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ABSTRACT

A stochastic simulation model is often used to guide decision making for a complex real system, such as
scheduling decisions for semiconductor production. To provide a reliable guidance, we propose a simulation
calibration framework. We first develop a spatial-temporal metamodel to estimate the system dynamic
behaviors at different settings of calibration parameters. Then, assisted by the metamodel, we introduce a
calibration model so that the dynamic behaviors of the calibrated simulation model match with those of
the real system. Thus, for any feasible decisions, the calibrated simulation model can predict the future
outputs for the real system and deliver prediction intervals.

1 INTRODUCTION

Stochastic simulation is often used to guide decision making for complex real systems. Classical output
analysis in the simulation literature tends to focus on predetermined summary performance measures, such
as the expected production cycle time. They are not suitable for the system control which requires the
prediction of future outputs for any feasible decisions. Future outputs depend on the current states and
the system dynamic behaviors. For example, in the production control, given the current works-in-process
(WIP) at the key working stations and the cycle times of past orders, the decision maker wants to find
optimal scheduling decisions that can efficiently use the production resource and guarantee the on-time
delivery for next orders. Notice that the dynamic behaviors of the real system are critically important to
predict the future outputs and further support the system control.

However, the historical data collected from the real system are under certain restricted decision(s).
To guide the real-time decision making, simulation can be used to answer the question, “how will the
real system behave if?” For example, if we change to a new scheduling policy, could we finish the next
orders on-time and what is the production cost? For a complex real system, a simplified computer model
is often used. To deliver reliable decision guidance, we need to first calibrate the simulation model so
that under the same decision policy, the calibrated simulation model has the dynamic behaviors matching
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with the historical output data collected from the real system. Then, for any feasible decision, by running
simulations starting from the current states, we can predict future outputs for the real system.

For deterministic simulation, Kennedy and O’Hagan (2001) proposed a Bayesian calibration framework.
Gaussian processes (GP) are used to model the simulation outputs and the model discrepancy. Then, given
the data collected from real and simulation systems, they use the posterior distribution and the posterior
predictive distribution to quantify the estimation uncertainty of calibration parameters and the prediction
uncertainty of the real system output, respectively. Most recent studies on calibration are built on this
framework. Based on the methodologies quantifying the uncertainty, they can be divided into Bayesian
approaches, e.g., Gramacy et al. (2015), Plumlee, Joseph, and Yang (2016), Plumlee (2016), and frequentist
approaches, e.g., Tuo and Wu (2015b), Tuo and Wu (2015a), Wong, Storlie, and Lee (2016).

There are limited studies on calibration in the stochastic simulation literature because we tend to believe
that the simulation model error has less impact on the optimization decision which is based on relative
performance (Nelson 2016). In addition, these studies typically focus on the system mean performance;
see for example Yuan, Ng, and Tsui (2013), Yuan and Ng (2013), Jun and Ng (2013). However, calibration
becomes critically important for the system control when simulation is used to assess risk and make accurate
predictions of system future behaviors (Nelson 2016).

A systematic approach to calibrate the stochastic simulation for the system control is open. In this
paper, we propose a calibration framework to support real-time system control. Specifically, we first
develop a spatial-temporal metamodel to model the dynamic behaviors of simulation output sample paths
at different settings of calibration parameters. Then, under the assistance of the metamodel, we introduce
a new calibration model so that the calibrated simulation system can capture the dynamic behaviors of
the real system. Our framework can deliver credible intervals for calibration parameters and prediction
intervals for future outputs of the real system. As a result, the calibrated simulation model can be used to
provide a reliable guide for the real-time decision making.

In the next section, we use a semiconductor production control as an illustrative example to describe
the problem of interest. We then briefly describe the proposed calibration framework. Since the queueing
theory is often used to guide the decision making in production processes, an M/M/1 queue is studied
to motivate the construction of a spatial-temporal metamodel capturing the system dynamic behaviors at
different settings of calibration parameters in Section 3. We introduce a new calibration model in Section 4,
study the finite sample performance of our approach in Section 5, and conclude this paper in Section 6.

2 PROBLEM DESCRIPTION AND PROPOSED RESEARCH

We use the production control in the semiconductor wafer manufacturing as an illustrative example. Since
the production lines are capital-intensive, the decision maker wants to find real-time scheduling decisions
that can efficiently utilize the facility and guarantee the on-time delivery. Considering that production
processes involve thousands of steps and they are subject to unpredictable disruption, such as breakdowns
of key equipments, a simplified simulation model is typically used to guide the production scheduling
(Horiguchi et al. 2001). For example, since a few work stations with either expensive or unreliable
equipments tend to dominate the flow of orders, the production process can be simplified by modeling each
bottleneck or near-bottleneck work station as an M/M/1 queue and aggregating the remaining stations.

