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ABSTRACT

Hierarchical problem decomposition methods are widely used in optimization when the scale of the problem
is large. The master problem is hierarchically decomposed to several sub-problems and the detail level of
the sub-problems increases during the optimization from bottom to top. When simulation is used to estimate
unknown functions, models with different detail are used at each level. However, the simulation outputs
used to solve the sub-problems of a hierarchy level are not used anymore at higher levels. An approach is
proposed in this paper to reuse these experiment data to improve the efficiency of the simulation-optimization
algorithm. A multi-fidelity surrogate model is built in each sub-problem to guide the search of the optimum.
The performance of the approach is numerically assessed with the goal of understanding its potentialities
and the effect of algorithm parameters over optimization results.

1 INTRODUCTION

Let us assume to have a master optimization problem in the form:

min{ f (x) | y(x)≥ b ,x ∈ Rd} (1)

where f (·) and y(·) are unknown functions of d-dimension vector of system parameters x. Denote x∗ the
solution of the master problem in equation (1). When the scale of problem is large, hierarchical problem
decomposition methods are widely used to decompose the master problem into several sub-problems that
are sequentially optimized. In order to estimate unknown functions, simulation models with different detail
are used at each level. Also, analytical models and meta-models can be used to approximate these functions.
In this work, we focus on meta-model based simulation-optimization methods to solve large stochastic
optimization problems.

1.1 Brief State of the Art

Meta-model based simulation-optimization has been originally developed for physical process (Box and
Wilson 1992) and later applied in computer experiments. The search of optimal solution is guided by a
meta-model previously built by regression or interpolation techniques on the base of real, or simulated,
data. Two main classes of methods can be identified in the literature based on the type of meta-model used.

One class of meta-model based simulation-optimization sequentially uses a set of local meta-models to
represent the complete problem in a limited area of interest. The classical Response Surface Methodology
(RSM) (Myers and Montgomery 1995) sequentially fits a local linear function and selects new design
points based on the gradient information derived from the fitted model. A second-order regression fit
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is used to find the optimal solution. The local meta-model is also built in trust region algorithms for
simulation-optimization (Osorio and Bierlaire 2013).

The second class of methods builds a global surrogate model to represent the complete problem over the
whole solution space and to guide the simulation-optimization process. One of the most famous algorithm is
the Efficient Global Optimization (EGO) algorithm firstly proposed by Jones et al. (1998) for deterministic
problem and extended to stochastic problems with homogeneous noise by Huang et al. (2006). EGO builds
a global meta-model using Kriging technique (Sacks et al. 1989) and updates it in each iteration. The
exploitation and the exploration phases of the search are balanced according to the Expected Improvement
(EI) criterion (Mockus et al. 1978). Other criteria can be used as alternative to the classical EI for balancing
the exploitation and the exploration phases. Among the others, the most probable improvement criterion
(Mockus 1989), and the maximum information gain criterion (Srinivas et al. 2012). Other algorithms use
the built model to guide the sampling. For instance, Xu (2012) extends Adaptive Hyperbox Algorithm
with points sampled according to the meta-model built by Stochastic Kriging (Ankenman et al. 2010).

1.2 Contribution

Meta-model based simulation-optimization methods are very flexible in application and very efficient in
finding the optimal solution. The use of simulation budget is optimized during the search. However,
these methods always focused onto the master problem in its entirety. On the other side, given a master
problem as in equation (1), problem decomposition methods are widely used to efficiently find a solution.
Simulation is often used to estimate unknown functions along the search, but the data acquired are used
only in a certain hierarchy level. Similarly when analytical methods are used.

