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ABSTRACT

Availability of large data sets and increased computing performance have contributed to many improvements
in productivity and decision-making. Simulation can exploit these by incorporating data mining capabilities,
such as machine learning, in the modeling and analysis process. This paper demonstrates the integration
of discrete event simulation with a deep learning resource, known as TensorFlow, to enable intelligent
decision making in the form of smart processes. A bank credit approval process is modeled using these smart
processes to evaluate customer credit worthiness based on 20 reported features. Comparison of three models
is made where credit worthiness is (1) known, (2) randomly assigned, or (3) evaluated based on customer
features. Additionally, the experiment compares results under conditions where the process is perturbed by
an unexpected surge in customer arrivals. The presented models and results demonstrate the feasibility of
enabling smart processes in discrete event simulation software and the improved decision-making fidelity.

1 INTRODUCTION

At the core of most competitive and successful organizations is a data driven decision-making process.
Currently, the increased computational power, improvements in storage performance and reduction in data
collection costs have resulted in the emergence of the big data era. Effectively using the available data
to develop valuable insights is the challenge organizations presently face. Discrete event simulation is
a powerful tool organizations can use to study a system or process over time with the ability to record
measurements and prepare for the uncertain future.

One of the more notable difficulties in modeling is being able to reproduce the essential system behavior
while obtaining accurate predictions while utilizing a model that is simple enough to run. In real world
systems and processes, the flow of materials, information or people enter the system at some point in time
and behave according to their unique characteristics. Traditionally entities in simulations do not carry much
information mainly because it is difficult to implement complex decision processes inside of simulation
software. In fact, discrete event simulation software usually creates entities and their respective properties
based on probability distributions for every variable, and server resources make decisions using structured
rules instead of taking into account these special features.

The main objective of this work is to demonstrate how it is possible to build a smarter simulation, by
integrating machine learning algorithms within the simulation process. The result of this hybrid methodology
is a model that more closely resembles reality. The demonstration is completed using open-source software.
Thus, inside the simulation models presented in this work, the branching step will be performed by a
machine learning algorithm which provides a better classification via the information attached to each
customer. The paper is organized in the following manner. First, a brief literature review is presented to
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contextualize how this work fits into the state-of-the-art. Second, the methodology explains in detail the
steps followed to build the machine learning model, the simulation model and the experiment. Third, the
results are presented, and the main findings are discussed by the authors to assess how beneficial it might
be for a researcher to invest time and effort implementing a similar hybrid methodology. Last, a conclusion
and future work are given.

2 LITERATURE

This section presents a brief literature review to contextualize how this work fits into the state-of-the-art.
Historically, advancements in stochastic simulation software capability, feature and function have trailed the
advancements in computer technology. In earlier days, simulation practitioners had to carefully consider the
computational limitations regarding their modeling and analysis projects since processing was performed
on a single processor and data storage was minuscule. Additionally, this often-meant data captured from
the simulation execution was limited to summary detail. At present, advancements in computer technology,
particularly related to increased processing capability and scalable data storage, have vastly outpaced the
improvements for stochastic simulation.

Recognizing this imbalance Nelson (2016) describes in detail the tactical problems facing the simulation
community in the next decade. Notably, the author makes three central observations. First, the availability
of inexpensive data storage provides an opportunity to exploit the simulation-generated data unlike in the
past. Second, parallel simulation offers significant benefits for simulations presently requiring multiple
replications or multiple scenarios. Third, simulation users are increasingly interested in utilizing stochastic
simulation for risk analysis, prediction and control. Elements of Nelsons observations are directly related
to the work presented here, as it depends upon recent computer technology advancements to implement
the intelligent processes within a stochastic simulation. A vital component, not discussed among Nelson’s
observations, is the machine learning functionality, specifically deep learning, used to perform the decision
making.

Machine learning uses algorithms to parse data, learn from the data, and make informed decisions
based on what has been learned. Deep learning, a sub-field of machine learning, structures algorithms in
layers to create an artificial neural network capable of learning and making intelligent decisions. In the
subsections that follow, a brief background for artificial neural networks is presented and recent applications
considered relevant to stochastic simulation are cited.

