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ABSTRACT

Cyclists riding in polluted urban environments may be exposed to unhealthy conditions. Therefore, the
design process of bikeway routes should take into account the exposure of cyclists to air pollutants. Riding
a bicycle is a common way to commute in Bogota, a highly polluted city. Quinto Centenario is a 25-km
bikeway, to be built in the coming years. This study aims at producing estimates for Quinto Centenario
users exposure to particulate matter. We simulated the movement of bikers along the planned route, and we
used air quality data collected by a monitoring network to estimate the pollution concentration bikers will
be exposed to. Bikeway traffic estimates were obtained from official city surveys, which we analyzed to
determine origin/destination matrices for bike trips and trip duration distributions. The output of simulation
is captured by a spreadsheet that computes bikers’ exposure for any path along the bikeway.

1 INTRODUCTION

Bogotd, the capital city of Colombia, is the Latin American city with the largest biking infrastructure,
which in 2017 accounted for over 476 Km of bicycle paths. The development plan proposed by the city
government of Bogot4, for the period between 2016 and 2019, includes the construction of 120 km of new
bike routes (Alcaldia Bogotd 2016), with the objective of doubling the percentage of trips that use the bike
modality, from the current 5% to 10%.

Quinto Centenario bikeway (QC) is the longest bike path proposed in the development plan. This
project, which is planned to be fully operational by the 500" anniversary of Bogot4 in 2038, will epitomize
the city vision of sustainable mobility (C40 Cities 2016). QC will traverse the city from north to south
with an approximate length of 25 km (C40 Cities 2016), and will impact up to 10 city zones, depending
on the final route selection by the city government. It will start operating gradually, and it is expected to
cause a 3-year cumulative expected reduction in greenhouse gases emissions of 67,565 mtCO2e between
2018 and 2030, while also improving air quality along the route. Its construction is strategical to foster
bicycle use for commuting and for connecting citizens of low, middle, and high-income neighborhoods to
their jobs, schools, and other activities (C40 Cities 2016).

The QCis expected to run close to the busiest streets in the capital. Since the proportion of environmentally
friendly fuels, in 2015, for the vehicle fleet in Bogotd was around 5.0% (Secretaria de Movilidad Alcaldia
Mayor de Bogota TPD Ingenieria 2016), cyclist using QC will likely be exposed to high levels of particulate
matter (PM) among other contaminants, as it happens for several other bikeways in the city (Franco et al.
2016). Multiple studies in the literature conclude that the mix of air with the emissions of internal combustion
engines is detrimental for health, and that large doses of PM are associated with several diseases (Hoek
et al. 2002). The adverse health effects of exposure to air pollution have not been credited to an exact
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contribution of different compounds or PM fractions (Int Panis et al. 2010). Nevertheless, particles in the
PM, 5 range (i.e. radius less than 2.5 pum) are found to cause more damage to health (Pope et al. 2002)
than the other fractions of the PM.

Cyclists on QC would be exposed to a permanent emission of pollutants. When performing physical
activity, breathing rate can increase from about 15 times up to 40-60 times per minute (ELF 2017). This
results in both a higher amount of PM entering the body and in a deeper penetration of the PM in the
respiratory system (Hoek et al. 2002). Higher depositions of PM in the lungs increase the risk of suffering
the negative effects of pollution (Int Panis et al. 2010), which among others include, cardiovascular, acute
respiratory diseases, pneumonia and lung cancer (WHO 2017). Consequently, when evaluating health risks
of transport modes (more specifically cycling policies), metrics that estimate exposure, for instance the
ventilation rate (The ventilation rate is defined as the volume of gas inhaled in a person’s lungs, per minute)
should be also taken into consideration together with pollutant concentrations (Int Panis et al. 2010).

The aim of this study is to determine what would be the exposure to PM; 5 for cyclists using the QC
route. This information will be useful to potential QC users, suggesting if and when the use of protective
means (such as face masks) is appropriate. As well, it will provide the QC design team with a prediction
of the PM exposure along the planned bikeway route, indicating which segments are entailing the highest
risks on health, and thus suggesting improvement options.