The idea of this work is to use meta-models at different levels of fidelity to guide the search of the
optimal solution for each sub-problem and to re-use local meta-models for the creation of more accurate
meta-models in the next hierarchy levels. At each level of problem decomposition, we create a surrogate
model by using the Extended Kernel Regression (EKR) method proposed recently in the literature (Matta
et al. 2015; Lin et al. 2016) for combining High-Fidelity (HF) simulation data and a Low-Fidelity (LF)
model. As briefly described in section 2, the method is extended to include multiple LF models (Lin
et al. 2018). Let us assume to have a set of simulation models a ∈ A each representing a portion of the
system, i.e., a portion of the master problem. Therefore, we have a set of models that can be considered as
HF representations of the sub-problems. In the proposed approach, a meta-model belonging to a certain
hierarchy level in the decomposition is created by using simulation at that level as HF model, and the
meta-models created at a lower hierarchy as LF models. When combined, an a-priori hierarchy among
meta-models of the same level cannot be defined because they might not caught completely the behavior
of a superior system. In (Lin et al. 2018), LF models do not have to be hierarchical.

In particular, this work explores the potentialities of a simulation-optimization algorithm for the Buffer
Allocation Problem (BAP) in transfer lines where simulation data are re-used along the optimization. A
problem decomposition approach is adopted (e.g., Weiss and Stolletz (2015), Shi and Gershwin (2016)).
The algorithm starts with the optimization of two-machine lines by creating a meta-model of a two-machine
sub-system. Then, at following optimization levels, the algorithm combines simulation outputs with the
meta-models created at previous stages. For example, in order to create the meta-model of the sub-
system including machines s = {1,2,3}, the 3-machine line simulation is combined with two meta-models
representing sub-systems with machines s = {1,2} and s = {2,3}, respectively. The algorithm provides a
local solution with a bottom-up approach toward the solution of the master problem.

The paper is structured as follows: section 2 briefly describes the EKR method, section 3 is dedicated
to the BAP, section 4 details the algorithm implemented to solve BAP, and section 5 discusses and analyses
the obtained results. Section 6 concludes the paper.
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2 A NOTE ON EXTENDED KERNEL REGRESSION

Extended Kernel Regression (EKR) method, recently proposed in the literature (Matta et al. 2015; Lin et al.
2016; Lin et al. 2018), enables the creation of a global surrogate model combining a High-Fidelity (HF)
model with one or more Low-Fidelity (LF) models. The HF model is highly accurate but slow in execution,
whilst LF models are faster but they may provide biased estimates. The method can autonomously identify
which LF models are more helpful in different regions of the domain using the estimated local prediction
error, and it assigns area-based weights accordingly.

In more details, let us consider an experiment plan (DOE) of n design points xxx0
i ∈Rd |i= 1, · · · ,n where d

is the problem dimension. And let us assume that at each design point the performance were estimated by: (i)
a HF model yh(·), and (ii) a set of m LF models yl j(·)| j = 1, · · · ,m. Given an unknown point xxx to be predicted,
the EKR method takes the LF estimates at this point (i.e., yl j(xxx)| j = 1, · · · ,m) and applies a correction based
on the DOE (i.e., both HF yl j(xxx

0
i )|i = 1, · · · ,n and LF yh(xxx0

i )|i = 1, · · · ,n; j = 1, · · · ,m) collected data. Local
polynomial regression technique is used to fit a polynomial function onto the corrected estimates for each
LF model. Gaussian Kernel function is used to assign higher weights to design points that are close to the
unknown point and lower weights to design points that are far away. In a final step, the estimates provided
by LF models are combined. Higher weights are assigned to LF models with lower local prediction error.
The final estimate can be seen as a function ŷ(x) = Φ(yh(x0

i ),yl j(x0
i ),yl j(x)| j = 1, · · · ,m; i = 1, · · · ,n). The

EKR method requires the fitting of parameters Θ1,θ2 which are obtained by minimizing the RMSE (Root
Mean Square Error) of the design points calculated by leave-one-out cross-validation score method. In this
paper, “fmincon” Matlab function is used for the optimization of these parameters.