2.1 Artificial Neural Network (ANN)

Artificial neural networks (ANN) were motivated by the biological neural networks used to process
information in the human brain. Inspired by the biological neuron, McCulloch and Pitts (1943) proposed
a computational model for artificial networks using mathematics and algorithms, where decision making
is based on a concept known as threshold logic. Using this approach, a neural network is designed to
work by classifying information in a similar way a human brain does. Neural networks can be taught to
recognize, for example, images, and classify them according to elements they contain. In this way, artificial
neural networks are flexible function approximators well suited to replicate behavior of systems otherwise
too difficult to model mathematically (Ripley 2007). In its simplest form, artificial neural networks are
comprised of layers of simple computational entities, resembling the biological neutrons in the brain,
which are linked to other neurons by weighted connections. Each neuron has an activation level which
depends on the activation of neighboring connected neurons. In determining an activation, every neuron
must summarize its inputs with respect to the corresponding connection weightings. This calculated sum
is then transformed by an activation function which generates the corresponding output behavior.
Software used to develop artificial neural networks has evolved from individually written code to cloud
based solutions enabled for big data. In 2017 Google released an open source state-of-the-art machine
learning platform known as TensorFlow (Abadi et al. 2016). TensorFlow can run on multiple processors
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and provides the ability to perform general purpose computing on graphical processing units. This makes
TensorFlow one of the most powerful machine learning platforms available. The name TensorFlow is
derived from the operations that neural networks perform on multidimensional data arrays.

2.2 Simulation Applications

Over the past two decades researchers have sought to incorporate machine learning into simulation to
improve speed of execution, increase estimation accuracy, and reliable behavior. It is possible to categorize
many of these simulation applications as being related to: 1) metamodeling and analysis, 2) parameter
prediction, and 3) intelligent decision making. Applications of each are discussed below.

First, metamodeling is an approach commonly used to develop a representative model of a model which
may be very computationally expensive to execute. Early implementations utilized statistical approaches
such as regression and surface response models to develop their representative models. Although useful,
the range of applications these representative models can provide is limited. Kilmer and Smith (1993)
demonstrates for a small number of input parameters and output measures the ANN approach can outperform
the first and second order linear regression models typically used in simulation response surface methods.
Additionally, Kilmer et al. (1999) demonstrates that using the ANN approach can be quite competitive
in accuracy when compared to the simulation and operate in nearly real-time. Fonseca et al. (2003)
presents the importance of simulation metamodeling using ANN and develops a series of guidelines to
assist simulation practitioners in the design of intelligent systems. Alternative approaches challenging the
robustness of ANN have been made over the years. A comparative study by Can and Heavey (2012) found
that while genetics algorithms may achieve greater accuracy during training validation stage they require
more computation in the metamodel development stage than ANN. Improved accuracy provided by ANN
has led to increased use of metamodels for perform sensitivity analysis. Finally, an updated contemporary
comparison of machine learning algorithms applied to simulation metamodeling can be found in De la
Fuente and Smith (2017).

Second, parameter prediction and estimation for use within the simulation execution is a recent
development. In this case, a trained ANN provides parameter predictions when demanded by the simulation
model. Using a hybrid approach, Elbattah and Molloy (2016) demonstrates the coupling of a simulation
model with the Microsoft Azure machine learning environment to make predictions for hip replacement
surgery on the inpatient length of stay and discharge destination of simulation generated patients. This
information is subsequently used to develop demand predictions on healthcare resources, which impacts
future patient scheduling. Additionally, Chang and Chang (2018) demonstrates the use of ANN to make
predictions about the treatment duration of individual patients in a dental clinic setting in conjunction with
a discrete event simulation for evaluating appointment scheduling performance. The improved treatment
duration predictions have resulted in improved appointment scheduling.

Last, intelligent decision-making within stochastic simulation model execution represents the newest
evolution; it also has the fewest number of published examples at this writing. Silvaetal. (2016) demonstrates
the integrated use of an ANN in a discrete event simulation model, constructed using open source software,
to mimic the human behavior and decision-making of a traffic control officer directing vehicles at an
intersection; however, the analysis specific to performance is incomplete. Bergmann et al. (2017) utilizes a
supervised machine learning approach to develop the approximation of dispatching rules used for decision-
making within a discrete event simulation model. The author mainly focuses on comparing the most
common supervised machine learning algorithms, such as K-nearest neighbors, Nave Bayes classifier,
support vector machines, decision trees, and artificial neural networks. These limited published works
leave many opportunities and concerns relevant to intelligent decision making embedded in simulation
unaddressed. The presented work seeks to contribute to the general body of knowledge and improve the
general understanding needed for more sophisticated implementations.
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3 METHODOLOGY

This section describes the methodology used to construct the simulation model and the machine learning
function. As previously stated, the aim of this work is to enable intelligent decision-making capability
within the discrete event simulation model using a machine learning algorithm. It is expected that the
algorithm will be able to address unanticipated changes occurring in the data generation process. In the
simulation model, entities possess a unique set of attributes, or features, used to determine what action
should be applied to them when requesting a server resource. As feature detail increases -contributing to
both system realism and complexity- the use of an advanced decision-making approach, such as a machine
learning algorithm, becomes attractive to enhance and improve results. However, limited understanding
exists regarding differences between traditional and algorithm-based decision-making with respect to system
performance and outcomes.