To estimate exposure, we combine the simulation of QC user movements with the official air quality
data collected by the Bogota network of monitoring stations. We developed a user-friendly interface that
links the output of the simulation model with the air quality data to estimate the exposure.

The rest of the document is organized as follows. In Section 2 we describe the overall methodological
approach and the main data sources we use for assessing exposure. Then, in Section 3 we present the
simulation model we build for predicting the sojourn time of cyclists along the bikeway and we detail
about the parametrization process. In Section 4 we propose a way to evaluate exposure, which matches the
recommendations of international bodies, and in Section 5 we present the results of our models. Conclusions
are provided in Section 6.

2 METHODOLOGY

Predicting the exposure of cyclists along the bikeway requires combining two distinct types of information,
i.e. the amount of time a cyclist spends in each of the segments of the bikeway she uses, and the concentration
of PM, 5 she will be exposed to. When joining these two pieces of information is also essential to take
into consideration specific aspects of the bikeway user, such as gender and age, which affect the baseline
breathing frequency.

To determine the time cyclists spend in the bikeway segments, we apply the methodology in (Banks
2000) to build a simulation model that reproduces their movements. We georeference the planned QC
path, and divide it into straight segments that closely approximate the bikeway. The simulation model is
parametrized with official data from the Bogota District Secretary of Mobility (SDM). The SDM conducted
a randomized survey (Encuesta de Movilidad, EM, hereafter) about bicycle usage in Bogot4, covering more
than 94% of the area within the scope of the study (Secretaria de Movilidad Alcaldia Mayor de Bogota
TPD Ingenieria 2016). From the EM, we characterize the arrival process, direction, traveled distance and
speed of QC users, which we use to generate the characteristics of entities moving along the simulated
bikeway. The simulation model output allows predicting the average time users spend in each segment of
the QC. To validate the model, we compare the expected simulated sojourn times in the QC with the actual
average time cyclists spend in the current network of bicycle paths that surrounds the planned QC route.

To estimate air quality along QC segments, we used the official data provided by the Bogotd district
Secretary of Environment, which since 1998 has been operating a monitoring network of 13 fixed stations
that report hourly data about meteorological conditions and air pollutant (including PM; 5) concentrations.
By using a Kriging simulation (Kleijnen 2009) model developed in a previous research (Rojas 2017), the
data collected by the monitoring stations is interpolated to obtain the concentration values at any point of
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Bogotd. We assume the outdoor air quality will not have any significant change until the construction of
QC.

The simulation output and the PM; 5 concentration allows estimating the exposure of bikeway users, for
which we rely on the average daily dose definition provided by the United States Environmental Protection
Agency (EPA) (US EPA 1992).

3 SIMULATION MODEL

Simulation models are recognized as effective tools for supporting the effective planning of transport systems
(Ziemke et al. 2017). In this section, we fully describe the simulation model we build for predicting the
sojourn time of cyclists in the QC, at different times during the day. We clearly list the assumptions of the
modeling, then we detail on the parametrization process, and finally on its verification and validation.

This work uses the SIMIO® simulation modeling framework, which supports the object-oriented
modeling paradigm, with provisions for process and event driven simulation (Pegden and Sturrock 2010).
The selection of this software is justified by its high-level modelling language that will allow future
modifications without much effort.

The assumptions our modeling is based on are the following ones:

1. The demographics of cyclists estimated from the EM data will correctly characterize QC users;

2. The origin and destination, as well as speed of trips estimated from the EM data will not change
when the QC will be introduced;

3. The QC segments between reference points used in the model to shape the bikeway will be straight
segments.

The QC was modeled using 119 geographical coordinates, which accurately represent the route layout.
Cyclists are the entities in the model, and are defined by their origin, speed, destination direction and travel
distance. The time horizon for the simulation was a single day, which we selected to represent the average
workday.

