role in one of the results by allowing for a dif-
ferent search space to be explored during execution, it would be very difficult to determine if the better
result was obtained because of the more extreme mutation operation, or due to the way the random popu-
lation was generated in the beginning of each generation. The mutation was kept as a simple invert muta-
tion.

4 COMPUTATIONAL EXPERIMENTS

The hybrid QCSP Solver is written in C++, which allows for good performance as well as portability
among different systems (the program runs on Windows, Linux, and *BSD). Figure 1 shows the GUI of
the hybrid QCSP Solver. Genetic algorithms lend themselves nicely to abstraction via C++ classes, mak-
ing the program code clean and easy to understand. The hybrid QCSP Solver has three main classes
which represent the QCSP problem; CSpecies() represents the whole species and therefore the whole al-
gorithm. Inside, it contains a CGeneration() class, which represents one generation and one population of
a developing species, and finally COrganism() represents one organism in a population, containing the
fitness value, schedule, and genetic representation of the schedule. The size of the population as well as
rates for mutation and crossover can be defined via the command line.
 A comparison study is performed to demonstrate the effectiveness of the algorithm based on numeri-
cal experiments. Two different experiments were performed to examine the performance of both stand-
alone QCSP Solver and hybrid QCSP Solver. The experiments consist of small-sized QCSP and large-
sized QCSP instances. The QCSP instances are generated using the QCSP Problem Generator that is em-
bedded in hybrid QCSP Solvers. The QCSP Problem Generator allows the user to create random instanc-
es by specifying the number of bays, the number of quay cranes, and minimum and maximum bay com-
pletion times in minutes. For the numerical results for hybrid QCSP Solver, the results obtained from the
hybrid QCSP Solver by solving small-sized random QCSP instances are compared against both fitness
lower bound and best possible solution (BPS) algorithm in addition to the comparison between their
runtimes to examine the difference between their speeds to reach solutions. The 16 large-sized random
QCSP instances are solved to compare the results between fitness bound and fitness value obtained from
the hybrid QCSP Solver by three different combinations of objective function weighting values, α and β.
Input parameter values for both stand-alone QCSP and hybrid QCSP Solver include the population size,
crossover and mutation rates are set to 50, 0.5, and 0.1 for supporting the solution diversity, respectively.
Large populations generally result in better solution, but they also increase computational costs and
memory requirements. The algorithm terminated with the number of generation of 100. The objective
function weighting values are set to 0.75 and 0.25 for weighed (α, alpha) time at which all tasks are com-
pleted and weighed (β, beta) total quay crane completion time, respectively.

1566

Perelygin and Kim

Figure 1: GUI for hybrid QCSP Solver.

4.1 Small-sized Random QCSP Instances

Five small-sized random QCSP instances are generated using the QCSP Problem Generator. The pro-
cessing time of a bay is generated from a uniform distribution from 50 to 250, allowing for an accurate
simulation of a real-life problem. To show the performance of the hybrid QCSP Solver, the results ob-
tained from the hybrid QCSP Solver are compared with the results obtained by calculating a fitness bound
and the BPS. Table 1 tabulates the results obtained from the hybrid QCSP Solver, fitness bound, and BPS,
by solving five small-sized random QCSP instances. The fitness bound is a lower bound on the objective
function and it helps in the evaluation of the performance of the hybrid QCSP Solver. It is calculated by
removing the no-crossing constraint, therefore allowing the quay cranes to move to the bay of their
choice, regardless if they cross other quay cranes or not. Although practically it is not possible to achieve
a value identical to the lower bound it is still a good indication of how efficient a heuristic is. The best
possible solution is achieved by populating the current species with an enumeration of all the permuta-
tions of the genetic sequence. This means that every possible combination of creating the QCSP schedule
is checked, and the ‘best’ solution is found. BPS is implemented only for small-sized random QCSP in-
stances because it would not be feasible to implement for large instances. The BPS Difference column
calculates a percentage of how far the solutions obtained from the hybrid QCSP Solver is from the actual
solution to validate the results. It was shown that the results obtained from the hybrid QCSP Solver exact-
ly match the results obtained from the BPS algorithm. This result indicates that the hybrid QCSP Solver
can accurately find a solution and in these cases, the best one to the QCSP. It is also important to note that
the runtime of the hybrid QCSP Solver does not grow exponentially like the problem search space but in-
stead takes a constant 30-50 ms extra for each new bay.

1567

Perelygin and Kim

Table 1: Comparison results for small-sized instances.

Experiment
No.

Size
(bays x
cranes)

Fitness
Bound

BPS Hybrid QCSP Solver
BPS Dif-
ference Value

Runtime
(ms.)