Denote the time index for the last finished order by T . We observe the historical data of cycle times
collected from the real system, denoted by yr

[T ] = (yr
1, . . . ,y

r
T ), which could be collected under a set of

scheduling decision settings. In this paper, for simplification, we assume that the historical data are collected
under a fixed decision x0. Suppose that we do not very frequently change the scheduling decisions (Horiguchi
et al. 2001). Let ST denote the current system state, e.g., WIP at important work stations and our belief of
further machine breakdowns. To support the real-time scheduling decision making, we need to predict the
cycle times of next orders Y r

T+1(x,ST ),Y r
T+2(x,ST ), . . . for any feasible decision x. For simplification, we

only consider the next order cycle time Y r
T+1(x,ST ). Thus, we are interested in the prediction distribution

for Y r
T+1(x,ST )|yr

[T ].
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For any feasible x in the decision space, the simplified simulation model starting from the current state
ST could be used to estimate the predictive distribution for Y r

T+1(x,ST ). To correctly predict the future
output of the real system, we need to first calibrate the simulation model so that the dynamic behaviors
of the calibrated simulation model match with those of the real system in the entire decision space. We
denote the calibration parameters by θθθ = (θ1, . . . ,θd)

> and represent the simulation output sample path with
runlength L by Ys(x,θθθ) = (Y s

1 (x,θθθ), . . . ,Y
s
L(x,θθθ)). In the simplified simulation model for the production

control example mentioned above, the calibration parameters could be the service rates for M/M/1 queues
representing bottleneck and near-bottleneck work stations and the outputs could be the order cycle times.
Thus, we adjust θθθ so that the dynamic behaviors of the output sample paths from the calibrated simulation
model match with the historical data yr

[T ] under the same decision.
To characterize the dynamic behaviors of the simulation and real systems, we treat the real system

outputs as a stochastic process with the decision variable x as the input, while the simulation outputs can
be treated as a stochastic process with both decision variable x and calibration parameters θθθ as the inputs.
Thus, the prediction of Y r

T+1(x,ST ) using both simulation and real outputs is directly related to the output
covariance structure of both stochastic processes. For computational and conceptual convenience,

(1) Suppose the correlation of simulation outputs is separable: cor(Y s
i (x,θθθ),Y

s
j (x
′,θθθ ′)) =

c1(i, j)c2(x,x′)c3(θθθ ,θθθ
′), where c1, c2, and c3 denote correlation functions. It implies that for

fixed θθθ and θθθ ′, cov(Y s
i (x,θθθ),Y

s
j (x,θθθ

′)) ∝ cor(Y s
i (x
′,θθθ),Y s

j (x
′,θθθ ′)) holds for any feasible decisions

x and x′.
(2) Suppose the correlation of real system outputs is separable: cor(Y r

i (x),Y
r
j (x
′)) = c1(i, j)c2(x,x′). It

implies that for fixed θθθ , we have cov(Y r
i (x),Y

r
j (x
′)) ∝ cor(Y s

i (x,θθθ),Y
s
j (x
′,θθθ)).

Under these assumptions, we ignore the interaction of decision variable and calibration parameters in the
covariance structure of the simulation outputs. Thus, the simulation model calibrated at x0 can be used to
estimate the dynamic behaviors of the real system at any other feasible decision x.

In this paper, we propose a calibration framework for the system control. Based on the sample paths
of simulation outputs, we first develop a spatial-temporal metamodel to capture the dynamic behaviors
of the simulation model at different settings of calibration parameters θθθ in Section 3. Then, under the
assistance of the metamodel, we introduce a new calibration model to match the dynamic behaviors from
real and simulation systems so that the calibrated simulation model can provide a reliable prediction of
future outputs for the real system in Section 4. Since we focus on calibrating the simulation model at
fixed decision x0 here, for notational simplification, we drop the decision variable from the expressions of
system outputs in the remaining paper.

3 A Spatial-Temporal Metamodel for Simulation System Dynamic Behaviors

When we calibrate the simulation model to capture the dynamic behaviors in the real data yr
[T ], we need

to estimate the dynamic behaviors of simulation outputs at different settings of calibration parameters.
Since each simulation run could be computationally expensive, we introduce a spatial-temporal metamodel
to assist the calibration, which could efficiently use the simulation resources (Xie, Nelson, and Barton
2014). At any calibration parameters θθθ , let (Y s

j,1(θθθ), . . . ,Y
s
j,L(θθθ)) represent the simulation outputs from the

jth replication. There are two types of dependence in the simulation outputs: (1) the serial dependence
of simulation outputs Y s

j,i(θθθ) and Y s
j,i′(θθθ) in the same sample path, and (2) the dependence of dynamic

behaviors at different calibration settings θθθ and θθθ ′. Our metamodel can capture both types of dependence.
Specifically, we first construct an autoregressive (AR) process to model the serial dependence of sample
paths from simulation outputs {Y s

j,i(θθθ)} in Section 3.1. Since the system dynamic behaviors are similar
when the calibration parameters are close, we model the spatial dependence of the coefficients of the AR
process with GP in Section 3.2.
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Figure 1: Real and fitted sample paths for outputs from an M/M/1 queue.

