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ABSTRACT 

Safety stock calculations are difficult for products with intermittent demand, long production lead times, 

and high monetary values. Theoretically, forecasts can be used to reduce the need for safety stocks. A high 

precision forecast minimizes the need for safety stock and forecast evaluation measurements can be used 

to calculate the safety stock level. However, a more realistic determination of safety stock levels can be 

obtained by simulation. In this paper, simulation is used to model and experiment on a case with three end 

products in order to determine the relationship between safety stock levels and service levels. Also, a 

comparison is made with theoretically calculated safety stocks to see how well basic theoretical models for 

safety stock calculations fulfill the requirements of service level. The result is that simulation can provide 

a much more accurate determination of safety stock levels for intermittent demands than theoretical 

calculations.  

1 INTRODUCTION 

Determining the level of safety stock in inventory control systems is not a trivial problem. Demand is often 

treated as normally distributed with a high mean value and a moderate standard deviation. Safety stocks 

within these recurring and even demand patterns can be calculated to keep a certain fill rate or to keep a 

certain level of stock-out probability. Both these methods are well described in literature and used in 

industry (Hopp and Spearman 2008; Anupindi et al. 2014). There are other methods to calculate safety 

stock for items that instead show an intermittent and uneven demand. The size of the safety stock is then 

largely affected by the ability to forecast the demand. One method of intermittent demand forecasting based 

on historic data is the Croston Forecasting Method (Croston 1972). The forecast is used to calculate a safety 

stock level utilizing both fill rates and stock-out probabilities. 

 In some cases, products with intermittent demand also have long production lead times and large 

monetary values. Together with a desire from the customers to have short delivery lead times, the 

calculation of a safety stock level is a problem with a non-trivial solution. Using the Croston Forecasting 
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Method (Croston 1972) to forecast intermittent demand have several shortcomings that will be discussed 

throughout this paper.  

 Simulation that uses real data and real system logic is often regarded as a better alternative to determine 

the safety stock level of end products. Nevertheless, a simulation solution is often much more expensive 

both in time and money than going directly for a theoretical safety stock calculation. In this paper we use 

simulation to model and determine the safety stock levels of three end products with extremely high 

monetary value. The result is a relationship between safety stock levels and service levels. We also compare 

the simulated safety stock levels with a calculated safety stock. We utilize the Croston Forecasting Method 

to calculate a forecast and then use the forecast to calculate a safety stock level for each end product. The 

idea of using forecasting methods is that a precise forecast reduces the need for safety stock, and vice versa.  

The purpose of this paper is therefore to test if a safety stock level that has been calculated with a high 

probability to avoid stock-outs can match the simulated safety stock levels for end products with 

intermittent demand. This is done being well aware of the fact that the underlying assumptions of a safety 

stock calculation with a high probability to avoid stock-outs are false for intermittent demand. Still, this is 

believed to be a practical solution. In this paper, we investigate how wrong the practical solution really is. 

 The company case that is used in this paper contains three end products that are today only Make-To-

Order (MTO). A customer order drives the production and delivery lead times can be long, often longer 

than a year. There is however a new opportunity to deliver end products to a new and different customer 

segment where delivery lead times are much shorter. It is impossible to shorten production lead times, so 

to meet the new customer segment, some of the end products must be held in stock as a safety stock or 

speculation stock, moving towards a Make-To-Stock (MTS) system. However, due to the extreme high 

value of the end products, the amount of products held in stock must be very precise. Keeping one extra 

end product in stock can prove very costly.  

 Olhager and Persson (2008) use simulation in a teaching environment where the goal of a student 

project is to set, among other control parameters for manufacturing systems, a proper safety stock level for 

different end products. Simulation is also used in Schmidt, Hartman, and Nyhuis (2012) where different 

approaches of calculating safety stocks are evaluated. The study, however, seems inconclusive when no 

superior approach to safety stock calculation could be found. Hernandez-Ruiz et al. (2016) considers the 

special case of modular productions systems while investigating safety stock levels with simulation. These 

examples of simulations studies for safety stock investigations all lack the other special case of intermittent 

demand – a topic very hard to find.  