3 BUFFER ALLOCATION PROBLEM DESCRIPTION

The system under study is a transfer line composed by S single-server station and S−1 finite buffers between
stations. The first station has unlimited supply and the last station is never blocked. Processing times at
servers follow a general distribution. The stations may be subject to operation-dependent failures where
times to failure and repair times are generally distributed and included in the processing time distribution.
Also, blocking after service is assumed and transportation times are negligible or already included in the
processing times. Buffer capacity needs to be allocated along the line (Buffer Allocation Problem or BAP)
in order to minimize the total buffer capacity while reaching a certain throughput target. Assuming a
superior limit Bs to the capacity xs allocated at buffer behind station s, we obtain the following BAP:

min

{
S−1

∑
s=1

xs | T H(x,u)≥ T Htarget ; 0≤ xs ≤ Bs

}
(2)

where T H(·) is a not linear function of decision variables x = {xs} and other system parameters u. Along
the paper, we drop the relation with system parameters u for ease of representation. The performance of
the line can be computed using a sample-path optimization algorithm. We assume the line processes W
parts where W0 parts correspond to the warm-up phase such that, with proper values for W and W0, the
simulation algorithm provides an accurate estimate of the throughput function, i.e., T HSIM(x) = T H(x).

3.1 Brief Review of BAP Solving Algorithms

The BAP is an NP-hard problem firstly described in Koenigsberg (1959). The classical primal problem
as in equation (2) considers the total allocated buffer capacity as objective function and the throughput
satisfaction as a constraint. The dual problem maximizes the throughput under a constrained buffer
capacity. A recent and comprehensive review of BAP can be found in Weiss et al. (2018b). As performance
evaluation methods, the literature uses Markov chain analysis, decomposition and aggregation methods,
and simulation. Solving methods are classified into three classes: explicit solutions, iterative optimization
methods, and integrated optimization methods. The class of explicit solutions provides a set of rules or
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established formulas describing the BAP. Iterative optimization algorithms are composed by two parts:
a searching algorithm used to select the candidate buffer allocations, and a method used to evaluate the
performance of the candidate solutions. For instance, Hillier (2000) enumerates a set of the most promising
solutions, Matta et al. (2012) use an analytical method to improve the performance of stochastic kriging in
the proposed optimization algorithm, Kose and Kilincci (2015) combine simulated annealing and genetic
algorithm for exploring and exploiting the search spaces, Shi and Gershwin (2016) guide the search with the
gradient information obtained from decomposition method, Jafari and Shanthikumar (1989), Diamantidis
and Papadopoulos (2004) and Huang et al. (2002) solve the BAP using dynamic programming. Nested
partition and branch-and-bound are also frequently used (Shi and Men 2003; Dolgui et al. 2007). Most
references belong to the first two classes. The integrated optimization methods formulate the BAP into an
MILP able to find a sample-exact solution (Matta 2008; Helber et al. 2011; Alfieri and Matta 2012; Stolletz
and Weiss 2013). Instead of using sampling, analytical results are also utilized to build an expression of
performance so the problem can be transformed to MILP (Soyster et al. 1979).

In problem decomposition methods, the effort dedicated to simulation or analytical methods developed
along the algorithms is exploited only for solving the related sub-problem. For example, Weiss and Stolletz
(2015) and Weiss et al. (2018a) propose a very efficient algorithm to solve BAP based on an exact
sample-based MIP formulation and Benders Decomposition. Their algorithm decomposes the system in
several sub-systems which are locally solved using Benders Decomposition to create lower bounds for the
respective buffer capacities. Shi and Gershwin (2016) also decompose the system in several sub-systems
without starting from 2-machine lines.

4 SIMULATION-OPTIMIZATION ALGORITHM

A description of the simulation-optimization algorithm is provided: section 4.1 describes the decomposition
approach adopted for the production line and section 4.2 details the algorithm.

4.1 Decomposition for Optimization

Adopting the approach of Weiss and Stolletz (2015), we decompose the line into several sub-systems
assuming that the first station of each sub-system has unlimited supply and that the last station is never
blocked. Define the sub-system size ` as the number of buffers included in a certain sub-system; therefore,
S−1 optimization levels are created where, given size `, the optimization level is composed by a set of
N` = S−` sub-systems. Figure 1 represents system decomposition and hierarchy levels identified by `. The
sub-system M`, j|` = 1, · · · ,S−1; j = 1, · · · ,N` identifies the portion of the line from station j to station
j+ ` and it includes the (`)-tuple of buffer capacities from x j to x j+`−1. Therefore, the sub-system M`, j
has ` decision variables in common with the complete system MS−1,1. Since, the isolated throughput of
each sub-system M`, j is higher than that of the original system, the solution of sub-system M`, j provides a
lower bound to the buffer capacity of the sub-system. Once the algorithm arrives at the highest hierarchy
`= S−1, the optimal solution is found.