3.1 AR Model for Time Series Dependence in the Sample Paths

In this section, we propose to use an AR process to model sample paths of simulation outputs. Compared
to classical output analysis that only investigates the summary statistics of simulation outputs, e.g., sample
mean, our approach can capture the important dynamic properties and improve the prediction of future
outputs. The queueing models are often used to study the performance of production systems, and they are
also the state-of-the-art technique for many other applications, e.g., the inventory control. Here, we study
the outputs of an M/M/1 queue with representative results shown in Figure 1. The solid line represents a
single sample path of the time customer staying in the M/M/1 system. Then, given the simulation outputs,
we fit an AR process with the historical data and then use it to do one-step prediction. The predicted
outputs are shown with the dashed line. Figure 1 indicates that the AR process can capture the dynamic
behaviors in the simulation outputs, and further provide a good forecast of future outputs.

At any calibration parameters θθθ , such as the service rates of the M/M/1 queues in the production
example mentioned above, we model the simulation outputs as an AR process,

Y s
j,i(θθθ) = c(θθθ)+

q

∑
h=1

αh(θθθ)Y s
j,i−h(θθθ)+ e j,i(θθθ), (1)

where e j,i(θθθ) ∼N (0,σ2(θθθ)) is Gaussian noise with N (a,b) standing for a Normal distribution with
mean a and variance b. The serial dependence is characterized by ααα(θθθ) = (α1(θθθ), . . . ,αq(θθθ))

>, and
c = (1−∑

q
h=1 αh(θθθ))µ(θθθ) with µ(θθθ) = E[Y s

j,i(θθθ)]. Suppose that the order q (< T ) is known here. The
order selection for the AR process will be considered in the future research.

Given the simulation outputs from the jth replication, (Y s
j1,Y

s
j2, . . . ,Y

s
jL), we can estimate AR process

parameters (ααα,c,σ2) by using Yule-Walker estimation,

α̂αα j = (α̂1, j, . . . , α̂q, j)
> = Γ̂

−1
q, jγ̂γγq, j (2)

ĉ j = (1−1q×1Γ̂
−1
q, jγ̂γγq, j)Ȳ

s
j (3)

σ̂
2
j = γ̂ j(0)−α̂αα

>
j γ̂γγq, j

where Ȳ s
j = ∑

L
i=1Y s

j,i/L, γ̂ j(h) = 1
L ∑

L−|h|
i=1 (Y s

j,i+|h| − Ȳ s
j )(Y

s
j,i − Ȳ s

j ), Γ̂q, j = [γ̂ j(i − i′)]qi,i′=1, γ̂γγq, j =

(γ̂ j(1), . . . , γ̂ j(q))>. Then, the one-step predictor Ŷ s
j,i = ĉ j +∑

q
h=1 α̂h, jY s

j,i−h can be used to predict the
next output.
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3.2 Gaussian Process Metamodel for Spatial Dependence

As the calibration parameters θθθ and θθθ ′ are close to each other, the dynamic behaviors of simulation output
sample paths {Y s

i (θθθ)}∞
i=1 and {Y s

i (θθθ
′)}∞

i=1 are similar. When we use the AR process in Equation (1) to model
the simulation outputs, the dynamic behaviors are characterized by (ααα,c,σ2). According to Ankenman,
Nelson, and Staum (2010), we construct a GP metamodel, denoted by M(θθθ), to model the spatial dependence
of responses (ααα,c) respectively, which are required in the AR process predictor. The variance σ2 impacts
on the estimation uncertainty for (ααα,c). Thus, the simulation estimates of each response obtained from
the jth replication can be modeled as

ξ̂ j(θθθ) = β0 +W (θθθ)+ ε j(θθθ) (4)

with response ξ̂ j representing ĉ j or α̂1, j, . . . , α̂q, j obtained by using Equations (2)–(3). For each response,
the simulation estimation noise caused by using a finite runlength is ε(θθθ)∼N (0,σ2

ε (θθθ)). A mean-zero,
second-order stationary GP, denoted by W (θθθ), accounts for the spatial dependence of ξ (θθθ). Thus, our
belief on the response surface ξ (θθθ) is represented by the GP, M(θθθ) = β0+W (θθθ). The covariance between
W (θθθ) and W (θθθ ′) quantifies the spatial dependence of ξ (θθθ).

The estimation of the model in (4) for each response can be developed similarly. We describe the
estimation procedure using the generic response ξ̂ j. First, we choose an experiment design consisting of
pairs D ≡ {(θθθ k,Nk,Lk),k = 1, . . . ,K}, where Nk and Lk denote the number of replications and runlength
at the kth design point with calibration parameters θθθ k. We run simulations at D , and record the sample
paths of simulation outputs, denoted by Y s

D . Denote the sample means at the kth design point by
ξ̄ (θθθ k) = ∑

Nk
j=1 ξ̂ j(θθθ k)/Nk. The sample means at all design points are denoted by ξ̄D = (ξ̄ (θθθ 1), . . . , ξ̄ (θθθ K))

>.
The variance of ξ̄D is a K×K diagonal matrix C = diag{σ2

ε (θθθ 1)/N1, . . . ,σ
2
ε (θθθ K)/NK).

