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ABSTRACT

This paper studies integrated random search algorithms for continuous optimization-via-simulation (COvS)
problems. We first tailor the Gaussian process-based search (GPS) algorithm to handle COvS problems.
We then analyze the potential sampling issue of the GPS algorithm and propose to construct a desirable
Gaussian mixture model (GMM) which is amenable for efficient sampling and at the same time also
maintains the desirable property of exploitation and exploration trade-off. Then, we propose a Gaussian
mixture model-based random search (GMRS) algorithm. We build global convergence of both the tailored
GPS algorithm and the GMRS algorithm for COvS problems. Finally, we carry out some numerical studies
to illustrate the performance of the GMRS algorithm.

1 INTRODUCTION

Random search algorithms are widely implemented approaches to optimization-via-simulation (OvS) prob-
lems. Depending on the attributes of decision variables, OvS problems can be roughly classified as discrete
OvS (DOvS) where the decision variables take discrete values and continuous OvS (COvS) where the
decision variables take continuous values. In the literature, there have been numerous random search algo-
rithms developed for DOvS problems. These algorithms could typically be divided into locally convergent
algorithms and globally convergent algorithms. Based on their approaches to handling the exploitation and
exploration trade-off in the random search, globally convergent random search algorithms can be divided
into four classes – exploitation based, exploration-based, combined, and integrated. Exploitation-based
algorithms, e.g., COMPASS (Hong and Nelson 2006) and stochastic ruler (Yan and Mukai 1992), mainly
focus on local search around current optimal solutions while exploration-based ones, e.g., the random search
of Andradóttir (1996), spend their search efforts on unexplored regions. As the adaptive methods, combined
and integrated algorithms have been the main pursuit in the recent study. For a thorough introduction of
OvS algorithms, readers are referred to, e.g., Andradóttir (1995), Hong and Nelson (2006), Andradóttir
and Prudius (2009), and Sun et al. (2014).

There have also been various random search algorithms for COvS. The classical literature concerning
COvS is mainly about pure random search, e.g., Marti (1982) and Yakowitz and Lugosi (1990). More
recent studies focus on developing adaptive random search algorithms. Hu et al. (2007) proposed an
algorithm called model reference adaptive search (MRAS) for deterministic continuous problems. Hu
et al. (2008) further extended the approach to stochastic settings and proposed the stochastic MRAS
(SMRAS) algorithm. MRAS and SMRAS are representatives of integrated random search algorithms.
Andradóttir and Prudius (2010) studied the COvS problems and proposed an approach called adaptive
random search with resampling (ASR). The ASR approach can be viewed as a combined random search
algorithm. In Andradóttir and Prudius (2010), the authors provided a framework for developing various
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combined procedures for COvS. Besides these approaches, there are also a class of approaches termed as
Bayesian optimization. Bayesian optimization approaches usually target for optimization problems where
it is very expensive (or time-consuming) to evaluate the objective function. The approaches then aim to
design some procedure based on Bayesian update of certain surrogate model to find a good solution using
as few function evaluations as possible. Readers are referred to, e.g., Jones et al. (1998), Scott et al.
(2011), Wu and Frazier (2016) and Wang et al. (2016) for a thorough investigation. The problem settings
in the Bayesian optimization approaches are different from the settings we consider in this paper. For the
OvS problems we consider, the computational effort typically could afford thousands to even millions of
function evaluations.