Value
Runtime

(ms.)
1 7 x 2 2.06186 2.05867 9 2.05867 136 0%
2 8 x 2 1.58228 1.5804 89 1.5804 167 0%
3 9 x 2 1.15207 1.15207 882 1.15207 214 0%
4 10 x 2 1.03093 1.02617 10,051 1.02617 258 0%
5 10 x 3 1.18483 1.17751 12,104 1.17751 303 0%

4.2 Large-sized Random QCSP Instances

Table 2 tabulates the results obtained from the hybrid QCSP Solver and fitness bound by solving 16
large-sized random QCSP instances for three different combinations of objective function weighting val-
ues. This result shows that when the importance of the total quay crane completion time represented with
Beta increases from 0 to 0.5, the better fitness is also obtained. A value of 0.5 means that a solution places
equal importance on having the lowest makespan and the lowest total quay crane completion time. The
results indicate that the solutions produced by both stand-alone QCSP Solver and hybrid QCSP Solver
have a pattern in that as the total quay crane completion time increases, the better fitness values are ob-
tained.

Table 2: Comparison results for large-sized instances.

Exp. No.
Size

(bays x
cranes)

Max.
Runtime

(sec.)

Alpha / Beta:
1.0 / 0.0

Alpha / Beta:
0.75 / 0.25

Alpha / Beta:
0.5 / 0.5

Fitness
Bound

Fitness
Value

Fitness
Bound

Fitness
Value

Fitness
Bound

Fitness
Value

1 16 x 3 0.69 1.26103 1.25945 0.840689 0.84016 0.630517 0.630318
2 18 x 3 0.85 1.01317 1.01317 0.675676 0.675676 0.506842 0.506842
3 20 x 3 1.02 0.913242 0.911577 0.608828 0.608273 0.456621 0.456517
4 22 x 3 1.23 0.967118 0.966184 0.644745 0.644434 0.483559 0.483442
5 24 x 3 1.38 1.02459 1.02354 0.683177 0.683177 0.512426 0.512295
6 26 x 3 1.57 0.727273 0.726744 0.484966 0.484614 0.363769 0.363702
7 28 x 3 1.79 0.715308 0.714286 0.476872 0.476531 0.357654 0.35727
8 30 x 3 2.02 0.681199 0.678887 0.454133 0.453361 0.340599 0.340078
9 16 x 4 0.79 1.83824 1.81488 1.05125 1.04548 0.736106 0.734214

10 18 x 4 0.98 1.34409 1.32626 0.768344 0.763942 0.537924 0.535332
11 20 x 4 1.20 1.33156 1.31062 0.76089 0.759157 0.532623 0.531632
12 22 x 4 1.38 1.50602 1.49254 0.861141 0.857817 0.602954 0.601866
13 24 x 4 1.64 1.10865 1.09649 0.633513 0.628141 0.443459 0.442478
14 26 x 4 1.96 0.978474 0.969932 0.559284 0.556715 0.391543 0.390244
15 28 x 4 2.15 1.04384 1.03093 0.596481 0.59312 0.417537 0.41632
16 30 x 4 2.44 0.855432 0.844595 0.488938 0.483033 0.34229 0.34118

 The fitness value results obtained from the hybrid QCSP Solver are very promising and always within
1% of the lower bound. As mentioned in the results of Table 1, the runtime of the algorithm does not
grow exponentially. Instead, a constant increase of 150-200 ms per each extra bay in the problem is ob-
served for problems with three quay cranes, while a constant increase of 200-300 ms is also observed for
problems with four quay cranes. This is mostly due to the linear complexity of the local search algorithm,
and by reducing the number of maximum iterations performed by the hill climbing technique, there is a
decrease in the execution time. It is important to strike a balance between performance and execution
time.

1568

Perelygin and Kim

 Table 3 tabulates the makespan and QC completion time for each experiment used in Table 2 by ob-
jective function weighting value. The intention of the comparison is to examine how the changing of the
two weighting values, alpha and beta, affects the outcome of the hybrid algorithm. In exp. 1 and exp. 12,
the hybrid QCSP Solver finds the best solution and therefore changing the weighting values will not lead
to a better or worse solution for smaller problem sizes. However, already in exp. 9, which is a more com-
plex problem, it is shown that the hybrid QCSP Solver can find the lowest makespan but there are differ-
ent QC completion times to choose from. In the first case (Alpha/Beta: 1.0/0.0) it did not take that into
consideration. However, when the beta weight is given a value of more than 0.0, the hybrid QCSP Solver
minimizes it as well, leading to a better result. In addition, it is important to note that experiments 15 and
16 are highly complex problems. Here the hybrid QCSP Solver must make trade-offs, leading to a higher
makespan when adding the Beta weighting value but a lower QC completion time. While the goal of the
hybrid QCSP Solver is to minimize the makespan, it is important that the total QC completion time is tak-
en into consideration so that out of the best solutions with the lowest makespan, the hybrid QCSP Solver
will choose the one that has a lower total QC completion time.

Table 3: Comparison of makespan and QC completion time for large-sized instances.

 From Ex-
periment

 Size
(bays x
cranes)

Alpha / Beta: 1.0 / 0.0 Alpha / Beta: .75 / .25 Alpha / Beta: .5 / .5

Makespan
(min.)

QC Comple-
tion Time

(min.)

Makespan
(min.)

QC Comple-
tion Time

(min.)

Makespan
(min.)

QC Comple-
tion Time

(min.)