Let Σ be the K × K spatial covariance matrix of the response at K design points with Σih =
Cov(M(θθθ i),M(θθθ h)) for i,h = 1, . . . ,K. We use the Gaussian correlation function in the empirical study,
Cov(M(θθθ i),M(θθθ h)) = τ2 exp

[
−∑

d
l=1 ψl(θil −θhl)

2
]
, where τ2 is the variance and ψψψ ≡ (ψ1, . . . ,ψd) are

covariance parameters. Let Σ(θθθ , ·) be the K×1 spatial covariance vector between design points and a fixed
prediction point θθθ . The metamodel uncertainty can be characterized by the posterior distribution of M(θθθ),

Mp(θθθ)≡M(θθθ)|Y s
D ∼ GP(mp(θθθ),σ

2
p(θθθ)) (5)

where mp(·) is the minimum mean squared error (MSE) linear unbiased predictor

mp(θθθ) = β̂0 +Σ(θθθ , ·)>(Σ+C)−1(ξ̄D − β̂0 ·1K×1) (6)

and the corresponding variance is

σ
2
p(θθθ) = r2−Σ(θθθ , ·)>(Σ+C)−1

Σ(θθθ , ·)+η
>[1>K×1(Σ+C)−11K×1]

−1
η (7)

where β̂0 = [1>K×1(Σ+C)−11K×1]
−11>K×1(Σ+C)−1ξ̄D and η = 1−1>K×1(Σ+C)−1Σ(θθθ , ·) (Ankenman, Nel-

son, and Staum 2010). The intrinsic covariance matrix C is diagonal, and the kth diagonal element can be
estimated by Ĉk,k = N−1

k (Nk−1)−1
∑

Nk
j=1(ξ̂ j(θθθ k)− ξ̄ (θθθ k))

2 for k = 1, . . . ,K. Then, we substitute it into the
likelihood function and obtain MLEs for τ2 and ψψψ .

In sum, the spatial-temporal metamodel for simulation outputs can be constructed in two main steps
as described in Sections 3.1 and 3.2, respectively. To initialize the construction, we generate K design
points {θθθ 1, . . . ,θθθ K} by using the Latin Hypercube design covering the space of the calibration parameters.
Then, the metamodel can be constructed as follows. In the empirical study, we assign equal runlength and
replication to each design point. Developing an experiment design D = {(θθθ k,Nk,Lk),k = 1, . . . ,K} that can
efficiently use the simulation resource to support the calibration will be considered in the future research.
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1. For k = 1, . . . ,K
1a. Run simulations at θθθ k with runlength Lk and replications Nk. Record the sample path

(Y s
j,1, . . . ,Y

s
j,Lk

) for j = 1, . . . ,Nk.
1b. Obtain α̂αα j,k and ĉ j,k by applying Equations (2)–(3) for j = 1, . . . ,Nk.

2. Construct GP metamodels Mp(·) for responses c,α1, . . . ,αq by applying Equations (5)–(7).

Remark: In this paper, we construct separate GP metamodels for α1, . . . ,αq, and c, respectively. Since
these responses could be correlated, we can construct a multivariate GP model, which incorporates the
correlation between different responses; see Qian, Wu, and Wu (2008).

4 A Calibration Model for the System Control

In this section, we calibrate the parameters θθθ to match the dynamic behaviors of real and simulation
systems. Given the historical data yr

[T ] and the simulation outputs Y s
D , our belief of the calibration

parameters is characterized by the posterior distribution p(θθθ |Mp(·),yr
[T ]). Then, the calibrated simulation

model is used to predict the future output Y r
T+1. Our approach provides the posterior predictive distribution

p(Y r
T+1|Mp(·),yr

[T ]) and also a prediction interval (PI) accounting for calibration parameters and simulation
estimation uncertainty.

For the simulation-based system control, we want to calibrate the dynamic behaviors of output sample
paths so that the calibrated simulation model can predict the future outputs of the real system. This goal can
not be fulfilled directly by matching the data from real and simulation systems for deterministic simulation
or matching the mean responses for stochastic system design; see for example Kennedy and O’Hagan
(2001), Tuo and Wu (2015b), Yuan, Ng, and Tsui (2013). To support the system control, we propose a
new calibration model,

yr
i = ŷr

i (ξξξ (θθθ))+δi. (8)

The predictor of yr
i is expressed as

ŷr
i (ξξξ (θθθ)) = c(θθθ)+

q

∑
h=1

αh(θθθ)yr
i−h. (9)

with i = q+1, . . . ,T which depends on the historical data yr
[T ] and the serial dependence of the simulation

outputs characterized by ξξξ (θθθ) = (c(θθθ),ααα(θθθ)). Given Y s
D , the estimation uncertainty of ξξξ (·) is quantified

by the GP metamodel Mp(·). The model inadequacy, denoted by {δi}, in Equation (8) is a stochastic process
measuring the difference between the historical data and the forecast based on the simulation model. In
this paper, we assume that {δi} is independent of θθθ and ξξξ , and modeled by an AR process,

δi =
q′

∑
h=1

φhδi−h + εi (10)

with εi
i.i.d.∼ N (0,σ2

δ
). Let φφφ = (φ1, . . . ,φq′). The first term on the right side of Equation (10) is used to

model the remaining series dependence which is not captured by the predictor ŷr
i . The second term models

the unpredictable noise, including the unpredicted error for the real system outputs. Next, we do inference
on the calibration parameters in Section 4.1, and predict the future output Y r

T+1 in Section 4.2.

