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ABSTRACT

Epidemiological models have tremendous potential to forecast disease burden and quantify the impact of
interventions. Detailed models are increasingly popular, however these models tend to be stochastic and
very costly to evaluate. Fortunately, readily available high-performance cloud computing now means that
these models can be evaluated many times in parallel. Here, we briefly describe PSPO, an extension to
Spall’s second-order stochastic optimization algorithm, Simultaneous Perturbation Stochastic Approximation
(SPSA), that takes full advantage of parallel computing environments. The main focus of this work is on
the use of PSPO to maximize the pseudo-likelihood of a stochastic epidemiological model to data from a
1861 measles outbreak in Hagelloch, Germany. Results indicate that PSPO far outperforms gradient ascent
and SPSA on this challenging likelihood maximization problem.

1 INTRODUCTION

In public health, it is critical to have a reasonable understanding of an epidemic disease in order to set
pragmatic goals and design highly-impactful and cost-effective interventions. Mathematical models of
these epidemiological processes can support decision making by forecasting disease spread in space and
time, and by evaluating intervention outcomes many times in-silico before spending valuable resources
implementing real-world programs. Recent efforts in computational epidemiology have focused on the
design and application of detailed stochastic models that capture physical mechanisms through which
disease propagates, along with the statistical fluctuations inherent in complex systems. These stochastic
models are readily available, and recent work has focused on applying these models to malaria (Eckhoff
et al. 2016, Eckhoff 2013, Marshall et al. 2016, Gerardin et al. 2016), HIV (Bershteyn et al. 2016, Eaton
et al. 2015), polio (McCarthy et al. 2016, Grassly et al. 2006), and more.

A central challenge in working with these complex models lies in finding input parameters that result
in model outputs closely matching observed data. The stochastic nature of these models means that each
set of input parameters maps to a distribution of outcomes, from which each sample (model run) can
take several hours to obtain. In the quick-to-evaluate deterministic model setting, almost any classical
optimization algorithm, such as steepest descent or Newton-Raphson, can be used to fit the model to data
by maximizing the pseudo-likelihood of the parameters given the data. However, care must be taken when
applying deterministic methods to stochastic objective functions, as the inherent noise causes unexpected
behavior. Some have tried model averaging, wherein the results at a given point are averaged over many
replicates to reduce stochastic fluctuations. While this approach mitigates stochasticity, it is expensive and
does not resolve the problem. Further, algorithms that evaluate the model one point at a time, like Markov
chain Monte Carlo and most optimization algorithms, will simply take too long to converge when applied
to these time- and memory-expensive models.
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There exist many optimization methodologies for both deterministic and stochastic systems. The
steepest descent method (Wright and Nocedal 1999) is the most prominent iterative method for optimizing
a complex objective function. The gradient-based algorithms, such as Robbins-Monro (Robbins and Monro
1951), Newton-Raphson (Fröberg 1969), and neural network back-propagation (Rumelhart et al. 1985), rely
on direct measurements of the gradient of the objective function with respect to the optimization parameter.
But, in many cases the gradient of the loss function is not available. This is a common occurrence, for
example, in complex systems, such as the optimization problem given in (Tsilifis et al. 2017), the exact
functional relationship between the loss function value and the parameters is not known, and the loss
function is evaluated by measurements on the system or by running simulation. A review on the main areas
of optimization via simulation can be found in (Fu 1994, Hong and Nelson 2009, Swisher et al. 2000).

Some algorithms have been developed specifically to optimize stochastic black-box cost functions. Of
these, the Kiefer-Wolfowitz algorithm (Kiefer et al. 1952) is perhaps the most well known. This algorithm
estimates the gradient from noisy measurements using finite differencing. Another well known stochastic
optimization algorithm in the case of high dimensional problems is Simultaneous Perturbation Stochastic
Approximation (SPSA), which is an approximation algorithm based on simultaneous perturbation (Spall
1992). Later, J. C. Spall presented a second-order variant of SPSA (Spall 2000). The SPSA algorithm
is used extensively in many different areas, e.g. signal timing for traffic control (Ma et al. 2013), and
some large scale machine learning problems (Byrd et al. 2011). The convergence of this algorithm to the
optimal value in the stochastic almost sure sense makes it suitable in many applications. Despite these
advantageous properties, SPSA is a serial algorithm that evaluates the (stochastic) function a few points
at a time. Specialized algorithms, like the PSPO algorithm (Alaeddini and Klein 2017) we employ here,
are thus needed to take advantage of fundamentally-parallel resources like high-performance cloud-based
computing. Other researchers have looked at ways of enhancing the convergence of the SPSA algorithm,
e.g. iterate averaging is an approach aimed at achieving higher convergence rate in a stochastic setting
(Polyak and Juditsky 1992). Another variant of SPSA in which the parameter perturbations are based on
deterministic, instead of random, perturbations was considered in (Bhatnagar et al. 2003). Several other
modified versions of SPSA were proposed in the literature (Kocsis and Szepesvári 2006, Spall 2009).