Depending on the search mechanism, OvS algorithms are also often divided into instance-based
algorithms and model-based algorithms, see, e.g., Zlochin et al. (2004). In instance-based algorithms, the
evolution of the solution depends directly on the previously visited solutions. In model-based algorithms, the
evolution of the solution relies on some sampling distribution that often integrates the surface information.
MRAS (SMRAS) of Hu et al. (2007; 2008) and GPS of Sun et al. (2014) are typical model-based methods.
In this paper, we focus on COvS and propose to develop alternative model-based procedures. We start from
the work of Sun et al. (2014). Sun et al. (2014) proposed to balance exploitation and exploration using a
Gaussian process-based random search (GPS). The GPS algorithm of Sun et al. (2014) is developed for
DOvS. It is clear that in terms of COvS problems, the global convergence of those random search algorithms
for DOvS problems is often difficult to be extended. A key reason behind is that the global convergence for
DOvS is typically based on the very assumption that the noise involved in simulation can be reduced by
repeatedly sampling the same feasible solution, which, however, is impossible for COvS problems where
the feasible region is continuous (uncountable). Andradóttir and Prudius (2010) conducted some novel
analysis for their ASR algorithm and built the convergence for this algorithm. In this paper, we overcome
this challenge by developing a new estimation scheme based on which we build the global convergence of
a new GPS algorithm for COvS problems. Our estimation scheme is motivated by Andradóttir and Prudius
(2010). However, our approach is more flexible as a generalization of Andradóttir and Prudius (2010). For
instance, in our approach, more variety of concentration inequalities can be taken into consideration, which
leads to a more flexible estimation scheme. Due to the flexibility, we show that alternative convergent
conditions can be developed by our method.

The fast constructed Gaussian process in the GPS algorithm can be used to collect information about the
unknown response surface as an efficient metamodel approach of simulation output performance measures.
This makes the sampling distribution in GPS capable of balancing the exploitation and exploration trade-off
during the search. However, because the sampling distribution is constructed from a metamodel, it is still
complicated. This raises an issue about sampling. This issue motivates us to develop some alternative
sampling distribution that is also capable of balancing the exploitation and exploration trade-off and is
more tractable for sampling. In this paper, we choose to use the Gaussian mixture models (GMM). The
main reasons why we choose GMM as the sampling distribution are as follows:

• Almost any continuous density function can be approximated with arbitrary accuracy by using a
sufficient number of Gaussians, and by adjusting their means and covariances and the component
proportions (Bishop 2006).

• COvS problems are typically nonconvex and multimodal where there may exist a number of local
optima. The density of GMM is multimodal. This structure enables GMM to capture the structure
of multimodal OvS problems.

• Sampling from a GMM is essentially as easy as sampling from a Gaussian distribution.

However, a crude GMM is far from being desirable due to the lack of knowledge about the unknown
response surface of the targeted simulation output. In this paper, we propose to project the sampling
distribution of the GPS algorithm onto GMM, based on some statistical distances (divergences). We expect
that the resulting GMM can also possess desirable properties of exploitation and exploration trade-off by
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learning from the sampling distribution of the GPS algorithm. To conduct the projection, we choose to use
some expectation-maximization (EM) algorithm. The EM algorithm (Dempster et al. 1977; McLachlan and
Peel 2000) is a classical approach to finding maximum likelihood estimator (MLE) for GMM. Nevertheless,
the conventional EM algorithm is developed to solve maximum likelihood estimation (MLE) while, in our
work, the projection problem is formulated as a weighted MLE (WMLE) problem. Therefore, in this paper,
we develop a Monte Carlo EM (MCEM) algorithm to solve this problem.

The rest of this paper is organized as follows. In §2, we tailor the GPS algorithm for COvS problems.
In §3, we first discuss the expected properties of a desirable GMM and then discuss how to construct the
GMM. Consequently, we give a detailed illustration of the Gaussian mixture model-based random search
(GMRS) algorithm, and build the convergence of the algorithm. In §4, several numerical examples are
studied. The paper is concluded in §5.

2 GPS ALGORITHM FOR COVS PROBLEMS

Throughout this paper, we consider the following COvS problem

sup
x∈Θ⊆ℜd

h(x) = E(H(x,ξ )) (1)

where Θ is a nonempty compact subset of ℜd and the vector ξ represents the random input which is assumed
to follow a certain distribution. The expectation in (1) is taken with respect to (w.r.t.) the distribution. The
closed form of h(x) is unavailable to us but the value of H(x,ξ ) can be obtained by running simulation
experiments. Let h∗ be the optimal value of (1). We assume that h∗ < ∞. Our goal is to pursue the decision
vector x that maximizes the expected performance of the target system.