4.1 Inference for Calibration Parameters

In this section, we derive the posterior distribution p(θθθ |Mp(·),yr
[T ]) quantifying the estimation uncertainty

of calibration parameters, and then provide a sampling procedure to generate the posterior samples of θθθ .
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We first derive the conditional distribution for the predictors ŷr
[q+1:T ](ξξξ (θθθ)) = (ŷr

T (ξξξ (θθθ)), . . . , ŷ
r
q+1(ξξξ (θθθ)))

>.
According to Equation (9), we have

p
(

ŷr
[q+1:T ](ξξξ (θθθ))

∣∣∣θθθ ,Mp(·),yr
[T−1]

)

∼ NT−q

Y r
[T−1]E


c(θθθ)

α1(θθθ)
...

αq(θθθ)

∣∣∣∣∣∣∣∣∣Y
s

D

 ,Y r
[T−1]Var


c(θθθ)

α1(θθθ)
...

αq(θθθ)

∣∣∣∣∣∣∣∣∣Y
s

D

Y r
[T−1]

>

 (11)

where, Y r
[T−1] is a (T −q)× (q+1) matrix

Y r
[T−1] =

 1 yr
T−1 yr

T−2 · · · yr
T−q

...
...

1 yr
q yr

q−1 · · · yr
1


and the conditional mean and variance of (c(θθθ),α1(θθθ), . . . ,αq(θθθ))|Y s

D can be obtained by using Equa-
tions (5)–(7) from the GP metamodels. At any θθθ , Equation (11) accounts for the impact of simulation
estimation uncertainty on the predictors. Then, since δi = yr

i − ŷr
i (ξξξ (θθθ)) follows the AR process as shown

in Equation (10), we can derive the posterior distribution of calibration parameters,

p
(

θθθ

∣∣∣Mp(·),yr
[T ],φφφ ,σ

2
δ

)
∝ p(θθθ)p

(
(δq+q′+1, . . . ,δT )

∣∣∣θθθ ,Mp(·),yr
[T ],φφφ ,σ

2
δ

)
∝ p(θθθ)

T

∏
i=q+q′+1

exp

[
−
(δi−∑

q′
h=1 φhδi−h)

2

2σ2
δ

]
. (12)

To obtain the posterior distribution of θθθ , we develop an empirical Bayesian procedure to efficiently
draw posterior samples of θθθ , and then construct a (1−β )100% percentile credible interval (CrI) quantifying
the calibration parameter estimation uncertainty as follows. To precisely estimate the percentile CrI for θθθ ,
it is recommended B to be a few thousands. In our empirical study, we use B = 1000.

1. Draw θθθ ∼ p(θθθ). Given the GP metamodel built in Section 3.2, draw the predictors ŷr
[q+1:T ](ξξξ (θθθ))

by applying Equation (11). Obtain (δq+1, . . . ,δT ) with δi = yr
i − ŷr

i (ξξξ (θθθ)) for i = q+1, . . . ,T .
2. Repeat Step 1 for B times. Then, use all B samples of (δq+1, . . . ,δT ) collected at different θθθ and

ξξξ to estimate the order q′ by BIC and then obtain φ̂φφ and σ̂2
δ

by using Yule-Walker estimation.
3. Plug φ̂φφ and σ̂2

δ
into Equation (12). Calculate the likelihood p((δq+q′+1, . . . ,δT )|θθθ ,Mp(·),yr

[T ],φ̂φφ , σ̂
2
δ
)

of all B samples of δ . Standardize the probability at all B samples of θθθ to obtain the posterior
distribution p(θθθ |Mp(·),yr

[T ]).
4. By applying the inverse CDF approach (Nelson 2013) to p(θθθ |M(·),yr

[T ]), generate B posterior
samples of θθθ , and further construct a (1− β )100% percentile CrI quantifying the calibration
parameter estimation uncertainty.

4.2 Prediction for Future Output Y r
T+1

In this section, we derive the posterior predictive distribution of Y r
T+1, and provide a (1−β )100% percentile

PI accounting for the model inadequacy, calibration parameters and simulation estimation uncertainty. Built
on the development in Section 4.1, the posterior predictive distribution for Y r

T+1 is

p
(

Y r
T+1

∣∣∣Mp(·),yr
[T ],φφφ ,σ

2
δ

)
=
∫ ∫

p
(

Y r
T+1

∣∣∣ŷr
[T ](ξξξ (θθθ)),y

r
[T ],φφφ ,σ

2
δ

)
×p
(

ŷr
[T ](ξξξ (θθθ))

∣∣∣θθθ ,Mp(·)
)

p
(

θθθ

∣∣∣Mp(·),yr
[T ],φφφ ,σ

2
δ

)
dŷr

[T ](ξξξ (θθθ))dθθθ . (13)
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It integrates out calibration parameters and simulation estimation uncertainty. By comparing to the best
predictor with the underlying stochastic process of real system outputs, denoted by {Y r

i }, known, we can
assess the performance of the calibrated simulation model; see the empirical study in Section 5.2.