Among epidemiological parameter search algorithms, some have focused on finding all parameter
combinations that are consistent with observed data. These algorithms, such as basic sampling with
importance sampling, Bayesian History Matching (Andrianakis et al. 2015), and Incremental Mixture
Importance Sampling (Wagner et al. 2014) have been used effectively. However, the challenging task of
finding all parameter combinations means that these algorithms are only applicable in lower dimensional
parameter spaces, typically 20 or less. Other approaches have focused on finding parameter combinations
that achieve a binary goal-oriented outcome, e.g. disease eradication, at a specified probability (Roh and
Eckhoff 2014, Klein et al. 2014). When the population counts are sufficiently large, mean field theory can
be used to give an approximate model, popular among researchers who study disease spread in a network
(Alaeddini and Morgansen 2016, Preciado et al. 2013, Miller et al. 2012). While all of these algorithms
are useful in specific situations, none address the challenge of finding the best inputs, especially for models
that are stochastic and have many parameters.

Uncertainty in stochastic modeling is either fluctuation-driven (intrinsic) or parameter-driven (extrinsic).
Both sources of uncertainty are important to quantify, as the noise distributions can impact results (Bayati
and Eckhoff 2012), and intervention impact can be sensitive to parameters. To approximate extrinsic
uncertainty in an optimization framework, we make use of the Cramer-Rao Bound (Rao 1992). This bound
is derived from the inverse of the Fisher Information Matrix, which evaluates the expected curvature of the
log-likelihood at the point of maximum value. High curvature is indicative of easily identified parameters,
and thus a tight error bound.

The main contribution of this paper is the application of PSPO, a novel second-order parallel-friendly
algorithm, to fitting a stochastic model to historical measles data from Hagelloch, Germany. The PSPO
algorithm we use here, take advantage of parallel cloud-based computing resources, which is appropriate
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for the specific application described in this paper. We also use the relationship between the number of
parallel rounds of computation and error tolerance of the gradient for each iteration in PSPO algorithm to
achieve an acceptable convergence rate for this particular application. We demonstrate that PSPO works
well for fitting a stochastic spidemiological model and compares favorably to the conventional simultaneous
perturbation optimization algorithm (SPSA).

The rest of the paper is structured as follows. In Section 2, we give a summary of the simultaneous
perturbation optimization method. The model under study is introduced in Section 3. A review of
the modified stochastic optimization algorithm, called PSPO, is presented in Section 4. The numerical
simulations are given in Section 5, and Section 6 concludes the paper.

2 PRELIMINARIES: SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION

Consider the problem of maximization of a reward function L(θ) : Rp →R. J. C. Spall proposed an efficient
stochastic algorithm called Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall 1992, Spall
2000, Spall 2009). The SPSA algorithm efficiently estimates the gradient and the Hessian matrix using
finite difference techniques. This algorithm basically consists of two parallel recursions for estimating the
optimization parameter, θ , and the Hessian matrix, H(θ). The first recursion is a stochastic equivalence of
the Newton-Raphson algorithm, and the second one estimates the Hessian matrix. The two recursions are

θk+1 = θk +ak (ΠP(H̄k))
−1 ĝk(θk) ,

H̄k =
k

k+1
H̄k−1 +

1

k+1
Ĥk ,

(1)

where ak is a positive scalar factor, P denotes the set of all negative definite matrices, and ΠP(·) is the
projection into the admissible set P . Here, ĝk and Ĥk are the estimated gradient and Hessian at iteration
k. The SPSA approach for estimating the ĝk(θ) and Ĥk(θ) follows.