3.1 Simulation Parameters

The bicycle traffic simulation model, depends on having an accurate understanding of the cyclist behavior
(Ma and Luo 2016). Thus, the simulation parameters are determined by the data collected from potential
users. The district department of mobility in Bogotd (SDM) conducted the EM survey between March
15" and August 30" of 2015, on 28,025 individuals from the city and 17 other neighboring municipalities
(the citizens of Bogota represented about 87% of the study zone). Data was collected for a region that
covers over 94% of the area of interest, and includes interviews conducted in homes and surveys made to
cyclists. The survey data allows concluding that men use bicycle 3 times more than women, and among
those who use it, the largest population share is aged between 15 and 44 years (Secretaria de Movilidad
Alcaldia Mayor de Bogotd TPD Ingenieria 2016).

Among the people included in the EM study were 3,649 bicycle path users, who reported time, place
of origin and destination of their trips (Secretaria de Movilidad Alcaldia Mayor de Bogotd TPD Ingenieria
2016). Out of the 9,260 original bicycle trips recorded, around 13.81% (1,279 trips) originated in the
influenced zone. From this selected information, an origin-destination matrix (ODM) was estimated, based
on the assumption that bikers using the current system of bikepaths will move to the QC, as it is a dedicated
cycling avenue. Also, we do not estimate an increment in the volume of traffic due to population growth
or modality changes. The input parameters are divided in 56 profiles, according to trip origin. The profiles
match the zonal planning units (UPZ, from the Spanish acronym), which are territorial divisions used by
the municipality.
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3.1.1 Arrival Process

We created the arrivals to QC according to the spatial distribution and demographics of the UPZ. When a
UPZ generates a cyclist, then the model will generate an arrival in the point along the QC route closest to
the geographic center of the UPZ.

The time at which cyclists start their trip is obtained from the ODM. Then, we sum up the partial arrival
flows from all the UPZs and calculate the hourly rates along the time horizon (24 hours), as shown in figure 1.
To verify that the arrivals within each hourly interval among different UPZ were homogeneous, we checked
equality of means and variances on each hour among UPZ. The results confirms homogeneity, but since
distinct hours have different rates, we model the overall cyclists arrival process using a non-homogeneous
Poisson process (NHPP) that depends on the hour of the day (Gallager 2013).
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Figure 1: Hourly cyclists arrival rates, as obtained from the EM data.

3.1.2 Trip Direction

On a typical workday, most Bogota citizens travel to their works in the early morning, have a break in the
middle of the day, and commute back home in the evening hours.

To model these mobility patterns, we divide the time horizon in ranges, with moving direction and
starting probabilities changing in these ranges. After evaluating the data, we decided that cyclists mobility
behavior can be clustered in three distinct ranges: from midnight to 8 am, from 8am to 3pm and from 3pm
to midnight. Bogotd exhibits marked differences among city areas as far as their use is concerned: there
are zones that are clearly residential and other ones that are predominantly industrial. In the morning, most
people start the trips on residential zones and choose the direction to get to a commercial or industrial
zone. These patterns in the model entities direction can be appreciated in the ODM matrix.

3.1.3 Trip Length

From the geographical coordinates of trip origin and destination, we calculate D, the distance traveled
using the set of equations 1-3, which are the haversine formulas. In equation 1, ¢; denotes the latitude of
point i and A¢ and Ax the differences in latitude and longitude between the two points. In equation 2,
atan2(-,-) is the multi-valued inverse tangent function, and in equation 3, R is Earth radius (6.371km).
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By conducting a Kolmogorov-Smirnov fitting test we conclude with a confidence level of 95% that
the distribution of the trip distance of the entities can be modelled by a Weibull distribution, with shape
1.1171, and scale 4.9120. These parameters were fitted by maximum likelihood estimation with the
fitdistrplus R library. Figure 2 shows the empirical distribution of the trip distance collected data.