Then, the procedure to obtain the posterior predictive distribution and the (1−β )100% percentile PI
for Y r

T+1 is described as follows.

1. By applying the inverse CDF approach, draw B posterior samples from p(θθθ |Mp(·),yr
[T ]); see the

procedure in Section 4.1.
2. At each posterior sample of θθθ ,

2a. Draw the sample of (c,α1, . . . ,αq) by using Equations (5)–(7) from the GP metamodels. Then,
obtain the sample of (ŷr

q+1, . . . , ŷ
r
T+1) by applying Equation (9).

2b. Obtain (δq+1, . . . ,δT ) with δi = yr
i − ŷr

i for i = q+1, . . . ,T . Then, generate δT+1 by applying
Equation (10) with parameters φ̂φφ and σ̂2

δ
, and obtain Y r

T+1 = ŷr
T+1 +δT+1.

3. Use B posterior samples obtained in Step (2) to construct the (1−β )100% percentile PI for Y r
T+1.

5 EMPIRICAL STUDY

In this section, we use an M/M/1 queue to study the finite sample performance of our calibration framework.
The arrival rate is set to be 1. Let the utilization be the calibration parameter θ . We are interested in the
total time of the customer staying in the system. We first study the performance of the spatial-temporal
metamodel in Section 5.1. Then, we study the performance of the proposed calibration model in Section 5.2.

5.1 Evaluate the Performance of Spatial-Temporal Metamodel

We first follow the procedure in Section 4.1 to construct a spatial-temporal metamodel capturing the dynamic
behaviors of the M/M/1 queue at different calibration settings. We generate K design points of calibration
parameter on [0.2,0.91] by using Latin-hypercube design. Here, we consider a simple AR(1) model to
model the dynamic behaviors in the system output sample path. Thus, we construct the GP metamodels for
parameters c and α . We evaluate these parameters estimation accuracy by using the integrated mean square
error (IMSE). Specifically, we select 20 testing points with θ` for ` = 1, . . . ,20 uniformly distributed on
[0.2,0.91]. At each θ`, a side experiment with run length 105 is used to estimate the exact AR(1) process
parameters c and α . Then, 100 posterior samples of metamodel Mp(·) at θ` for `= 1, . . . ,20, denoted by
c̃(i) and α̃(i) for i = 1, . . . ,100, are used to estimate IMSE

ÎMSE(c(θθθ)) =
1

20×100

20

∑
`=1

100

∑
i=1

(c̃(i)(θ`)− c(θ`))
2 and ÎMSE(α(θθθ)) =

1
20×100

20

∑
`=1

100

∑
i=1

(α̃(i)(θ`)−α(θ`))
2.

We evaluate the impact of the number of design points K and the runlength L on the IMSE and report
the results for K = 5,15 and L = 50,100 in Table 1. When K = 15 and L = 100, the simulation estimation
uncertainty for c and α is small. We also plot the response surfaces of parameters (c,α,σ2) in Figure 2.
The black solid line represents the exact parameter values estimated from the side experiment and the grey
lines represent posterior samples from the GP metamodel. It can be seen that the samples from GP is close
to the best AR(1) parameters estimated by side experiments.

Table 1: Estimated IMSE with AR(1) process

c α σ2 c α σ2

L = 50,K = 5 0.0184 0.0152 0.1135 L = 100,K = 5 0.0157 0.0123 0.0768
L = 50,K = 15 0.0142 0.0131 0.0744 L = 100,K = 15 0.0109 0.0098 0.0460

Then, to study the prediction performance of the spatial-temporal metamodel, we collect 101 customers’
times staying in system, yr = (yr

1, . . . ,y
r
101), at θ = 0.833,0.667,0.5 . We first derive the best predictor
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Figure 2: Compare GP fitted AR(1) model parameters (c,ααα,σ2) with the best ones from side experiments

(a) The best c vs GP fitted c (b) The best α vs GP fitted α (c) The best σ2 vs GP fitted σ2

by using the underling output process. Let Ai and Si denote the inter-arrival and service times of the ith
customer in the M/M/1 queue. At any θ , the conditional expectation E[Y r

i |yr
[i−1],θ ] is the best mean square

predictor (Brockwell and Davis 1991). Since Y r
i = max{Y r

i−1−Ai,0}+Si, we have

E[Y r
i |yr

[i−1],θ ] = E[Si|θ ]+E[max{yr
i−1−Ai,0}|yr

i−1] = θ +
∫

∞

0
max{yr

i−1−Ai,0}e−AidAt

= θ +
∫ yr

i−1

0
(yr

i−1−Ai)e−AidAi = yr
i−1 + e−yr

i−1 +θ −1.