In order to balance exploitation and exploration in DOvS problems, Sun et al. (2014) proposed a fast
approximation of Gaussian process as follows:

Y (x) = M(x)+λ
T (x)(h̄(x)−M)+λ

T
ξ (2)

where M(x) is a stationary Gaussian process with mean 0 and covariance function σ2γ(·, ·) , M =
(M(x1), · · · ,M(xm))

T , λ (·) are weight functions and ξ is an m-dimensional random vector following a
multivariate normal distribution with mean 0 and covariance matrix

Σξ = diag
{

σ2(x1)

n1
, · · · , σ2(xm)

nm

}
.

In addition, both correlation function γ(·, ·) and weight functions λ (·) satisfy certain conditions (see, e.g.,
Sun et al. 2014). The model (2) can be viewed as a metamodel of the original objective function h(x). It
not only captures the continuity and uncertainty of h(x) but also incorporates the information from past
observations. Then based on this model, Sun et al. (2014) put forward a Gaussian process-based search
(GPS) with the following sampling distribution

f (x) =
P∗{Y (x)> c}∫

Θ
P∗{Y (x)> c}ν(dx)

where P∗{Y (x)> c} is the conditional probability of the improvement over current best value c, “∗” refers
to all available information and ν is the Lebesgue measure defined on Θ.

The GPS algorithm in Sun et al. (2014) is developed for DOvS. However, this procedure can be easily
adapted for COvS. In this section we briefly summarize the main steps of the GPS algorithm for COvS
problems with a more generalized simulation-allocation rule (SAR). In the discussion below we first assume
that a SAR is given. Let Θk be the set of visited solutions by the end of iteration k. Accordingly, the
number of visited solutions by the end of iteration k is denoted by |Θk| where | · | is a counting measure.
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Let Nk(x) be the number of observations at solution x until iteration k. Then Nk(x) = ∑
k
i=1 ak(x) where

ak(x) is the number of observations allocated to solution x by the SAR at iteration k. Let ĥk(x) denote the
sample mean of the random output H(x) by iteration k. Then ĥk(x) = 1

Nk(x) ∑
Nk(x)
i=1 Hi(x). By Proposition 1 in

Sun et al. (2014), the calculation of Var∗[Y (x)] involves the value of Var[H(x,ξ )] which can be substituted
by its sample counterpart σ̂2(x). Different from the setting in Sun et al. (2014), here we impose that for
all x ∈ Θk, Nk(x)≥ Nk where {Nk} is a sequence monotonically increases to +∞ as k→ ∞. Let Fk be a
filtration, an increasing sequence σ -field, containing the history generated by the algorithm until iteration
k. We modify the GPS in Sun et al. (2014) and propose the following algorithm.

GPS-COvS Algorithm

Step 0. Set iteration count k = 0 and construct the set of starting points Θ0 by uniformly sampling
from Θ. For all x ∈Θ0, calculate ĥ0(x) and sample variance σ̂2

0 (x). In order to prevent σ̂2
0 (x) from

being zero, if σ̂2
0 (x)< σ2

0 , set σ̂2
0 (x) = σ2

0 . To avoid ĥ0(x) deviating far away from h(x), we set an
artificial lower bound M which is an extremely small number. If ĥ0(x) < M, set ĥ0(x) = M. Let
x̂∗0 = argmax

x∈Θ0

{ĥ0(x)} and break the tie arbitrarily if it exists, and let ĥ∗0 = max
x∈Θ0
{ĥ0(x)}.

Step 1. Set k = k+1. Construct the following sampling distribution based on history
Fk−1 , σ

({
Θk−1,{ĥk−1(x)|x ∈Θk−1},{Nk−1(x)|x ∈Θk−1},{σ̂2

k−1(x)|x ∈Θk−1}
})

,

fk(x) =
P{Yk−1(x)> ĥ∗k−1|Fk−1}∫

Θ
P{Yk−1(x)> ĥ∗k−1|Fk−1}ν(dx)

.