Let Δk ∈R
p be vectors of p mutually independent zero-mean random variables satisfying the condition

of E{Δ−1
k } be bounded. An admissible distribution is a Bernoulli ±1 distribution. The two-sided estimate

of the gradient at iteration k is given by:

ĝk(θk) =
L(θ + ckΔk)−L(θ − ckΔk)

2ck
Δ−1

k , (2)

where ck is a positive scalar. Note that in (2), Δ−1
k is the element-wise inverse of Δk. For second order

SPSA, it is suggested to using a one-sided gradient approximation, given by:

ĝk(θk) =
L(θ + ckΔk)−L(θ)

ck
Δ−1

k . (3)

Now let Δ̃k ∈ R
p be vectors of random variables satisfying the same condition of Δk. The positive

scalars c̃k are chosen to be smaller than ck. The following formula gives a per-iteration estimate of the
Hessian matrix.

Ĥk =
1

2

[
δGk

2c̃k
Δ̃−1

k +

(
δGk

2c̃k
Δ̃−1

k

)T
]
, (4)

where
δGk = ĝk(θk + c̃kΔ̃k)− ĝk(θk − c̃kΔ̃k) . (5)

The practical implementation details of this algorithm are given in (Spall 2000, Spall 2012).
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3 PROBLEM DEFINITION

In this paper, we formulate our problem for virus spread in a population consists of N individuals. In order
to have a reliable predictive model, we need to estimate the model parameters using noisy prevalence data.
Two main sources of prevalence data are clinics and health surveys. The clinic data are often available
for several time periods. But, health survey data are usually available at only one or a few number of
time points. We do not make any assumption on whether the prevalence data is sparse or dense. The
output, ζ , is the prevalence rates at time points, t1, t2, · · · , tn. To estimate the model parameters, we use
maximum likelihood estimate (MLE). Assume the likelihood function of a given θ for a given observation
ζ is expressed as:

l(θ | ζ1,ζ2, · · · ,ζn) = Pr(ζ1,ζ2, · · · ,ζn | θ) , (6)

where, ζ j is the observed prevalence at time t j. Then the log likelihood function is given by

L(θ) = log l(θ | ζ1,ζ2, · · · ,ζn) =
n

∑
j=1

logPr(ζ j | θ) . (7)

In order to find the probability, we use a beta binomial model. The beta binomial model is a type of
Bayesian model. In our model, the probability of having I infected individuals among N people can be
expressed as a binomial distribution

I | N,κ ∼ Binomial(κ,N)

where κ is the probability of each individual being infected. Thus the binomial likelihood is

Pr(I | κ,N) =
N!

I!(N − I)!
κ I(1−κ)N−I .

Now, κ itself is a probability that can vary over the interval [0,1], and a Beta distribution is used as the
prior

κ | β1,β2 ∼ Beta(β1,β2) ,

then, after observing I infected individuals in a simulation, we have

κ | I,N,β1,β2 ∼ Beta(β1 + I,β2 +N − I) .

Using the beta binomial distribution, the probability of observing ζ j given modeling parameter θ is

Pr(ζ j | θ) =
∫ 1

0
Pr(ζ j | κ,N)Pr(κ | I j,N)dκ =

N!

ζ j!(N −ζ j)!

Γ(2+N)Γ(1+ I j +ζ j)Γ(1+2N − I j −ζ j)

Γ(1+ I j)Γ(1+N − I j)Γ(2+2N)

(8)

where, I j comes from running our epidemic model on a population of N individuals for time t ≤ t j,
and substituting θ as model parameters. In this paper, the evolution of an epidemic disease can be
simulated using Gillespie’s stochastic simulation algorithm (SSA) (Gillespie 2001). In fact, we employ
a stochastic compartmental model, in which state transitions resemble chemical reactions, although the
PSPO methodology works equally well on individual-based models.

Finally, the optimal model parameters, θ ∗, are obtained by solving the following optimization problem:

θ ∗ = argmaxL(θ) ,

where L(θ) is given by (7). In the next section we present a robust stochastic algorithm to estimate the
optimal parameter, θ ∗.
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In this paper, we are also interested in calculating the confidence region of the estimated optimal solution
obtained by our optimization algorithm. The Fisher information matrix is a tool used here to compute
the confidence region. Given the information matrix, one can use Cramer-Rao inequality to compute the
confidence region of the estimated parameter. Assuming θ ∗ is the true value of the parameter, then the
uncertainty of the estimated parameter, θ̂ , is bounded using the Cramer-Rao inequality as