To investigate these differences, an experiment is formulated to compare the outcomes from three
variations of the base simulation model, which include: 1) a reference model where decisions are prede-
termined such that outcomes are known with certainty; 2) a classic model where decisions are based on
probabilistic hard-branching that is characteristic of most discrete event simulations; and, 3) a smart model
where decisions are determined by the machine learning algorithm based on the features presented by the
entities. For comparison purposes two time-persistent statistics are captured: 1) the average number of
customers in the system, and 2) the average number of customers in queue after a pre-specified running
time 7. Additionally, the simulation model must be able to integrate the smart decision-making object
to allow the evaluation of features assigned to each entity, thus providing an appropriate benchmarking
between the hybrid approach using smart decision-making and those approaches that do not.

The remainder of this section is organized into four subsections describing: 1) the system modeled and
the simulation development process, 2) the data acquisition, its analysis and integration to the simulation
model, 3) the enablement of the machine learning algorithm, and 4) the general procedure used to condition
the algorithm and execute the experiment. Results from the experiment will be presented in the next section.

3.1 Simulation Model

The simulation model consists of modeling the credit scoring process in a bank situation as presented
in Figure 1. As shown in the figure, the customers arrive at the bank according to a non-homogeneous
Poisson process with arrival rates of 8, 14, and 20 people per hour. These arrival rates are evenly distributed
across three 180-minute blocks of time over the banking day. The system starts the banking day empty
and idle and ends with the closing time event when the last customer leaves the system. The simulation
models were built using SimPy 3.0.8, an open-source hybrid-simulation suite developed entirely on Python
(Matloff 2008). Additionally, Figure 1 shows a sketch of the classes and their encapsulation. The Model
object governs the entire simulation process, which contains an Entrance object used to generate Customers
according to a non-homogeneous Poisson process and assigns credit features to each of them. Within
the Model object a decision process is implemented that describes the route a customer will take and the
servers they will engage (SimPy resources) as credit worthiness is determined. If the customer receives
a credit, they depart the system and the appropriate statistics are collected. However, if the customer is
denied credit, the customer will be routed to a loan specialist (SimPy resource) where further inquiry is
made about the customers financial situation and a request form is completed. Finally, the customer then
departs the system and the appropriate statistics are collected.

3.2 Data

With the simulation framework complete, the next step is to find adequate data to build a more realistic
version of the simple model. Since the model is about obtaining a loan from a bank, a data set containing
historical information regarding customer credit ratings was needed. In the machine learning literature,
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Figure 1: Simulation model structure.

a classic dataset containing this information is the “German dataset”, available in the Machine Learning
Repository at the University of California-Irvine (UCI 2017).

The dataset consists of 1000 observations, where each row contains a vector with 21 elements, with the
first 20 elements of an observation being information provided by the customer applying for the loan, and
the last element being the final decision made by the clerk. Additionally, the proportion of final decision
outcomes is observed to be unbalanced given 70% of customers received credit and 30% did not. A detailed
view of the dataset is given on Figures 2 and 3, which show the correlation between pairs of variables and
the scatter point distributions between some selected variables respectively. From Figure 2 it is possible to
see that no strong correlation exists either between variables or between variables and the response. The
only exception is the relationship between the requested loan amount and the duration which is logical
since the greater extension of credit requires more time for repayment. Likewise, Figure 3 shows the
relationships between some selected pairs of features. The coloring reveals no clear structure regarding
how the features separate the categories. A detailed step-by-step analysis can be found in the website of the
Applied Data Mining and Statistical Learning course at Pennsylvania State University (PSU 2017) where
several algorithms are tested on the same dataset ranging from 50% to 75% accuracy; although, the author
does not have to control that the unbalancedness of the data is preserved to have representative entities in
the simulation.