Step 2. Generate independent and identically distributed (i.i.d.) sample xk
1, · · · ,xk

s from distribution
fk(x). Let Sk = {xk

1, · · · ,xk
s} and Θk = Θk−1

⋃
Sk.

Step 3. For all x ∈Θk, determine ak(x) according to the SAR, update Nk and Nk(x) and compute ĥk(x).
If σ̂2

k (x)< σ2
k , set σ̂2

k (x) = σ2
k . If ĥk(x)< M, set ĥk(x) = M.

Step 4. Let x∗k = argmax
x∈Θk

{ĥk(x)}. Check whether the stopping criterion is satisfied. If not, return to

Step 1.

The convergence of the GPS-COvS algorithm and the discussion of the detailed conditions that a SAR
should satisfy is deferred to next section.

3 GMM-BASED RANDOM SEARCH FOR COVS PROBLEMS

It is well known that sampling distribution plays a fundamental role in integrated random search algorithms.
Both the GPS algorithm and the SMRAS algorithm of Hu et al. (2008) aim to construct desirable sampling
distributions. In this section, we first briefly compare how the two algorithms construct the sampling
distributions. Based on this, we then introduce our main algorithm that relies on a different sampling
distribution.

SMRAS proposes to construct some reference distribution that could evolve itself. However, the reference
distribution is typically difficult to sample from. SMRAS then proposes to project the reference distribution
onto some exponential family, e.g., the multivariate normal distribution. The projected distribution is taken
as the sampling distribution. Typically it is easy to sample from the projected distribution. Furthermore, it is
expected that the projected distribution could sufficiently approximate the reference distribution. Therefore,
it can be interpreted that SMRAS tries to make a balance between learning the response surface and the
sampling tractability. As introduced above, GPS proposes to use some Gaussian process (a metamodel)
to learn the response surface of the targeted system. Based on the metamodel, the GPS algorithm then
proposes to construct some sampling distribution that balances the exploitation and exploration trade-off.
Since the sampling distribution in GPS relies on the metamodel, rather than the original response surface,
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it is more tractable than the reference distribution in SMRAS. However, sampling from the sampling
distribution in GPS is more difficult than from the projected distribution (e.g., the multivariate normal
distribution) in SMRAS. In Sun et al. (2014), alternative sampling methods like the acceptance-rejection
sampling procedure and the Markov chain coordinate sampling are designed. In this paper, we propose to
design some sampling distribution that is able to balance the exploitation and exploration trade-off whereas
at the same time is easy to sampling from. To achieve the goals, we resort to the well known Gaussian
mixture model.

3.1 Construction of Desirable Gaussian Mixture Models

Gaussian mixture models have been used widely in various areas. For instance, in statistical learning,
GMM is often used for clustering (McNicholas 2016). The density of a GMM is simply a weighted sum
of several normal densities, which takes the following expression

gθ (x) =
K

∑
j=1

π jN (x|µ j,Σ j),

where each component N (x|µ j,Σ j) is a (multivariate) normal density function with mean vector µ j and
covariance matrix Σ j, and the component proportions π j ≥ 0, j = 1, . . . ,K satisfy ∑

K
j=1 π j = 1. Throughout

this paper, we denote by θ the parameters π j,µ j,Σ j, j = 1, . . . ,K.
We use an example to motivate our idea of using GMM. Consider a well known multimodal function

called Griewank function, with a surface shown in Figure 1 (a). Intuitively, the surface is similar to the
surface of the probability density function of a GMM shown in Figure 1 (b).

Figure 1: (a) Surface plot of Griewank function; (b) Surface plot of probability density function
(PDF) of GMM.

Note that if we use some unimodal density function, e.g., a multivariate normal density, to approximate
the multimodal surface, we may not obtain a good approximation. Compared with a single Gaussian
distribution, which belongs to the exponential family used by Hu et al. (2007; 2008), GMM can better
approximate the reference distribution in terms of minimized KL-divergence.
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Despite the similar multimodality shown in Figure 1, there are substantial difference between the two
different surfaces in Figure 1. In Figure 2 we plot the contour for the two surfaces.
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Figure 2: Contour plot of Griewank function and PDF of GMM.