4.2 Multi-fidelity Simulation-optimization Algorithm

The algorithm is represented in Figure 2 and it can be described as follows:

1. Initialize `= 1 and no bounds.
2. For j = 1, · · · ,N`, solve BAP of each sub-system M`, j using a meta-model created by EKR method

and obtain the local solution x∗`, j.
3. Add lower bounds ∑

j+`−1
i= j xi ≤ ∑

j+`−1
i= j x∗`, j.

4. If ` < S− 1, increase ` = `+ 1 and go to Step 2. If ` = S− 1, the optimal solution is found
x∗ = x∗S−1,1 and stop.
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Figure 1: System decomposition in sub-system M`, j|∀`, j with stations s (represented with squares) and
buffer capacities xs (represented with triangles). Blue (plain) arrows represent material flow from infinite
source to infinite downstream buffers. Orange (dotted) arrows represent the application of lower bounds to
superior systems. For example, sub-system M1,1 provides a lower bound to buffer capacity x1 to sub-systems
M`,1|`= 2,3,4, whilst sub-system M2,1 provides a lower bound to buffer capacities x1 +x2 to sub-systems
M3,1 and M4,1.

Figure 2: Main description of the algorithm.

Into details, the optimization of a certain sub-system M`, j is executed as in Figure 3 by four modules:

1. The Sampling module uses a space filling design (i.e., Latin hypercube design) to sample n0,` vectors
of size ` where each element is non-negative and constrained by the maximum buffer capacity.

2. The Simulation module provides sub-system HF performance.
3. The EKR Fitting module creates a meta-model for sub-system M`, j using:

• Simulation data of sub-system M`, j that are considered as HF data;
• Meta-model data of sub-systems M`−1, j and M`−1, j+1 (i.e., the sub-system of size `− 1
included in sub-system M`, j) are considered as LF data. For ` = 1, only simulation data are
used.

4. The Optimization module solves the BAP using “fseminf” Matlab function providing x∗`, j. J
independent optimizations are executed by changing the initial solution.

In order to reduce the meta-model error, the first three modules can be used iteratively to update the model
with new design points. In principles, the update of the meta-model can be performed at each new sample.
In the current version of the algorithm, the meta-model is updated one time after the initial creation.
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Figure 3: Detailed description of the sub-problem solving block of the algorithm.

Indeed, a certain portion α of the available budget (i.e., α ·n0,`) is used to create an initial meta-model of
sub-system M`, j which provides an estimate of system performance. The variability of the estimate can
be evaluated from the EKR method: the larger the standard deviation, the larger the bias. The Sampling
module performs a second sampling of (1−α) ·n0,` additional points with an Acceptance-and-Rejection
Algorithm using the estimated standard deviation of the meta-model as probability density function. More
points are sampled in the region where the estimate of the performance has larger variability. The EKR
fitting module updates the meta-model including the additional simulated design points.

We assume that the simulated sample path is large enough to assure convergence of simulated performance
so that we use only one replication for each solution in the Simulation module. Also, common random
numbers are used among sub-systems. Since optimization results rely on the meta-model, the local solution
found might not be the real optimum. Therefore, generated bounds are relaxed of percentage β . A list of
algorithm parameters is in Table 1.

Table 1: List of algorithm parameters.

Parameter Description
Ktot Total simulation budget
n0,`|`= 1, · · · ,S−1 Simulation budget allocated to each model j of size `
α Portion of the simulation budget allocated to initial uniform sampling
J Number of independent optimizations using “fseminf” Matlab function
β Relaxation of lower bounds

5 NUMERICAL RESULTS

Several experiments are executed as described in section 5.1 and the numerical results are presented in
sections 5.2, 5.3 and 5.4.

5.1 Description of Experiments

The algorithm and the simulator are implemented in Matlab R2017a. The numerical study is performed
on an Intel Core i7-6500U with 2.50GHz and 16GB of RAM and it required at most 2.5 min to solve one
replication.