The reminder of the paper is organized as follows; first, a theoretical background is given to forecasting 

and safety stock calculation. After that, the modelled system is described, following the conceptual model, 

computer model, verification and validation, and experimentation. Last, conclusions are made followed by 

an outlook into future work.  

2 THEORETICAL BACKGROUND 

Production companies that compete in the MTS markets often keep a safety stock to counteract stock-outs 

during time periods of higher demand than usual levels. Stock-outs means that since the inventory is empty, 

the company loses sales opportunities. A safety stock gives a certain service level towards the customers. 

The size of the safety stock can be determined in many different ways using different definitions. One 

common definition is to calculate the safety stock as “the probability that there will be no stock out within 

a time interval” (Anupindi et al. 2010; Olhager 2000), also known as SERV1. The calculation of the safety 

stock incorporates both the probability of stock outs, the standard deviation of forecast errors, and 

replenishment lead time. Safety stock 𝐼𝑆 is calculated as 

 

𝐼𝑆 = 𝑘𝜎𝑒𝐿
𝛾 (1) 
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Where 𝑘 is the safety factor, based on the Normal distribution (𝑘 = 1.65 for 95% probability) if demand is 

normally distributed, 𝜎𝑒 is the standard deviation of the forecast error per time period, and 𝐿𝛾 is the lead 

time in time periods to the power of 𝛾 which is a factor that is affected by internal correlation in the 

underlying time series the forecast, often set to 𝛾 = 0.5 (Olhager 2000). 

 Not all authors agree with Olhager (2000) where standard deviation of forecast error is used in the 

calculation of the safety stock; some argue instead that the standard deviation of the demand itself is 

sufficient to get the correct probability that there will be no stock-outs within a given time interval (Silver 

et al. 1998). However, a safety stock calculation based on forecast error is practically sound since it implies 

no need for safety stock if forecasts could be determined with an extremely high accuracy. This also implies 

a direct connection between the size of the safety stock and the accuracy of the forecast. When determining 

the safety stock in MTS, the question of how good the forecast is will always be dominating the discussions. 

 Forecasting is often done by looking at historical sales data and trying to predict the future. Different 

methods have been proposed such as time series calculations or time series component decomposition, i.e. 

finding patterns in time series. Moving averages or exponential smoothing can determine future forecasts 

mathematically with a high accuracy for products with high and frequent demand in all time periods. In the 

case where products have an intermittent demand pattern, forecasting becomes harder. Intermittent demand 

means that products are sold seldom, in small volumes, and without any apparent recurrence of demand. 

Seldom means that products are not sold in every time period used to forecast. Small volumes mean that 

when products are sold, it is often one or two products. Last, without apparent recurrence of demand means 

that products are sold in what seems to be a stochastic pattern which is hard to forecast. In all, products 

with intermittent demand are the slow movers that often take up a lot of shelf time, but when absent can 

incur large costs in a company. Silver (1981) defines intermittent demand as when both demand and the 

time between the demands occurrences are stochastic.  

 An early attempt to forecast intermittent demand was introduced by Croston (1972). Croston defines 

intermittent demand as zero demand in a number of time periods. In this forecast method, the time between 

sales and the size of the sale are treated as two independent variables. Simple exponential smoothing is 

done to update both variables and to create a forecast for the next sale. Thus, the demand forecast in time 

period t is denoted 𝑋𝑡 when the demand occurs and the forecasted time between occurrences is denoted 𝑇𝑡 
valid for time period t. In the case where no real sales occur, both variables are constant: 

 

𝑋𝑡+1 = 𝑋𝑡 (2) 

 

𝑇𝑡+1 = 𝑇𝑡 (3) 

 

When sales occur, both variables are updated with the real values of sales denoted 𝑋̂𝑡 and the time between 

occurrences denoted 𝑇̂𝑡: 
 

𝑋𝑡+1 = 𝑋𝑡 + 𝛼(𝑋̂𝑡 − 𝑋𝑡) (4) 

 

𝑇𝑡+1 = 𝑇𝑡 + 𝛽(𝑇̂𝑡 − 𝑇𝑡) (5) 

 

This update is done with exponential smoothing and factors  and  to weigh the recent sales and time 

between sales.  