From Figure 2 we can see that there is discrepancy between the (near) optima of Griewank function
and mean value of various Gaussian components of GMM. Therefore, to obtain better approximations, we
need to modify the parameters of the GMM.

In OvS problems, it may be difficult to directly construct a GMM from the original problem because
the objective function is unknown. In this paper, we adopt a two-stage approach. In the first stage, we
propose to use some sampling distribution as in GPS or some reference distribution as in SMRAS to learn
the surface of the true response. In the second stage, we propose to use some GMM to approximate the
sampling (or reference) distribution. To obtain a good approximation, we choose to project the sampling
(reference) distribution onto the family of GMM.

In what follows we focus our analysis on the sampling distribution fk of GPS. The analysis for the
reference distribution of SMRAS could be left as the future research.

Consider the sampling distribution { fk(·)}, which is constructed as in Step 1 of GPS-COvS Algorithm.
We project it onto the parameterized GMMs {gθ (·),θ ∈ S} by minimizing the following Kullback-Leibler
(KL) divergence

minimize
θ∈S

D( fk‖gθ ), (3)

where

D( fk‖gθ ) = Egθ

[
fk(X)

gθ (X)
ln

fk(X)

gθ (X)

]
= E fk

[
ln

fk(X)

gθ (X)

]
denotes the KL divergence from fk(·) to gθ (·). The notation E f [·] denotes that the expectation is taken
w.r.t. a distribution f (·). Note that the KL divergence is an instance of the φ -divergence family (Pardo
2006). To conduct the projection, we can use different φ -divergences. This provides more freedom for the
algorithm design of our approach. In this paper, we choose the commonly used KL divergence and leave
the analysis for alternative φ -divergences as the future study.

When the sampling distribution fk(·) is fixed at certain iteration k, the term E fk [ln fk(X)] is independent
of θ . Thus Problem (3) can be formulated equivalently as follows:

maximize
θ∈S

E fk

[
ln

K

∑
j=1

π jN (X |µ j,Σ j)

]
. (4)
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Suppose {x1, · · · ,xn} is a set of i.i.d. sample generated from fk(·). We can obtain the following sample
counterpart of Problem (4):

maximize
θ∈S

1
n

n

∑
i=1

ln
K

∑
j=1

π jN (xi|µ j,Σ j). (5)

Problem (5) is similar to the maximum likelihood estimation (MLE) of GMM (Bishop 2006). MLE can
be solved by classical EM algorithms (Bishop 2006). However, there is a fundamental difference between
(5) and the conventional MLE due to the very fact that the sample in MLE is collected from the true GMM
which is to be determined, while the sample in Problem (5) is simulated from fk(·). Therefore, Problem
(5) could be more properly referred to as the quasi-maximum likelihood estimation (White 1998) involving
the misspecified model.

However, as we have discussed above, sampling from the distribution fk(·) is itself an issue for the
implementation of GPS. To overcome this difficulty, we propose to use a change of measure technique. In
the following analysis, we let gθk denote the optimal projected GMM at iteration k. Suppose at iteration
k we have obtained the projected distribution gθk−1 of the previous iteration. Then, by implementing the
change of measure technique and plugging in the expression of fk(·), we have Problem (4) is equivalent
to the following problem

maximize
θ∈S

Egθk−1

[
P{Yk−1(X)> ĥ∗k−1|Fk−1} lngθ (X)

gθk−1(X)

]
,

where the conditional probability P{Yk−1(X)> ĥ∗k−1|Fk−1}= Φ

(
E[Yk−1(X)|Fk−1]−ĥ∗k−1

Var[Yk−1(X)|Fk−1]

)
with Φ(·) being the

standard normal distribution function. Then, following the same reasoning line as in the conventional EM
algorithm, we suggest determining the parameters of the GMM gθk(·) using the following equations:

π
k
j =

∑
n
i=1 γi jw(xi)

∑
K
j=1 ∑

n
i=1 γi jw(xi)

, j = 1, · · · ,K, (6)

µ
k
j =

∑
n
i=1 γi jw(xi)xi

∑
n
i=1 γi jw(xi)

, j = 1, · · · ,K, (7)

Σ
k
j =

∑
n
i=1 ||xi−µk

j ||2γi jw(xi)

∑
n
i=1 γi jw(xi)

I, j = 1, · · · ,K, (8)

where

γi j =
πk

j N (xi|µk
j ,Σ

k
j)

∑
K
j=1 πk

j N (xi|µk
j ,Σ

k
j)
, j = 1, · · · ,K, (9)

w(xi) =
P{Yk−1(xi)> ĥ∗k−1|Fk−1}

∑
K
j=1 π

k−1
j N (xi|µk−1

j ,Σk−1
j )

, j = 1, · · · ,K,

with {x1, · · · ,xn} being a set of i.i.d. sample generated from gθk−1(·).
Remark 1 In (6)-(8) we only consider the GMM with a diagonal covariance type given by σ jI where I
is the identity matrix and σ j is a variance parameter of the component j. Therefore, the total number of
parameters increases linearly with the dimension of each component in GMM.

Note that from (6)-(8) we could not directly derive the parameters because the right hand sides of
(6)-(8) also contain πk

j ,µ
k
j ,Σ

k
j. Then, we put forward the following Monte Carlo EM (MCEM) algorithm

that relies on the parameter updating rule (6)-(8).

Monte Carlo EM Algorithm (MCEM)
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Step 1. Initialize µk
j , Σk

j and πk
j based on the sample generated by gθk−1(·). Set ε0 ∈ (0,1).

Step 2. E Step. Compute γi j according to Equation (9).
Step 3. M Step. Re-estimate µk

j , Σk
j and πk

j according to Equations (6), (7) and (8). If there exists
j ∈ {1, · · · ,K} such that πk

j < ε0, set K = K−1. Set a small positive number σ2
0 . For all {Σk

j}K
j=1,

set Σk
j := Σk

j +σ2
0 I.

Step 4. Check whether the stopping criterion is satisfied. If not, return to Step 2.

In Step 3 of MCEM, the components providing insufficient contribution (with the component proportion
lower than ε0) to explaining the data should be pruned. Therefore, even with an initially large K, surplus
components can be effectively removed over iterations. In the algorithm, a very small positive number σ2

0
called regularization value is added to the diagonal of each covariance matrix so that the matrix will not
be ill-conditioned.

3.2 Algorithm Description

Now we propose a new integrated random search algorithm that is based on GMM. The main notations of
this algorithm are the same as the ones of the GPS-COvS algorithm proposed in Section 2. The procedures
of the algorithm are illustrated as follows:

GMM-Based Random Search Algorithm (GMRS)

Step 0. Set iteration count k = 0 and construct the set of starting points Θ0 by uniformly sampling from
Θ. For all x ∈ Θ, calculate ĥ0(x) and sample variance σ̂2

0 (x). If σ̂2
0 (x)< σ2

0 , set σ̂2
0 (x) = σ2

0 ; and
if ĥ0(x)< M, set ĥ0(x) = M. Let x̂∗0 = argmax

x∈Θ0

{ĥ0(x)} and break the tie arbitrarily if it exists, and

let ĥ∗0 = max
x∈Θ0
{ĥ0(x)}. Set component number K = K0, Kmax, Kmin and α > 1.

Step 1. Set k = k+1. Update the parameters θk = {πk
j ,µ

k
j ,Σ

k
j}m

j=1 of desirable GMM gθk(·) using the
MCEM algorithm based on history Fk−1.