1 16 x 3 794 2379 794 2379 794 2379

2 18 x 3 987 2959 987 2959 987 2959

3 20 x 3 1097 3285 1097 3285 1096 3285

4 22 x 3 1035 3102 1035 3102 1035 3102

5 24 x 3 977 2928 976 2927 977 2927

6 26 x 3 1376 4123 1377 4123 1376 4123

7 28 x 3 1400 4194 1400 4194 1404 4194

8 30 x 3 1473 4409 1473 4404 1477 4404

9 16 x 4 551 2181 551 2173 551 2173

10 18 x 4 754 2981 754 2974 754 2982

11 20 x 4 763 3015 755 3004 755 3007

12 22 x 4 670 2653 670 2653 670 2653

13 24 x 4 912 3617 920 3608 908 3612

14 26 x 4 1031 4105 1033 4086 1034 4091

15 28 x 4 970 3857 968 3840 972 3832

16 30 x 4 1184 4723 1193 4702 1185 4677

5 CONCLUDING REMARKS

This paper presented a hybrid genetic algorithm to allocate and schedule a given number of quay cranes
to vessels planned to arrive in the planning horizon. To develop the hybrid QCSP Solver, stand-alone
QCSP Solver not having local search was first developed using genetic algorithm alone. Then the hybrid
QCSP Solver having local search was developed on top of the stand-alone QCSP Solver based on a hy-
brid strategy that combines a global search using genetic algorithm with a local search using steepest as-
cent hill climbing algorithm. A comparison study demonstrates the effectiveness of the algorithm based
on numerical experiments. It is notable that the hybrid QCSP Solver is expandable to incorporate the real
quay crane operation conditions as it can serve as a platform from which one can build. This paper can be

1569

Perelygin and Kim

utilized as a stepping stone for further research by identifying a way to grow terminal automation of quay
cranes to increase capacity, safety, productivity, and reliability while reducing operation costs.

ACKNOWLEDGMENT

This material is based upon work supported by the Office of Naval Research, under Prime Agreement No.
N00014-09-C-0923 with the California State University, Long Beach Foundation, Center for the Com-
mercial Deployment of Transportation Technologies (CCDoTT).

REFERENCES

Boile, M., Golias, M., and Theofanis, S. 2009. “Scheduling of Berthing Resources at a Marine Container
Terminal via the Use of Genetic Algorithms: Current and Future Research.” Evolutionary Computa-
tion, Wellington Pinheiro dos Santos (Ed.), October 2009, InTech, Vienna, Austria, 572.

Daganzo, C. F. 1989. “The Crane Scheduling Problem.” Transportation Research B, 23(3), 159-175.
Daganzo, C. F. 1990. “Crane Productivity and Ship Delay in Ports.” Transportation Research Record,

1251, 1-9.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley Publishing Company, Inc., Reading, Massachusetts.
Kim, J.-L., and Ellis, R. D. 2009. “Robust Global and Local Search Approach to Resource-Constrained

Project Scheduling.” Canadian Journal of Civil Engineering, 36(3), 375-388.
Kim, H., and Park, Y. M. 2004. “A Crane Scheduling Method for Port Container Terminals.” European

Journal of Operations Research, 156(3), 752-768.
Lee, D., Wang, H. Q., and Miao, L. 2008. “Quay Crane Scheduling with Non-Interference Constraints in

Port Container Terminals.” Transportation Research Part E, 44, 124-135.
Legato, P., Mazza, R. M., and Trunfio, R. 2008. “Simulation-based Optimization for the Quay Crane

Scheduling Problem”. In Proceedings of the 2008 Winter Simulation Conference, edited by S. J. Ma-
son, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler, 2717-2725. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Peterkofsky, R. I., and Daganzo, C. F. 1990. “A Branch and Bound Solution Method for the Crane
Scheduling Problem.” Transportation Research B, 24, 159-172.

Sammarra, M., Cordeau, J.-F., Laporte, H., and Monaco, M. F. 2007. “A Tabu Search Heuristic for the
Quay Crane Scheduling Problem.” Journal of Scheduling, 10, 327-336.

AUTHOR BIOGRAPHIES

KYRYLO PERELYGIN, M.S., is a Senior Systems Software Engineer at NVIDIA and was a Graduate
Assistant of Dept. of Civil Engineering and Construction Management at California State University,
Long Beach, where he worked for a research project regarding various scheduling optimization tech-
niques. His email address is kperelygin@gmail.com.

JOSEPH J. KIM, Ph.D., P.E., LEED AP BD+C is an Associate Professor of Dept. of Civil Engineering
and Construction Management at California State University, Long Beach. He is a director of Green
Building Information Modeling (Green BIM) laboratory at CSULB. He has earned a doctorate degree in
Civil Engineering from the University of Florida, majoring Construction Engineering and Management
with a minor in Statistics. He spent several years as a field engineer and safety engineer. He is a registered
professional engineer in Florida. His research interests include sustainable design and construction, simu-
lation-based resource scheduling, optimization techniques, building information modeling, information
technology in construction, and engineering educational research methods. He is a member of ASCE and
ASEE. His email address is jin5176@gmail.com.

1570