We refer to the numerical study of Matta (2008). The system under study is a 5-station transfer line with
bottleneck at the end and buffer capacity constrained to Bs = 20,∀s = 1, · · · ,S−1. The processing times
are exponentially distributed with a base processing rate of 7 and a bottleneck processing rate of 6. Buffer
allocation is minimized by assuring a target throughput of 5.776. For this case, the algorithm proposed by
Weiss and Stolletz (2015) converges to the optimal buffer capacity of 38 as the simulation length increases
up to W = 5,000,000. The simulation length W = 250,000 is appropriate to provide reliable estimate of
the throughput for the analyzed cases and the warm-up length is set to W0 = 2,000 parts.

We consider increasing simulation budget (i.e., Ktot = 125; 250; 500; 1,000 and 2,000) whose half is
dedicated to the initial meta-model creation and half to the meta-model update, i.e., α = 0.5. Also, we
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consider four different distributions of the budget along optimization levels: (A1) all budget is dedicated
to HF simulations (i.e., [0; 0; 0; 100]% ), (A2) balanced budget (i.e., [25; 25; 25; 25]%), (A3) increasing
budget (i.e., [15; 20; 30; 35]%), and (A4) decreasing budget (i.e., [35; 30; 20; 15]%). Whenever the
budget dedicated to a meta-model exceeds the number of alternative solutions for that sub-system, the
budget is reallocated to other levels. More details are provided in Table 2. An additional setting (A5) is
considered where the budget is balanced but the meta-model is created using the standard Kernel Regression
or KR (Wand and Jones 1995), i.e, the data from lower levels are not re-used for meta-model building but
decomposition is used to bound the domain. The lower bounds found are relaxed by β = 10% to cope
with meta-model error.

Table 3 collects the optimization results as average onto 5 sample-paths. A total of 25 algorithm settings
are compared and results are obtained by executing 20 replications for each sample-path. For each path,
the exact solution is found with enumeration.

Table 2: Simulation budget n0,` allocated according to hierarchy `: [n0,1;n0,2;n0,3;n0,4].

A1 HF A2 and A5 Balanced A3 Increasing A4 Decreasing
[0; 0; 0; 125] [8; 11; 16; 32] [5; 9; 19; 44] [11; 13; 13; 19]
[0; 0; 0; 250] [16; 21; 32; 63] [10; 17 ;38 ; 88] [21; 26; 26; 39]
[0; 0; 0; 500] [21; 47; 70; 139] [21; 64; 64; 96] [21; 34; 75; 175]

[0; 0; 0; 1,000] [21; 102; 153; 306] [21; 141; 141; 212] [21; 72; 162; 378]
[0; 0; 0; 2,000] [21; 213; 320; 639] [21; 295; 295; 443] [21; 151; 339; 789]

5.2 Accuracy of the Final Meta-model

The ability of EKR method in fitting the HF function of system performance T H(x) is clear from the Mean
Absolute Relative Error (MARE) of the final meta-model created (i.e., M4,1) which is rapidly decreasing as
the simulation budget increases (Table 3). The MARE is calculated over 5,000 checkpoints independently
from the optimization algorithm. The use of EKR (i.e., settings A2, A3 and A4) compared to classical
KR (i.e., settings A1 and A5) is significantly advantageous in terms of the prediction capability of the
meta-model falling below MARE = 2% with 250 simulations. Also, simulation is executed at different
fidelity levels thus it is faster than that at HF level. The budget allocation at different levels (A2, A3, A4)
shows a trade-off between having good low-fidelity models having more HF simulation data. Its influence
seems not significant in this case. However, more analysis should be performed in future works to find
more efficient budget allocations. For example, the efficiency of the algorithm can be further improved by
assigning more simulation effort to low hierarchy models where simulation is fast without reducing the
accuracy of the final model. In more details, Figure 4 represents the boxplot of errors for a single path.
Setting A5 has the highest MARE because the simulation budget dedicated to the meta-model creation is
limited to n0,4 without the use of any LF model.