 The method by Croston have been subject to a lot of criticism, by e.g. Syntetos and Boylan (2001) and 

later led to the development of the modified Croston by Levén and Segerstedt (2004). The modified Croston 

is also criticized of have a build in bias (Teunter and Sani 2009).  

 A more recent approach (than Croston 1972) is to use standard statistical tools such as bootstrapping. 

Bootstrapping is basically about random sampling with replacements. In Willemain, Smart, and Schwartz 
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(2004) bootstrapping is used to create a forecast based on historical data. Assume that each time period is 

represented by a ball as in the basic urn problem in probability (Dodge 2003). Each ball is given a number 

representing the sales in that time period based on historical data. The balls now represent the real sales 

with many balls having number 0 and others real sales data. Balls are picked from the urn in order to forecast 

the next time periods and for each new forecasted time period the ball is replaced into the urn. In this way, 

a forecast can be established following the real probabilities of sales in time and the exact size of the sale 

from historical data.  

3 CASE SYSTEM DESCRIPTION  

In this case, the company produces three different end products in the same factory. The delivery lead times 

to customers for the three specific products are equal to the production times, as in MTO. The aim is now 

to shorten the lead times and move to MTS, because of higher service requirements from some customers. 

The system starts with a predefined stock level for each product. When a customer makes an order, the 

product can be delivered directly from stock if the inventory level is large enough. Otherwise, if the 

inventory is empty but there is a product in the production system, undergoing production, with less time 

remaining than the customer lead time, the customer can be served. If the product cannot be delivered, the 

sales opportunity will be lost. When the safety stock is used, the production of a new product will be started, 

so that the safety stock will increase to its original level. If a customer makes an order of, say, 2 products, 

but only 1 product is in stock and the other in production, the production of two new products will not be 

started until the customer has received the whole order.  

The system is modelled in Arena 14.7. Most of the input data were modelled in Matlab. For the 

simulation study as a whole, the methodology from Persson (2003) was used, see the following sub-

chapters. 

3.1 Conceptual model 

There are two types of entities in the model. One type represents customers that are requesting products. 

The other type represents the different products. Activities are the production of each product and delivery 

lead times. Activities such as disturbances in the production process are excluded from the model as well 

as staff and equipment. The customers that are waiting to get their order will be placed in a queue. If the 

customer does not get the delivery of the order before the given amount of time it will be counted as a lost 

sale (lost customer). The production system will be operating 24 hours per day, 7 days per week, 52 weeks 

per year. In Table 1 is a list of details of what is included and excluded in the model.  

Table 1: List of details in the model. 

Component Include/exclude Justification 

Entities   

 Customers  Include  Key influence on throughput 

 Products  Include Key influence on throughput 

Activities   

 Production lead times Include  Key influence on throughput 

 Delivery lead times  Include Key influence on throughput 

 Repair of machines Exclude Simplification, no data on repair time 

Resources    

 Inventory Include Experimental factor 

 Staff Exclude Assume always available, 24 hours a day 

 Equipment Exclude Assume always available 
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In the case data from historical customer demands, only the customers that have a requirement of a shorter 

customer lead time than the actual production lead time are considered. The demand data consists of dates 

(year and week) when orders of the products are received (arrival time), the number of products ordered 

and when the orders are delivered to the customers. The data is used to estimate future demand. For two of 

the three products, data were missing so the demand pattern was based on the third end product. A limitation 

to the system is that the number of products in production and the inventory combined cannot exceed the 

maximum safety stock. This means that a new product will not be produced before a product has been 

delivered to a customer, even if the product is reserved to the customer. In a way this mimics the Reorder 

Point system with a reorder point equal to the safety stock level. This set up is chosen because of the high 

monetary value of the product.  

 The input data to the model consists of arrival time of the customer order and number of products the 

customer requests, delivery lead times, production lead times, and level of safety stocks. Outputs are service 

levels, which is decided by the number of customers that have received their order or end product on time 

out of the total number of orders. 