This predictor is used as the benchmark to study the performance of our metamodel-assisted prediction
and a naive approach that uses the average of previous responses as a predictor, ŷi = (i−1)−1

∑
i−1
h=1 yr

i−h.
As for our metamodel-assisted prediction, we first draw a posterior sample of parameters (c̃, α̃) from the
GP metamodel Mp(θ). For the ith output, combining with the historical data, we can predict the future
output by using ŷi = c̃+ α̃yr

i−1 accounting for the simulation estimation uncertainty of parameters (c,α).
The relative mean absolute error (RMAE),

RMAE(ŷ) =
1

L−1

L

∑
i=2

|ŷi− yr
i |

E(yt)

is used to assess the prediction performance. The results of RMAE obtained by using the metamodel are
compared with the naive method and conditional expectation in Table 2. We record mean and standard
deviation (in parentheses) of RMAE estimated from 100 macro-replications. The prediction accuracy of
our metamodel-based approach becomes closer to the target, conditional expectation, when the runlength
L and the number of design points K increase, and it performs obviously better than the naive method.

Table 2: RMAE obtained by spatial-temporal metamodel, naive approach and the conditional expectation

Utilization of test setting θ = 0.833 θ = 0.667 θ = 0.5

Metamodels

L = 50,K = 5 0.370 (0.034) 0.415 (0.040) 0.533 (0.048)
L = 50,K = 15 0.316 (0.039) 0.388 (0.036) 0.504 (0.032)
L = 100,K = 5 0.215 (0.051) 0.383 (0.053) 0.497 (0.041)
L = 100,K = 15 0.197 (0.042) 0.342 (0.047) 0.490 (0.038)

Naive Method 0.475 (0.094) 0.524 (0.068) 0.631 (0.047)
Conditional Expectation 0.184 (0.055) 0.338 (0.056) 0.486 (0.044)

5.2 Evaluate the Performance of Calibration Framework

As a first step to study the performance of proposed calibration framework, we do not introduce any logic
error in the simulation model here. We use the M/M/1 queue as the real and simulation models. The
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unknown utilization for the real system is θ r. The utilization is also the calibration parameter θ for the
simulation system. Given the output data of the time staying in the real system yr

[T ], we calibrate θ so that
the dynamic behaviors of the calibrated simulation model match with those of the real system.

To study the posterior p(θ |Mp(·),yr
[T ]) for the calibrated simulation model, we first construct the GP

metamodel Mp(·) with K = 5,15,25 and L = 50,100. Then, following the procedure in Section 4.1, we
get the posterior p(θ |M(·),yr

[T ]). We record the width for the 95% percentile CrI and the posterior mean
E[θ |Mp(·),yr

[T ]] in Table 3. The results of mean and SD (in parentheses) are estimated by using 100
macro-replications. As the simulation budget represented by L,K and the amount of real world data T
increase, the posterior p(θ |Mp(·),yr

[T ]) converges to the underlying utilization of the real system θ r.

Table 3: CrI width and posterior mean of the calibration parameter θ

θ r = 0.833
T = 50 T = 100

|CrI(θ)| E[θ |Mp(·),yr
[T ]] |CrI(θ)| E[θ |Mp(·),yr

[T ]]

L = 50,K = 5 0.106 (0.065) 0.892 (0.046) 0.096 (0.053) 0.875 (0.048)
L = 50,K = 15 0.099 (0.060) 0.874 (0.058) 0.089 (0.050) 0.866 (0.059)
L = 50,K = 25 0.094 (0.061) 0.865 (0.049) 0.085 (0.051) 0.858 (0.047)
L = 100,K = 5 0.101 (0.059) 0.883 (0.058) 0.092 (0.051) 0.869 (0.051)
L = 100,K = 15 0.095 (0.056) 0.868 (0.066) 0.089 (0.054) 0.853 (0.058)
L = 100,K = 25 0.090 (0.055) 0.855 (0.066) 0.084 (0.050) 0.848 (0.052)

θ r = 0.667
T = 50 T = 100

|CrI(θ)| E[θ |Mp(·),yr
[T ]] |CrI(θ)| E[θ |Mp(·),yr

[T ]]

L = 50,K = 5 0.127 (0.068) 0.823 (0.085) 0.103 (0.058) 0.801 (0.083)
L = 50,K = 15 0.114 (0.057) 0.739 (0.080) 0.086 (0.044) 0.719 (0.075)
L = 50,K = 25 0.101 (0.052) 0.706 (0.074) 0.081 (0.043) 0.690 (0.072)
L = 100,K = 5 0.122 (0.064) 0.798 (0.082) 0.092 (0.048) 0.770 (0.082)
L = 100,K = 15 0.109 (0.053) 0.711 (0.075) 0.078 (0.041) 0.694 (0.069)
L = 100,K = 25 0.095 (0.048) 0.689 (0.072) 0.073 (0.052) 0.681 (0.071)

θ r = 0.5
T = 50 T = 100

|CrI(θ)| E[θ |Mp(·),yr
[T ]] |CrI(θ)| E[θ |Mp(·),yr

[T ]]

L = 50,K = 5 0.134 (0.063) 0.727 (0.081) 0.106 (0.054) 0.693 (0.077)
L = 50,K = 15 0.120 (0.058) 0.634 (0.069) 0.094 (0.045) 0.568 (0.064)
L = 50,K = 25 0.113 (0.054) 0.572 (0.060) 0.091 (0.049) 0.543 (0.059)
L = 100,K = 5 0.122 (0.061) 0.685 (0.074) 0.102 (0.046) 0.586 (0.065)
L = 100,K = 15 0.107 (0.052) 0.568 (0.062) 0.087 (0.039) 0.517 (0.056)
L = 100,K = 25 0.098 (0.047) 0.526 (0.057) 0.084 (0.042) 0.506 (0.053)