5.3 Accuracy of the Solution

Results in Table 3 show that the use of meta-models is helpful in the search above all when the simulation
budget is limited. The absolute distances of the found optima from the sample-exact optimum are significantly
different in settings A2, A3, and A4 compared to that of setting A1 and A5. When only KR is used (A1 and
A5) the algorithm does not provide good results. The setting A5 is worse than A1 because the advantage
of considering the lower bounds is covered by the increased error of final meta-model due to reduced
simulation effort at HF. Although it does not appear significant for this case, there exists a trade-off between
dedicating more effort to high hierarchy simulations and to low hierarchy simulations. In the first case (A3
setting), simulation is dedicated where sub-system performance is closer to the final ones. In the second
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Table 3: Numerical results by algorithm setting (average on 5 sample-paths).

Algorithm Setting MARE Abs. distance Abs. deviation from
Budget allocation Ktot from optimum T Htarget = 5.776

A1 HF

125 3.35% ± 0.08% 4.86 ± 0.30 8.09% ± 1.60%
250 2.70% ± 0.05% 4.12 ±0.48 4.38% ± 3.25%
500 2.14% ± 0.02% 3.00 ± 0.23 2.71%± 1.25%
1000 1.69% ± 0.03% 2.45 ± 0.34 0.56% ± 0.05%
2000 1.30% ± 0.01% 1.89 ± 0.07 0.45% ± 0.03%

A5 KR (BAL)

125 4.66% ± 0.15% 7.28 ± 1.06 1.32% ± 0.15%
250 4.15% ± 0.27% 7.58 ± 1.33 1.71% ± 0.39%
500 3.27% ± 0.08% 6.17 ± 1.11 1.18% ± 0.25%
1000 2.62% ± 0.28% 4.35 ± 1.37 0.86% ± 0.17%
2000 1.99% ± 0.02% 2.99 ± 0.22 0.66% ± 0.03%

A2 BAL

125 3.30% ± 0.12% 3.54 ± 0.39 1.41% ± 0.42%
250 1.86% ± 0.07% 1.70 ± 0.22 0.63% ±0.23%
500 1.00% ± 0.05% 0.92 ± 0.23 0.25% ± 0.03%
1000 0.60% ± 0.01% 1.21 ± 0.36 0.26% ± 0.06%
2000 0.37% ± 0.01% 0.60 ± 0.12 0.15% ± 0.01%

A3 INCR

125 3.48%± 0.20% 4.23 ± 1.27 1.34% ± 0.35%
250 2.15% ± 0.08% 2.34 ± 0.61 0.72% ± 0.28%
500 1.16% ± 0.06% 1.21 ± 0.32 0.38% ± 0.03%
1000 0.72% ± 0.35% 1.04 ± 0.16 0.23% ± 0.03%
2000 0.37% ± 0.02% 0.58 ± 0.33 0.14% ± 0.06%

A4 DECR

125 3.80%± 0.45% 3.49 ± 0.64 1.59% ± 0.41%
250 1.91% ± 0.07% 2.03 ± 0.39 0.74% ± 0.31%
500 1.07% ± 0.04% 1.33 ± 0.42 0.43% ± 0.19%
1000 0.65% ± 0.02% 1.13± 0.38 0.27% ± 0.05%
2000 0.40% ± 0.01% 0.90 ± 0.15 0.20% ± 0.03%

case (A4 setting), more simulations are dedicated to build good LF meta-models. A proper trade-off of
these settings might achieve better performance in wider problems.

Moreover, as the simulation budget increases, the variability of the solution decreases as shown in
Figure 5. Problem decomposition is shown to be more efficient although the variability of results is still
significant; indeed, the variability represented in Figure 5 is entirely associated to the variability of the
algorithm in the creation of the meta-models.

5.4 Local Solutions and Bounds

Let us focus on setting A2 with a balanced distribution of the budget and Ktot = 500, which is one of
the most performing setting. Nevertheless, the following discussion can be applied to any of the tested
settings. Table 4 and Table 5 collect results as averages of results obtained by optimizing 5 sample-paths
(20 replications).