3.2 Simulation Model 

The model is divided into two parts, the demand management, see Figure 1, and the production 

management, see Figure 2. The entity arrives to the demand management part according to the real future 

demand estimation.  

 

 

Figure 1 : Demand management. 
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Figure 2: Production management part. 

An Excel file contains input data of product type, production time, demand, accepted lead time for the 

customers and safety stock level for each experiment. The file also consists of the arrival patterns for each 

product type and demand. In each arrival pattern the arrival time of orders and the size of the orders are 

stated.  

3.2.1 Demand Management 

The demand management part of the model starts with a Create module named Create Customer, which 

creates one entity of type Customer. Then, an Assign module, Safety stock level saves the inventory level 

from the start to the variable Safety stock level. The VBA module that comes next reads the arrival patterns 

and the demands from the Excel file, which generates arrival patterns for customers in the model. A Delay 

module is then placed in the flow called Delay until actual arrival, which makes sure that the customer 

does not arrive until the right time. When the time delay has passed by, the entity continues to a Separate 

module, Create a copy of entity, where the entity duplicates according to the demand from the customer. 

One entity goes back to VBA, the other one continues further on to a Decide module.  
 The Decide module Check Inventory contains a condition that checks if the variable Inventory level is 

larger or equal to the demand and if there are no customers waiting for their products. If the condition is 

true, then a product will be delivered to the customer and the variable Inventory level decreases in the 

Assign module, Decrease Inventory. When a product is taken from the inventory, a new product has to be 

produced. This is done by setting the variable that represent the production to 1, which is done in the next 

module Start Production. This triggers the other part of the system, production management, to start. After 

that there are two Record modules, No. of delivered products and No. of satisfied customer, that count the 

number of delivered products and the number of satisfied customers respectively. The entity will then leave 

the system by the Dispose module, Satisfied Customer Leaves.  

 If the condition in the Decide module Check inventory is false, then the entity proceeds to the next 

Decide module called Check If Served Within Time that check if the customer can receive their product 

within the given customer lead time. This is done by a condition that checks if the Demand is bigger than 

the Inventory level, number of products in the second part of the production and the sum of the demand 

from the customer that waits for their products. If the condition is true the entity will move on to two Record 

modules, No. of lost products and No. of lost customer, that count the number of products that could not be 

delivered respectively the number of customer that has been lost. Then the entity will leave to the Dispose 

module that is called Lost Customer Leaves. 

 If the customer can have the product within the delivery time, then the entity proceeds to the module 

Count demand 1 that count the sum of the demands from the customers that wait for their products. The 

entity moves on to the Hold module Wait for product that holds the entity until there is enough products in 

the inventory. The entity will then pass another Record module, Count demand 2, that count the sum of the 

demands from the customer that has got their products. This is done so the model can know how many 

products that are reserved and not available for other customers. The entity will then move on to the module 

Decrease inventory and proceed the same route as earlier explained.  
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3.2.2 Production Management 

The production begins with a Create module, Create Production, which generates entity Product. The 

Create module only creates one entity. Next in the model is a Hold module, called Shall We Produce? This 

module is holding the entity until a demand has occurred in the demand part of the model, i.e. when the 

variable Production1 are equal to 1. When a demand has occurred, it is time to start the production. Before 

the production, the entity passes by a Separate module which split up the entity to several entities. One of 

the entities goes back to the Shall We Produce? module, and the other one continues to an Assign module. 

The Assign module is called Reset Production and the aim of this is to set the variable Production to zero, 

which make sure that the production does not continue to produce more than the requested products. 

 After the Assign module, two Process modules, Production time 1 and 2, are placed. The production 

time is split up in these two Process modules. In the first module the product stays until the time is total 

production time subtracted with the delivery lead time. In the second module the product stays the time of 

the customer lead time. The production time is divided in order to be able to check if a customer can receive 

its order within time. When the production time is over the inventory level is increased by one in the Assign 

module, Increase Inventory. Thereafter the entities leave the model by the Dispose module Stop Production.  