The idea is to use this data set to describe the loan seeking customer characteristics and their final
decision outcome. The data is partitioned using repeated stratified k-folds (where k = 10 and the number of
repetitions is 3, totaling 30 training-testing pairs). For each of these pairs the machine learning algorithm
is trained (outside the simulation) using the training set, and then the testing set and the trained object are
passed to the simulation to assign “unseen” features to the entities and perform smart branching respectively.
Maintaining the proper balancing of the decision outcomes used to characterize each of the entities in the
simulation is especially important for the testing set. This will allow the three model variations implemented
in the simulation to be tested using two different approaches controlling the feature assignment made during
the creation of each entity. The approaches include where: 1) the features assignment is made according to
the rows of the testing set as specified by the cross-validation process - this maintains proportionality and
guarantees randomization; and, 2) the feature assignment is made by sorting the testing set from creditable
to non-creditable customers and then assigning rows to newly created entities from top-to-bottom, which
induces a sudden change in the arrival pattern of each type of client.
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Figure 2: Correlation german dataset. Figure 3: Pair plots selected variables.

3.3 Machine Learning Algorithm

As stated at the beginning of this section, the aim of this work is to evaluate the performance of a smart
simulation, where smart means that some part of the decision process -such as the branch decision-making-
is performed by a machine learning algorithm. Even though the dataset is small and a neural network
with few layers should suffice, to develop a more extensible modular model the machine learning suite
TensorFlow (Abadi et al. 2016), generally used for deep learning, is utilized with the aim of showing
that more complex datasets can be tackled the same way. Additionally, as suggested in the website of the
Machine Learning Repository (UCI 2017) a cost matrix is used to address the unbalancedness of the data.
In our scenario, it is more undesirable to classify a customer as a good credit risk when they are in fact a
bad credit risk rather than the other way around. Therefore, a custom cost function with penalties 5 and
1 are assigned, respectively, for the two situations described. This is easily implemented in TensorFlow.
The neural network implementation in this work is presented in Figure 4. It consists of an input layer,
three hidden layers with 100 neurons each, and an output layer. A rectified linear unit (ReLu) activation
function is used for the first three layers, and for the last layer “softmax’ is used to represent the probability
distribution of possible outcomes. Then, the weighted cost function is optimized during 5000 epochs with
initial learning rate of le-4 and batches of 100 elements inside the train module using Adam optimizer
which performed better than gradient descend. Figure 5 illustrates, as an example, the computational
graph steps taken by gradient descend inside the train object where the gradients are computed for each
variable. Finally, techniques such as node dropout with probablity set to 0.5 for all hidden layers and L-1
regularization are implemented to control overfitting.

3.4 General Procedure

Algorithm 1 provides a summary description in pseudocode form of the computational steps followed.
First, the data is read and stored on a Pandas DataFrame. Then, 30-fold cross-validation steps are taken
using a random stratified sampling approach to ensure the even representation of classes. Inside the for-loop
general preprocessing steps are completed using sklearn (Pedregosa et al. 2011), the TensorFlow graph
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Figure 4: Neural network in TensorBoard. Figure 5: Gradient descent display.

presented on Figure 4 is fitted -using the training set- and, then, the fitted object, the testing set, and the
preprocessing sklearn object are passed as arguments to the simulation as described in Section 3.2.

Using the same random seed streams, the simulation runs the experiment for the reference model,
classic model and smart model configurations. All relevant statistics are captured and saved for further
analysis. Information regarding out-of-sample accuracy metrics are collected from the neural network and
saved for further analysis. Finally, the simulation results and the out-of-sample cross-validation results are
analyzed using StatModels open-source software available in Python (Seabold and Perktold 2010). The
findings are discussed in the next section on results.

Algorithm 1: Computational steps.

raw_data < read.txt(German.data.txt);

df_data + pd.Dataframe(raw_data, Column_names);
stratified_folds <— Repeated_Stratified_CV(df_data);

simulation results < [ ]

performance results < [ ]

for train_indices, test_indices in stratified_folds do

train_set <— df_data|train_indices]

test_set «— df_data|test_indices]

mapper < Mapper(mapper_rules)

transf_train_set <— mapper.fit_transform(train_set)

tf < tf NeuralNet(x  args).fit(transf_train_set)
result_replicate <— Simulation_Model(mapper, test_set, tf, x * args)
simulation_results.append(result_replicate)

transf_test_set <— mapper.fit_transform(test_set)

prediction < tf.predict(transf_test_set.X)
accuracy_measures <— accuracy(transf_test_set.Y, prediction)
| performance_results.append(accuracy_measures)

result_summary <— process_sim_results(simulation_results)
performance_summary < process_perf_results(performance results)
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4 RESULTS

The results presented in this section are organized into two subsections: 1) the neural network metrics, and
2) the simulation model. All computations were performed using a Microsoft Windows Surface Book 2
personal computer running the Windows 10 operating system, and configured with 16 gigabytes of RAM, an
i7-8650U multi-core 8" generation microprocessor, and a NVIDIA GeForce GTX 1060 graphic processing
unit (GPU) with 6 gigabytes of GDDRS RAM. The neural network training was parallelized to the GPU
which was CUDA enabled (Nickolls et al. 2008), and random batches were used to train the gradient
descent algorithm for 3000 epochs. The three different simulation scenarios were run sequentially.