A total of 10 meta-models are created along the optimization process and Table 4 contains the MARE
of each of the meta-models M`, j in estimating the performance of the final system (5,000 checkpoints). The
process of creating meta-models in sequence is reducing the error of the estimate as the hierarchy increases.
Moreover, some meta-models of low hierarchy are very accurate in estimating the performance of the final
system because they contain a parameter that is highly affecting the system performance. In this case, the
bottleneck is located at station s = 5 and the parameter mostly affecting the behavior of the system is x4.
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Figure 4: Boxplot of MARE (Mean Absolute Relative Error) of meta-model M4,1 according to algorithm
setting (single path, 20 replications).

Figure 5: Boxplot of the gap between the solution found and the real optimum (i.e., B∗tot |sim = 39) according
to algorithm setting (single path, 20 replications).

In terms of budget allocation, the accuracy of local meta-models might drive a more efficient allocation of
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simulation effort. Table 4 is also a confirmation of our previous statement about the meta-model hierarchy
that cannot be a-prior defined.

Table 5 shows the local solutions obtained by the optimization of sub-systems M`, j. For the lowest
hierarchy `= 1, all possible solutions xs ∈ [0,Bs] are evaluated by simulating sub-systems M1, j| j = 1,2,3,4
and the sub-problem optima {x j}∗1,∀ j = 1,2,3,4 are sample-exact. As the hierarchy ` increases, the current
version of the algorithm does not prove the convergence to solution; therefore, variability is observed
depending on local prediction error of the meta-model used. For the analyzed cases, the range width of
local solutions never exceeds [−2.95;+2.3] with respect to the average in Table 5.

Table 4: MARE of meta-models M`, j with algorithm setting A2 and Ktot = 500 (average on 5 sample-paths).

j = 1 j = 2 j = 3 j = 4
`= 1 17.13% ± 0.16% 17.27% ± 0.20% 17.13% ± 0.10% 5.68% ± 0.10%
`= 2 10.95% ± 0.19% 10.91% ± 0.11% 3.26% ± 0.09%
`= 3 7.17% ± 0.16% 1.83% ± 0.06%
`= 4 1.00% ± 0.05%

Table 5: Local solution of each meta-model M`, j with algorithm setting A2 and Ktot = 500 (average on 5
sample-paths). The solution found for meta-models of size `= 1 is exact because all candidate solutions
are simulated.

j = 1 j = 2 j = 3 j = 4
{x j}∗1 3 ± 0 3 ± 0 3 ± 0 9 ± 0

{x j + x j+1}∗2 10.73 ± 0.11 10.78 ± 0.22 19.18 ± 0.26
{x j + x j+1 + x j+2}∗3 19.89 ± 0.22 28.31 ± 0.47

{x j + x j+1 + x j+2 + x j+3}∗4 38.18 ± 0.56

6 CONCLUSIONS AND FUTURE DEVELOPMENTS

The numerical study presented in this work enables the identification of strengths and weaknesses of the
proposed approach. The re-use of simulation data in the creation of meta-models of different hierarchy
is positively affecting the performance of the decomposed simulation-optimization approach. The current
version of the algorithm relies only on the estimate provided by the meta-models for the optimization.
Iterative methods will be included in the algorithm in order to provide sample-exact solutions, for instance,
expected improvement based methods.

The effect of different budget allocations (A2, A3, and A4 settings) seems to not significantly affect
the algorithm efficiency. However, a sensitivity analysis on algorithm parameters is required when dealing
with larger scale problems. In principles, an optimal budget allocation method among sub-problems should
be investigated in order to efficiently use the available budget.

The goodness of low hierarchy meta-models is key to guide the search toward the optima through
the creation of effective bounds. Global sampling is executed to create an initial meta-model and then a
localized sampling is used for update. To perform an appropriate sampling for the creation of meta-models
is crucial to achieve small errors in the estimates. Currently, bounds are used only in the optimization
phase, whereas they might be also used during the sampling phase.

Furthermore, it might happen that a meta-model of low hierarchy is already very accurate in estimating
the system performance because it includes a parameter with high impact on the objective function, e.g.,
the bottleneck station in BAP. These models can be used directly at higher levels. Also, more than two
LF models can be combined during the creation of a meta-model. For example, analytical methods can be
included as LF models together with the lower level meta-model in EKR method.
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