3.3 Model Verification and Validation  

Animation is limited in the model. Inventory levels are defined as variables and can only be viewed as 

numbers. During the simulations, only some data is visible like scenario parameters, number of delivered 

products, number of lost products, number of satisfied customer, number of lost customers and inventory 

level for each scenario. As means of verification, an extensive walkthrough was conducted during 

preliminary runs. Measured outputs were all within reasonable limits compared to the real system and the 

model behaved as predicted. Validation was carried out with case company representatives, but only for 

the conceptual model. To conclude the verification and validation of the model, a high credibility was 

shown from the case company towards the simulation model.   

4 EXPERIMENTS  

The model is tested in different experiments to see how the model acts if circumstances change. The 

parameters that are changed in the experiments are end product type (with different production lead times), 

total yearly demand, delivery lead time and safety stock. The three products have different demand patterns 

and delivery lead time, but the same safety stock levels are tested for each product. The safety stock levels 

are tested from 1 to 15. For the first product (1), three demand levels are tested, with a short delivery lead 

time. The second product (2) is tested with four demand levels and a short and a long delivery lead time. 

The last product (3) has three demand levels with a long and a short delivery lead time. The experiments 

generates different service levels, product delivery levels and average inventory levels. The experiments 

are divided into different scenarios where the parameters production type, demand and customer lead time 

changes.  

Each simulation had a runtime of 100 simulated years but only one replication. The long runtime is to 

get a high precision in the output rather than using several replications. The basic idea behind this solution 

is the fact that demand levels at some experiments were as low as 4 end products per year. With 100 

simulated years, at least 400 end products were delivered, creating many observations of the service levels.  

5 SIMULATION RESULTS  

The simulated results are collected in Figures 3 to 7. For product 1, three different demand levels are 

depicted in Figure 3, D = 5 stands for at yearly demand of 5 end products, D = 10 for a yearly demand of 

10 end products, and D = 15 stand for 15 end products. Also in Figure 3, the two service levels denoted 

“Order” and “Product” are presented. The “Order” service level is defined as the service level for a complete 
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order, being 1 or more end products. The “Product” service level on the other hand, is the service level per 

end products regardless of order size. The two service levels differ somewhat throughout the results and 

are therefore separated.  

 All five figures, Figures 3 to 7, show basically the same pattern. For higher yearly demand levels, a 

larger safety stock level is needed to get up to 100% service level regardless of “order” or “product” focus. 

Lower demand levels also show a steeper incline up to the high service levels. In all, Figures 3 to 7 gives a 

numerical value of safety stock level, given the end product (1, 2, or 3), the demand level, and the delivery 

lead time. Note that the delivery lead time always is shorter than the production lead time. 

 

 

Figure 3: Service Levels for Product 1. 

 

 

Figure 4: Service Levels for Product 2, short lead time. 
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Figure 5: Service Levels for Product 2, long lead time. 

 

 

Figure 6: Service Levels for Product 3, short lead time. 

 

 

Figure 7: Service Levels for Product 3, long lead time. 
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6 ANALYSIS  

6.1 Calculation of Safety Stock Levels 

The Croston Forecasting Method is used to calculate the forecast error for the different demand patterns 

that are used in the simulation model. The corresponding safety stock is then calculated using the service 

level definition with a stock-out probability of 95%. The different demand patterns hold different levels of 

total yearly demand and thus get different calculated safety stock levels.  

 First, the forecast error was calculated using daily demand buckets where Croston Forecasting Method 

was used to forecast the intermittent demand of each product over the simulated 10 years (equation 2 to 5). 

The forecast error was calculated from the forecasted number of product and the forecasted day of the sale. 

For a forecasted demand to be deemed as correct, the number of product needed to be exact but the day was 

allowed to differ by 5 days (at least in the same week). Once the forecast error was determined, the standard 

deviation for the forecast error was used in equation 1. With a probability level of 95% (k = 1.65), the 

corresponding lead time, and the correlation factor 𝛾 = 0.5, the resulting safety stock levels can be seen in 

Table 2. The safety stock was calculated and rounded up to ensure the stock-out probability was at least 

95%. 

Table 2: Results. 