Σθ ≥ F−1(θ ∗) ,

where Σθ is the covariance matrix of θ̂ , and F is the Fisher information matrix (Scharf 1991). In other
words, the estimated standard errors of the maximum likelihood estimation are the square roots of the
diagonal elements of the inverse of the observed Fisher information matrix. Basically, smaller information
matrix means larger variation in the estimated parameter and less confidence in the accuracy of the estimated
value. Having the likelihood function, the p× p Fisher information matrix is given by:

F(θ)≡ E

[
∂L(θ)

∂θ
· ∂L(θ)

∂θ T

∣∣∣∣θ
]
, (9)

where L(θ) = logPr(ζ | θ) = log l(θ | ζ ). A well known equivalent form of the fisher information matrix,
which is defined based on the assumption of twice differentiability of the log-likelihood function, is:

F(θ)≡−E [H(θ | z)|θ ] , (10)

where

H(θ | ζ )≡ ∂ 2L
∂θ∂θ T

is the Hessian matrix. The latter form of the Fisher information matrix in (10) is often easier to compute
than the former form given in (9). The analytical calculation of the Fisher information matrix is difficult
here because of nonlinearity nature of the the epidemiological model. Thus, we use an approximation
method based on a Monte Carlo sampling approach, which is introduced in (Spall 2005). The idea is to
estimate the Hessian matrix of the log-likelihood function for a large number of samples and then average
the negative of the Hessian matrices to obtain an estimate of the Fisher information matrix. Basically the
same approach of simultaneous perturbation used in (4) can be used to estimate the Hessian matrix. A
summary of the Monte Carlo sampling approach (from (Spall 2005)) is given here.

Let zk, k = 1, · · · ,K, be the kth Monte Carlo generated sample from running the epidemic disease
model using the estimated parameter, θ . To obtain zk, we need to run the simulation for the given θ . The
pseudo measurement, zk, is a realization of the stochastic simulation based on the probability distributions
for each node. The Monte Carlo based estimate of the information matrix is given by (Spall 2005):

F̄J,k(θ) =
k−1

k
F̄J,k−1(θ)− 1

kJ

J

∑
j=1

Ĥj|k , (11)

where Ĥj|k is the jth estimate of the Hessian matrix, H(θ) at the sample data zk. The inner averaging loop
compute an estimate of the Hessian matrix at a sample data zk using J values of perturbations, Δ1,Δ2, · · · ,ΔJ .
After executing (11) K times (for all samples zk), the F̄J,K is used as an estimation of the Hessian matrix
at θ . The details of the Monte Carlo based Hessian estimation can be found in (Spall 2005, Spall 2008).

4 PARALLEL SIMULTANEOUS PERTURBATION ALGORITHM: PSPO

In case of epidemiological model fitting, the objective function is obtained from (7). In order to compute
this log likelihood function, we need to run the SSA simulation given θ to compute the probability term
(8). Since SSA simulation is a stochastic process, the log likelihood function (the objective function) is
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a noisy uncertain function. Although SPSA is an efficient optimization algorithm for high dimensional
problems, it requires many iterations to converge, particularly in the case of high noise problems. Since
all epidemic models are stochastic processes, the values of objective function are highly uncertain. In the
case of highly uncertain problems, the computation of the gradient from noisy objective function require
more runs to obtain an acceptable estimate. The idea, here, is using parallel computing of the gradient
with different perturbation vectors. The multiple rounds of computation guarantees an error bound for each
iteration given the noise variance presented in the objective function. The connection of the number of
computation rounds and the error in estimated gradient is specified here.

The gradient vector at each iteration can be obtained by averaging over multiple evaluations of (3) for
different values of perturbation. Let gi represents the directional gradient at a point θ in Δi direction, and
g is the gradient at this point. Then we know that:

gi =
〈g(θ),Δi〉
‖Δi‖2

Δi .

Let ĝi is the estimated gradient using the one-sided gradient approximation (3) and perturbation vector Δi
is a ±1 vector. Then,

ĝi ≈ pgi = 〈g(θ),Δi〉Δi ≈ 〈ĝ(θ),Δi〉Δi .

Then, we have

ĝT Δi ≈ δ fi

c
; δ fi = L(θ + cΔi)−L(θ) ,

and then,

ĝT Δ ≈ 1

c

[
δ f1 δ f2 · · · δ fM

]
, (12)

where,
Δ =

[
Δ1 Δ2 · · · ΔM

]
.