Then, we study the prediction performance of the calibrated simulation model. Given the historical
output data yr

[T ], we want to predict the next output Y r
T+1. Following the procedure in Section 4.2, we

can get the posterior predictive distribution p(Y r
T+1|Mp(·),yr

[T ]). For simplification, we let the order q′ = 1
here. The prediction error is defined as Err(ŷr

T+1) = |ŷr
T+1− yr

T+1|. For our approach, the predictor is
ŷr

T+1 = E[Y r
T+1|Mp(·),yr

[T ]]. For the real system, when θ r and the underlying output process are known,
the conditional expectation gives the best mean square predictor, E[Y r

T+1|yr
[T ],θ

r] = yr
T + e−yr

T +θ r−1. In
Table 4, we report mean and SD for the prediction error Err(ŷr

T+1) and the width of 95% percentile PI
for Y r

T+1. The results are based on 100 macro-replications. According to Table 4, as the size of historical
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data T and the simulation budget represented by L and K increase, the prediction uncertainty reduces, and
E[Y r

T+1|M(·),yr
[T ]] obtained from the calibrated simulation model becomes closer to E[Y r

T+1|yr
[T ],θ

r].

Table 4: Prediction error and PI width from our calibration framework and the conditional expectation.

θ r = 0.833
T = 50 T = 100

Err(ŷr
T+1) |PI(Y r

T+1)| Err(ŷr
T+1) |PI(Y r

T+1)|
L = 50,K = 5 1.679 (0.853) 4.665 (1.138) 1.438 (0.713) 4.130 (1.058)
L = 50,K = 15 1.354 (0.748) 4.036 (1.092) 1.144 (0.562) 3.722 (0.943)
L = 50,K = 25 1.186 (0.657) 3.781 (0.959) 1.028 (0.534) 3.427 (0.908)
L = 100,K = 5 1.483 (0.735) 4.224 (1.117) 1.385 (0.545) 3.836 (0.952)
L = 100,K = 15 1.258 (0.633) 3.966 (0.983) 1.095 (0.507) 3.340 (0.824)
L = 100,K = 25 1.094 (0.515) 3.509 (0.885) 0.953 (0.422) 3.218 (0.836)

Conditional 0.880 (0.422) 3.639 (0.728) 0.871 (0.374) 3.602 (0.683)

θ r = 0.667
T = 50 T = 100

Err(ŷr
T+1) |PI(Y r

T+1)| Err(ŷr
T+1) |PI(Y r

T+1)|
L = 50,K = 5 1.127 (0.441) 3.267 (0.708) 0.959 (0.415) 3.157 (0.604)
L = 50,K = 15 0.928 (0.409) 2.933 (0.674) 0.867 (0.360) 2.833 (0.534)
L = 50,K = 25 0.887 (0.386) 2.506 (0.621) 0.792 (0.344) 2.673 (0.517)
L = 100,K = 5 1.012 (0.435) 3.083 (0.686) 0.913 (0.385) 2.944 (0.562)
L = 100,K = 15 0.906 (0.418) 2.812 (0.647) 0.832 (0.364) 2.675 (0.498)
L = 100,K = 25 0.873 (0.377) 2.458 (0.602) 0.779 (0.338) 2.518 (0.470)

Conditional 0.814 (0.360) 2.617 (0.594) 0.723 (0.310) 2.595 (0.510)

θ r = 0.5
T = 50 T = 100

Err(ŷr
T+1) |PI(Y r

T+1)| Err(ŷr
T+1) |PI(Y r

T+1)|
L = 50,K = 5 0.753 (0.324) 2.853 (0.517) 0.704 (0.283) 2.589 (0.463)
L = 50,K = 15 0.671 (0.290) 2.514 (0.442) 0.633 (0.258) 2.370 (0.428)
L = 50,K = 25 0.588 (0.276) 2.279 (0.403) 0.562 (0.209) 2.221 (0.413)
L = 100,K = 5 0.720 (0.306) 2.698 (0.493) 0.681 (0.266) 2.452 (0.437)
L = 100,K = 15 0.636 (0.283) 2.379 (0.438) 0.619 (0.235) 2.146 (0.409)
L = 100,K = 25 0.573 (0.250) 2.040 (0.376) 0.550 (0.207) 2.053 (0.392)

Conditional 0.494 (0.237) 1.975 (0.529) 0.507 (0.250) 1.989 (0.483)

6 CONCLUSIONS

In this paper, we propose a stochastic simulation calibration framework for the system control. We first
introduce a spatial-temporal metamodel to estimate the system dynamic behaviors of the simulation model
at different calibration settings. Then, assisted by the metamodel, we propose a Bayesian calibration
framework so that the calibrated simulation model can capture the dynamic behaviors of the real system
and improve the prediction of future outputs. The empirical study over an M/M/1 queue indicates the
promising performances of our approach.
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