Product 

Demand 

[pcs/year] 

Forecast 

error 

Lead 

Time 

Safety Stock 

Level SS 

Rounded 

SS 

Simulated Service Level 

Order Product 

1 5 0.146 Short 2.973 3 0.94 0.91 

1 10 0.209 Short 4.251 5 0.89 0.86 

1 15 0.275 Short 5.595 6 0.75 0.71 

2 4 0.124 Long 2.755 3 0.92 0.90 

2 4 0.124 Short 2.249 3 0.89 0.86 

2 8 0.180 Long 4.019 5 0.88 0.84 

2 8 0.180 Short 3.282 4 0.73 0.66 

2 12 0.227 Long 5.068 6 0.73 0.68 

2 12 0.227 Short 4.138 5 0.61 0.55 

2 16 0.290 Long 6.456 7 0.63 0.58 

2 16 0.290 Short 5.271 6 0.55 0.50 

3 3 0.102 Long 2.793 3 0.76 0.74 

3 3 0.102 Short 2.281 3 0.75 0.72 

3 6 0.149 Long 4.057 5 0.77 0.73 

3 6 0.149 Short 3.312 4 0.64 0.58 

3 9 0.183 Long 4.993 5 0.56 0.50 

3 9 0.183 Short 4.077 5 0.55 0.49 

6.2 Comparing Calculated Safety Stock with Simulated Service Levels 

For each scenario (product, yearly demand level, and delivery lead time) the calculated and rounded safety 

stock level was compared to the simulated corresponding service level. Throughout Table 2, the simulated 

service levels were lower than the calculated levels (should be at 95%). For product 1, demand level of 5, 

and short lead time, the calculated safety stock is 2.973 which was rounded up to 3 items. This corresponded 

to a service level at 94% (measured for whole orders) and 91% (measured for individual products). This 

product was actually the best performing product out of all experiments. Looking closely at Table 2, it can 

easily be determined that the Croston Forecasting Method, as means to calculate the standard deviation of 

forecast error and thereby the safety stock, will always lead to an under estimation of the true safety stock. 

In all cases that were simulated, the service levels (both for “orders” and “products”) were lower than 
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expected. For product 3, high demand level, and short delivery lead time, a safety stock of 5 end products 

only provide you with a service level about 50%, which is equal to no safety stock at all.   

6.3 Discussion 

One factor which will decrease the service level in the simulation is the assumption that the number of 

products in production and in the inventory is not allowed to exceed the safety stock level. This will result 

in a lowered service level since customers can block each other, because when a customer has reserved a 

product, new products will not be produced before the reserved products are delivered. This is something 

to keep in mind when using the results presented in this report. There is however a way to avoid that 

customers block each other. This can be achieved by allowing the production of new products to start at 

once when a customer is assigned to a product. This may however result in an inventory and number of 

products in production which exceed the safety stock while the products are produced.  

7 CONCLUSION 

The conclusion of this study is that the Croston Forecasting Method which were examined combined with 

equation 1 for safety stock calculations have many shortcomings when applied to an intermittent demand 

pattern. This is due to the fact that the method does not take some important factors into account which 

affect the result. One factor is that the simulated service levels are affected by other parameters, for example 

how long the customers are willing to wait (a higher service level is achieved when the customer is willing 

to wait longer). The forecasting methods does not take this sort of information into account. Also, the 

forecast error is calculated in a very crude manner where equal significance is put on a day where we 

thought we would sell an end product but did not, and a day where we sold an end product without a 

forecast. The standard deviation of forecast error was calculated in a way that do not take the amount of 

time between two order points into account. It only considers the order quantity, where an order is viewed 

as incorrect regardless of how far off the actual order point the forecast was placed. Here, this was solved 

by allowing for that time to off by 5 days. 

 The purpose of this paper was to test if a safety stock level that has been calculated with a high 

probability to avoid stock-outs can match the simulated safety stock levels for end products with 

intermittent demand. The answer is that the Croston Forecast Method is no shortcut towards a fast and 

reliable safety stock calculation. We instead encourage the use of simulation analysis for this complex and 

important problem. Intermittent demand patterns, long production lead times, and high monetary values in 

products is a difficult combination where the strengths of simulation can show its full potential.  
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