4.1 Neural Network Metrics

The main metrics to test in classification problems, such as the one posed by the German dataset, include:
1) precision, 2) recall, and 3) f-1 score. Precision responds to the question, “how many of the selected
items are relevants?”, whereas, recall responds to “how many of the relevant items are selected?”’. Given
these metric, the f-1 score which represents their harmonic mean can be derived. These metrics fall in the
range [0, 1]. Table 1 shows the average values over the 30-folds cross-validation. Results illustrate that the
neural network achieved values within the range presented on the website of the Applied Data Mining and
Statistical Learning course (PSU 2017); thus, the customized cost function did not help for controlling the
unbalancedness. Additionally, there is a small variation around the mean of each metric which shows that
the predicted performance of the results was similar across folds.

Table 1: Neural network out-of-sample metrics.

Criteria Mean | Std

Precision | 0.691 | 0.048
Recall 0.671 | 0.048
f-score 0.677 | 0.049

Another important tool used to test and summarize the accuracy of a classification algorithm is the
confusion matrix. Table 2 shows the aggregated results for the 30-folds cross-validation (3000 clients). The
results indicate that there is more potential for an error in classifying a bad credit risk as a good credit risk
than vice versa, which adds additional information from what was shown in Table 1 and explains what is
affecting the metrics. Nonetheless, these results will be utilized to assess the pros and cons of employing
a neural network as a smart dispatcher inside of a discrete event simulation.

Table 2: Aggregated out-of-sample confusion matrix.

Criteria Good credit | Bad credit
Good credit 1783 317
Bad credit 456 444

4.2 Simulation Model

The primary metrics used to evaluate the simulation model include the: average number in system and
average number in queue for the time period beginning at 300 minutes. Two general assumptions are made
for the arrival process. In the first experiment customers arrive according to the random positional assignment
found in the testing set made by the cross-validation object, where the arrival times are assigned sequentially
from top to bottom for the dataset. In the second experiment the aim is to evaluate the performance of the
smart decision process. This is accomplished by sorting the test dataset by the credit status column. As a
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result, creditworthy customers are placed ahead of non-creditworthy customers; however, the arrival times
assigned in the first experiment are maintained.
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Figure 6: Regular arrivals. Figure 7: Sorted arrivals.

Figures 6 and 7 show the distribution of the mean number in systems for the reference, the classic,
and the smart simulation models on the two arrival arrangements. Figure 6 illustrates that independent
of the decision process implemented inside of the simulation, the distribution of the average values over
30 replicates are determined to be statistically indistinguishable as shown in Table 3. However, when the
model is perturbed with an unforeseen change, the behavioral pattern changes abruptly, as shown in Figure
7. As expected, the classic simulation case, which is unaware of the customers’ features, fails to identify
the change in the arrival pattern as seen in Figure 7. Even though results for the smart model are oriented
to the right of the classic model, and Table 3 indicates the difference of means between both models to
be significant, the smart model also fails to recognize the sudden change in the arrival pattern. This can
be attributed to the fitting quality of the machine learning algorithm, as previously discussed in Section 1.
Moreover, as presented in Table 3 the statistical difference between the reference model and the others is
significant.

Table 3: Difference of means confidence intervals (95% confidence).