If {Δi}1≤i≤M span R
p, then ΔΔT is invertible. So, the least square estimation of ĝ is given by:

ĝ ≈ 1

c

(
ΔΔT )−1 Δ

[
δ f1 δ f2 · · · δ fM

]T
. (13)

On the other hand, if M < p, then (12) is an under-determined system which has non-unique solutions.
Then, the solution of the minimum Euclidean norm, ‖ĝ‖2, among all solutions is given by:

ĝ ≈ 1

c
Δ
(
ΔT Δ

)−1 [δ f1 δ f2 · · · δ fM
]T

. (14)

The PSP algorithm for estimating the gradient at a given point is given in Algorithm 1. In order to
improve the efficiency of this algorithm, we can compute L(θ) once, out of the loop. Doing this, we need
M+1 function evaluations for estimating the gradient.

One difference of the PSP algorithm compared with the conventional SPSA algorithm is on the selection
of the perturbation vectors, Δ. We suggest a more efficient strategy to choose independent Δ vectors. First
we sample Δ0 from a Bernoulli ±1 distribution. In round j, 1 ≤ j ≤ p, we switch the sign of the jth element
in Δ0 to generate Δ j. The same procedure repeats for the next p rounds of computations. In (Alaeddini
and Klein 2017), it is proved that this strategy generates a set of perturbation vectors that spans R

p.
We need to provide the number of parallel rounds of computation, M, as an input for this algorithm.

Let y = L(θ) and yi = L(θ +cΔi) represent the noisy measurements at θ and θ +cΔi respectively. Assume
these measurements can be expressed as normal random variables as y ∼ N (μ,σ2) and yi ∼ N (μi,σ2).
It is assumed that the noise variance is constant over the whole state space, θ .
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Inputs: given point θ , perturbation size c, and # of parallel rounds M;

Randomly sample Δ0 from {±1} binary distribution;

Initialize computation round counter i := 1;

repeat
ī = i mod p;

Δi := (I −2eīe
T
ī )Δ0;

δ fi(θ) := L(θ + cΔi)−L(θ);
i := i+1;

until i ≤ M;

Δ :=
[
Δ1 Δ2 . . . ΔM

]
;

if M ≥ p then

ĝ(θ) :=
1

c

(
ΔΔT )−1 Δ

[
δ f1 δ f2 . . . δ fM

]T
;

else
ĝ(θ) :=

1

c
Δ
(
ΔT Δ

)−1 [δ f1 δ f2 . . . δ fM
]T

;

end if
Algorithm 1: PSP gradient.

Lemma 1 Given y ∼ N (μ,σ2) and yi ∼ N (μi,σ2), if M ≥ p, then the expected value of the gradient
from Algorithm 1 is equal to the gradient g.

Proof. Refer to (Alaeddini and Klein 2017).

Theorem 1 If the rounds of computation, M, satisfies

M ≥ σ2 p
c2ε2

, (15)

then the error in estimated gradient from Algorithm 1 is bounded by E [‖ĝ−g‖]≤ ε .

Proof. Refer to (Alaeddini and Klein 2017).

It is worthy to note that from the results of Theorem 1 one can show that if M → ∞, then the error,
ε → 0, which is equivalent to E [‖ĝ−g‖] = 0. Algorithm 2 presents a step-by-step summary of the PSPO
algorithm, which is a conjugate gradient type algorithm. Details can be found in (Alaeddini and Klein
2017).

Running the epidemiological simulations, particularly the computation of likelihood function for a
complex model, is usually an expensive task. Therefore, it is more desirable to have a robust solution, that
we do not require to re-run the whole simulation with any change in the model. On the other hand, we
would like to have a region of all possible solutions. Then we would be able to sample from the solution
region and only keep the parameters that often produce good runs for the given observation. In order to
estimate the solution region, we use the Monte Carlo based approach, introduced in (Spall 2005), and
described earlier in this paper. At this point, we have all required tools to find the best predictive model
from observed clinical data. Algorithm 3 presents a step-by-step summary of the proposed approach.