Step 2. Generate i.i.d. samples xk
1, · · · ,xk

s from gθk(·). Let Sk = {xk
1, · · · ,xk

s} and Θk = Θk−1
⋃

Sk.
Step 3. For all x ∈Θk, determine ak(x) according to the SAR, update Nk and Nk(x) such that Nk(x)≥Nk

and compute ĥk(x). If σ̂2
k (x)< σ2

0 , set σ̂2
k (x) = σ2

0 ; and if ĥk(x)< M, set ĥk(x) = M. Update the
metamodel (2) based on history Fk.

Step 4. Let x̂∗k = argmax
x∈Θk

{ĥk(x)} and break the tie arbitrarily if it exists, and let ĥ∗k = max
x∈Θk
{ĥk(x)}. If

P{Yk(x̂∗k)> ĥ∗k−1}< δ and K ≤Kmax, or if K < Kmin, set K := dαKe. Check whether the stopping
criterion is satisfied. If not, return to Step 1.

At Step 4, the number component is increased by the factor α if no significant improvement is made
according to a prescribed accuracy δ . Therefore, the exploration capability of the algorithm can be enhanced
with increasing components. In addition, if the component number is so large that overfitting problem is
incurred, surplus components providing insufficient contribution for explaining data will be automatically
removed from the GMM as in Step 3 of the MCEM algorithm. As a whole, the component number of
GMM adaptively changes in GMRS.

3.3 Convergence

We have described in detail both the GPS-COvS algorithm and the GMRS algorithm. In this subsection,
we briefly discuss the convergence of the algorithms and the conditions that ensure the convergence. First,
we make the following assumptions for Problem (1).
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Assumption 1 For each ε > 0, ν(Θε)> 0 where Θε = {x ∈ Θ|h(x)≥ h∗− ε}, h∗ = max
x∈Θ

h(x) and ν(·) is

the Lebsegue measure defined on Θ.
This assumption ensures that the probability of points in any neighbourhood of the optimal solution

being sampled will be positive. It is a conventional assumption for COvS, see, e.g., Hu et al. (2007).
Next, we make the following assumption about the estimation scheme that is motivated by Andradóttir and
Prudius (2010).
Assumption 2 For each x ∈Θk, let {Hi(x)}∞

i=1 be the i.i.d. observations of H(x,ξ ). For each ε > 0, there
exists N(ε) such that for Nk(x)> N(ε),

P

{∣∣∣∣∣ 1
Nk(x)

Nk(x)

∑
i=1

Hi(x)−h(x)

∣∣∣∣∣≥ ε

}
≤ λ (Nk(x),ε),

where ∑
∞
k=1 |Θk|∑Nk(x)≥Nk

λ (Nk(x),ε)< ∞.
This assumption can be satisfied by many different kinds of concentration inequalities and simulation-

allocation rule (SAR). Here we consider some realization of Assumption 2 as follow.
Suppose the condition holds: There exists a constant l ∈ N+ \ {0,1}, and a constant R which may

depend on l, such that E
[
(H(x)−h(x))2l

]
≤ R for all x ∈Θ. Then, by Markov’s inequality and Lemma 1

of Andradóttir and Prudius (2010), for each ε > 0, there exists C(ε) such that for all n ∈ N+ and for all
x ∈Θ,

P

{∣∣∣∣∣1n n

∑
i=1

Hi(x)−h(x)

∣∣∣∣∣≥ ε

}
≤ C(ε)

nl .

Letting λ (Nk(x),ε) =
C(ε)

(Nk(x))l , Nk =C1kc +C2 (C1 > 0,c > 0,C2 > 1) and |Θk|= sk(s > 0), if c(l−1)> 2,
we have

∞

∑
k=1
|Θk| ∑

Nk(x)≥Nk

λ (Nk(x),ε) = s
∞

∑
k=1

k
∞

∑
Nk(x)=C1kc+C2

C(ε)

Nk(x)l

≤ s
l−1

∞

∑
k=1

k
∫

∞

C1kc

1
t l dt

≤
sC1−l

1
l−1

∞

∑
k=1

1
kc(l−1)−1 < ∞.