Avg. number in queue, ¢ > 300 Avg. number in system
Comparison Base Modified Base Modified
Classic-Reference | (-0.1303, 0.02139) | (6.0409, 7.0434) | (-0.0891, 0.0496) | (1.6371, 1.9483)
Classic-Smart (-0.1265, 0.0337) | (0.5906, 2.1094) | (-0.0355, 0.0869) | (0.1660, 0.6689)
Reference-Smart | (-0.0346, 0.05069) | (-5.8784, -4.5058) | (-0.0171, 0.1079) | (-1.5928, -1.1577)

The results for the number in queue at the specialist for ¢+ > 300 are shown in Figures 8 and 9. For
the regular arrivals, the behaviors illustrated (in the left-hand figure) for the three simulation model results
are observed to be nearly the same - this observation is also substantiated by the results given in Table 3.
Again, the random assignment generated by the hard decision rule implemented in the classic model is
compensated by the random sorting produced by the cross-validation object. Nonetheless, when the model
is subject to a sudden change that affects the specialist server (hence, more people arriving at a specific
time) the difference among the models becomes evident. Although the distributional shape of the smart
model results shift more toward the reference model than its classic counterpart, again it is possible to
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observe the effect that poor fit in the machine learning algorithm has on the smart simulation model by
producing mean number in queue values no greater than 3, as illustrated in Figure 9. These results greatly
differ when compared with the reference model. Finally, a statistical difference of means test was carried
out to corroborate whether the difference was statistical significant or not. Results indicate that none of
the means among models are equal as shown in Table 3.
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Figure 8: Regular arrivals. Figure 9: Sorted arrivals.

S DISCUSSION

The most relevant findings from this work are summarized into three central points of discussion. First,
the work presented demonstrates it is feasible to use open-source software to compose a smart simulation
by integrating the state-of-the-art machine learning suite, TensorFlow, with a discrete event simulation
package. TensorFlow allows this to be easily implemented in Python, but it is not a trivial endeavor and
integration with commercial simulation software maybe difficult. By comparison, a conditional tree can
be easier to implement in all simulation software, since it consists of explicit if-then-else rules. In this
case, the user will make a trade-off in accuracy to obtain flexibility. If the dataset being referenced is
large, such as big data, deep learning tools implemented in TensorFlow will facilitate not only a better
learning behavior (Sun et al. 2017) but also a faster fitting process due to the potential use of the GPU
instead of the CPU unit. Additionally, the use of TensorBoard to visualize the construction and training
process of the machine learning algorithm provides a powerful tool for debugging purpouses. With respect
to the simulation, many times you do not have to implement huge simulation models, but you want to have
flexibility to write a small model, which is what SimPy provides (Nelson 2013), and this work has shown
that it can be easily integrated with other Python libraries.

Second, attention must be given to the simulation results using regular arrivals and sorted arrivals. The
first case did not show any difference in the metrics evaluated, but this could be attributed to the small size
of the model. However, as demonstrated there is no guarantee the smart model will behave exactly like the
reference model, due to additional random noise induced by the machine learning algorithm. Thus, a better
question to evaluate is how much data would I need to train a neural network with the aim of having a robust
fit that mimics the reference model behavior when a decision had to be performed unexpectedly. Since it
is not expected that the machine learning algorithm produces a perfect decision boundary for classifying
clients, the envisioned null hypothesis should test that the difference of means between the reference and
smart models were evaluated to be larger than a certain threshold (Hy = Ureference — Hsmart = threshold).
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This last point could be addressed through the generation of synthetic data and repeating the process
implemented in this work with datasets of increasing size.

Lastly, it is important to mention that the reference model observable credit scoring classifications
were required to test the smart model again. The authors acknowledge that it may be difficult to access
this information, however, under such circumstances the features could be obtained from the joint density,
generated perhaps using the NORTA method (Cario and Nelson 1997). Due to the curse of dimensionality,
these results can be greatly affected by the fitting accuracy of the generation process; thus, a more advanced
procedure should be considered (Ghosh and Henderson 2003).

6 CONCLUSION

This work demonstrates it is worth investing effort into building smarter simulation models given the
process is now easier than ever before due to the proliferation of powerful open-source software resources.
However, a researcher must proceed with caution because the addition of smart machine learning objects
may introduce additional error into the simulation process. This may cause the results to be bias, as shown
in this work. The authors believe the use of more data, or big data, to fit the machine learning objects
would lead to a reduction in the bias; although, the assertion has not been explored here. The work also
demonstrates that the implementation of smart decision objects perform equivalent to the classic hard-
branching approach when the simulated systems does not experience unforeseen changes. Nevertheless,
due to the scarcity of data and the complex hyper-space spanned by it, the smart model could not achieve
a comparable performance to the reference model, being unable to adjust to abrupt changes.

Future work includes the implementation of this methodology in an expanded setting capable of
testing the results presented here using a larger dataset. Additional work must be performed testing the
effect machine learning fitting metrics have on simulation metrics, especially concerning the noise they
may contribute to the results. Finally, enhancements must be completed to include the multivariate joint
densities as the data generation process coupled with a machine learning algorithm.
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