5 SIMULATION

To demonstrate the main contribution of this paper, we implemented the methodology on Hagelloch data
set. This data set concerns a measles outbreak in a small town in Germany in 1861, which contains 188
infected individuals. This data set is very popular in literature because of its completeness and depth of
data. Fig. 1 gives the observed clinical data. The data are obtained from (Meyer et al. 2014).
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Initialize i = 0, k = 0 and initial guess θ0, Initialize update direction d = null;

Run PSP to compute ĝ0(θ0) with M = 1;

r :=−ĝ0(θ0), d := r, gnew := ĝ0(θ0);
repeat

Set # of parallel rounds M using error tolerance for this iteration;

Run PSP to compute ĝk(θk) using computed M;

r :=−ĝk(θk), gold := gnew, gnew := ĝk(θk);

β =
gT

new(gnew −gold)

gT
oldgold

;

d̃ :=
d
‖d‖ + ε�d=0(d);

θ+
k := θk + d̃, θ−

k := θk − d̃;

Run PSP to compute ĝ(θ+
k ), and ĝ(θ−

k ), and compute δGk = ĝ(θ+
k )− ĝ(θ−

k );

Ĥk :=
1

2

[
δGk

2
d̃−1 +

(
δGk

2
d̃−1

)T
]

;

α :=− ĝT
k d

dT Ĥkd
;

Update θk+1 := θk +αd, and update direction d := r+βd;

i := i+1;

if i = p or rT d ≤ 0 then
d := r;

i := 0;

end if
k := k+1;

until stopping criteria satisfied;
Algorithm 2: PSPO Algorithm.

Inputs: clinical data, ζ1,ζ2, · · · ,ζn;

Initialize with given guess θ0;

Run PSPO algorithm until the stopping criteria satisfied;

θest := θk obtained from PSPO;

Compute F̄(θest) using (11);

Σθest = F̄−1(θest);
Sample from θest and Σθest to find a desirable set of parameters;

Algorithm 3: Epidemic model calibration algorithm.
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Figure 1: Measles outbreak clinical data.

Some types of diseases with permanent immunity, such as measles, mumps and rubella, can be described
as Susceptible-Infected-Recovered (SIR) model. In this model each individual can only exist in one of the
discrete states such as susceptible (S), infected (I) or permanently recovered (R). We have two transitions
in this case. An infected person can infect others with an infection rate, β , and is cured with curing rate,
δ . Therefore, the parameters of our model are θ = (β ,δ ). Our objective, here, is finding a good model
for the given epidemic data, i.e. infection rate and curing rate, to investigate the properties of the disease
spread. These properties will allow the researchers to learn about the diseases, and thereby enabling them
to test competing theories about transmission of disease and to devise better containment strategies.

We compare the efficiency of the PSPO algorithm with the conventional SPSA algorithm. To compare
these two algorithms, we run the optimization algorithms 100 times for each one. Fig. 2a shows the number
of iterations required to converge. As it can be seen in this figure, PSPO algorithm in average needs fewer
iterations compared with the conventional SPSA algorithm. The maximum number of iterations for both
algorithms set to 30. Note that the number of iterations until convergence set to 30 if the algorithm does
not converge after 30 iterations. In order to investigate the performance of the PSPO algorithm as the
number of parallel rounds increases, we run the PSPO for this example with different number of parallel
computation rounds. Fig. 2b shows the number of iterations for convergence as M grows.

The comparison between SPSA and PSPO algorithm demonstrates the superiority of the PSPO algorithm
in the number of iterations for convergence. Note that, comparing with SPSA, the PSPO algorithm with
multiple parallel computations requires additional processing time per iteration. In order to prevent
unnecessary long processing time per iteration, which results in long total processing time, the number
of parallel computations need to be carefully computed using the level of the noise presented in the
problem. In some cases when we are dealing with a high SNR (signal to noise ratio) problem, a single
round of computation might be enough for convergence, but in some other applications, like most of the
epidemiological applications, the data are highly noisy, and SPSA requires too many iterations to converge.

6 CONCLUSIONS

In many stochastic optimization problems that noise presents, obtaining an analytical solution is hardly
possible. In this paper, we described an algorithm for optimal parameter estimation in discretely observed
stochastic epidemic model. We presented an efficient algorithm which explores the parameters space to find
a set of parameters which gives highest conditional probability of the given noisy measurements. The log
likelihood function, which was used to evaluate the cost corresponding to different choices of parameters,
was estimated by running the Gillespie stochastic simulation algorithm and then using the beta binomial
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Figure 2: (a) Comparison of the number of iterations for convergence for conventional SPSA and PSPO.

(b) Number of iterations vs. number of parallel computing rounds, M, in PSPO.

probabilistic model. We developed a parallel stochastic perturbation optimization algorithm and found the
minimum number of parallel rounds of computation in order to have a bounded error in the estimated
gradient. Furthermore, using a Monte Carlo re-sampling method, we computed the fisher information
matrix, which gives the confidence region of the obtained solution.
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