Thus Assumption 2 is satisfied.
In the GPS-COvS algorithm and the GMRS algorithm introduced above, we suppose that some SAR

is given. To ensure the convergence of the algorithms, we require that the SAR satisfies Assumption 2.
The following theorem builds the convergence of the GPS-COvS algorithm.

Theorem 1 Suppose that GPS-COvS is used to solve Problem (1) and Assumptions 1 and 2 are satisfied.
Then, ĥ∗k → h∗ w.p.1 as k→ ∞.

The sketch of proof: It suffices to show that, for each ε > 0, P{|ĥ∗k−h∗|> ε i.o.}= 0. Then, because

P{|ĥ∗k−h∗|> ε i.o.} ≤ P{ĥ∗k < h∗− ε i.o.}+P{ĥ∗k > h∗+ ε i.o.},

the key point here is to prove P{ĥ∗k < h∗− ε i.o.} = 0 and P{ĥ∗k > h∗+ ε i.o.} = 0, which concludes
the proof.

For the GMRS algorithm, we have the following theorem about its convergence.
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Theorem 2 Suppose that GMRS is used to solve Problem (1) and Assumptions 1 and 2 are satisfied. Then
ĥ∗k → h∗ w.p.1 as k→ ∞.

The sketch of proof: Similar to the proof of Theorem 1.

4 NUMERICAL ILLUSTRATION

In this section, we implement our approach to solve two test problems. We first consider the following
classical function optimization problem with multiple local optima:

maximize
(x1,x2)∈[0,100]×[0,100]

h(x1,x2) = E[H(x1,x2,ξ )], (10)

where H(x1,x2,ξ ) = 10× (F(x1)+F(x2))+N (0,12) with F(x) given by

F(x) =
sin6(0.05πx)

22( x−10
80 )2

.

A DOvS counterpart of Problem (10) is also used in Sun et al. (2014) as a test problem. The global optimum
of Problem (10) is h(10,10) = 20. In the experiments, we set Nk = dC1kc +C2e(C1 > 0,c > 0,C2 > 1) and
|Θk| = sk(s > 0), and set the main parameters of GMRS as follows: s = 100, C1 = 0.1, C2 = 5, c = 0.5,
ε0 = 1/s, δ = 0.2, σ2

0 = 0.1, K0 = 2, Kmax = 10, Kmin = 2 and α = 1.03. The remaining parameter setting
about the construction of the metamodel (2) follows the one in Sun et al. (2014). The left panel of Figure
3 shows the performance of 30 independent simulation runs of GMRS. We also compare the performance
of GMRS with that of SMRAS. The parameter settings of SMRAS are suggested in Hu et al. (2008). On
the right panel of Figure 3, we plot the average performances of 30 independent simulation runs for the
two algorithms. From the figure, we can see GMRS has a competitive performance.
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Figure 3: Empirical Performance of GMRS and SMRAS for Problem (10).

We next consider the following optimization problem:

minimize
x∈[−500,500]d

h(x) = E[H(x,ξ )], (11)
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where

H(x,ξ ) = 418.9829d−
d

∑
i=1

xi sin(
√
|xi|)+N (0,52).

The objective function h is called a Schwefel function. We set the dimension d of the decision vector x to
be 20. Thus Problem (11) is a high dimensional optimization problem with multiple local optima. With
the parameter settings the same as for preceding example. We run GMRS and SMRAS on the problem.
In Figure 4, we plot the average performances of 30 independent simulation runs for the algorithms.
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Figure 4: Empirical Performance of GMRS and SMRAS for Problem (11).

The result again shows the potential of our GMRS algorithm. Note that in both test problems, the
objective functions are multimodal. The preliminary experiments suggest that the GMRS algorithm could
be an attractive approach for this class of problems. To make further comparisons for the algorithms, more
thorough numerical study is necessary.

5 CONCLUSIONS

In this paper, we have proposed a novel COvS algorithm called Gaussian mixture model-based random search
based on the construction of desirable GMM that can automatically balance exploitation and exploration.
We have tested the proposed algorithm on two test problems. As the future study, we will further enhance
our algorithm by designing some more efficient SAR.
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