250

212
200 193
175
144
101
68 65
58
51
37 36
28 27 25
10 12

HENERE B

o [ I N

01 12 2-3 34 45 56 6-7 7-8 89 9-10 10-1111-1212-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 >20
Distance (km)

.
w
o

.
o
o

Number of travels

[
=]

Figure 2: Distribution of cyclists’ travel distance.

3.1.4 Entities Speed

The speed of cyclists was modeled using the EM data. Based on results published in the literature (Gates
et al. 2006), we set the minimal speed to 3.5 km/h. As for the maximum speed, we took as a reference law
1811 of 2016, which defined the maximum bicycle speed to be 25 km/h (MTC 2016). All speed values in
EM survey falling outside this range are classified as atypical and not considered for modelling cyclists’
speed. From the valid data, we obtain an empirical speed distribution, which we use in the simulation
model to assign a trip speed to each cyclist.

The results of preliminary simulations indicated that several segments along the route may have large
numbers of cyclists sharing the same lane. Thus, even though congestion along bikeways is rare compared
to the one generated by vehicular traffic (Dobler and Lammel 2016), we decided to model the influence
of the segment load on cyclists’ speed.

To account for the effect of bicycle traffic congestion on speed, we consider that, independently on
whether or not cyclists would overtake other cyclists, the net effect of congestion would be a speed reduction.
By analyzing again the results of preliminary simulations, we estimated the number of people in each
segment over time, and we found that 90% of the time, no more than 4 cyclists will be found sharing the
same QC segment. Therefore, we decided that only when a cyclist enters a segment and sees more than
4 users his average speed for the segment would decrease. We assume in the model that for each cyclist
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in a route segment that overcomes the maximum, a cyclist will slow down its speed in that segment by
7.25%. We set this value based on recommendations by experts in bikeway design.

3.2 Model Verification and Validation

Following Banks steps in a simulation study, we performed model verification and validation (Banks 2000).
For verification, we were concerned on whether the discrete time step we use to check whether an entity
has reached its final destination has a significant effect on the length of its trip. To check if the difference
between the distance assigned and the true simulated distance traveled is significant, we compared the
result obtained by the ODM data set and the results of the model, both with estimated at 95% confidence
level. By comparing the confidence intervals, we conclude that the discrete time assumption used in the
simulation for controlling the cyclists’ trips has no meaningful implications.

The purpose of validation, is to determine whether the conceptual model is an accurate representation
of the real system (Banks 2000). To conduct a model validation, we performed a statistical comparison of
the average simulated trip time and of the average trip time, as extracted from the EM data. Notice that the
latter information was not used to parametrize the simulation model. We find that a 95% confidence level
confidence interval for the average simulated trip time computed with the output of least 75 simulation
runs is contained in the 95% confidence level confidence interval of the average trip time obtained from
the EM data. Therefore, we conclude that the model is valid.

4 ESTIMATING EXPOSURE

Various definitions of exposure have been proposed. For instance, the United States Environmental Protec-
tion Agency (EPA) in its guideline document (US EPA 1992) defines exposure as the chemical concentration
at the boundary of the body. Other approaches, for instance the one proposed in the study of exposure
by Fajardo and Rojas for the spatial analysis of exposure to PM, 5 in Bogotd (Fajardo and Rojas 2012),
consider exposure as the potential dose of contaminant that would inhaled. In line with this extended
definition, and according to the EPA Exposure Assessment Tools by Routes - Inhalation (US EPA 2017),
we use the following equation to calculate AD, the average dose a cyclist would inhale in a bicycle trip on
the QC that goes from segment s; to segment s;:

52 )

AD:VR~<ZC,--ZS2EDI;D>-BtV 4)
i=s] i=s] !

where VR is the ventilation rate, measured in m>min~!, C; is the average pollutant concentration on segment

i of the bikeway path, measured in pgm=>, ED; is the average exposure duration, in minutes, and BW is

the cyclist body mass, measured in kg.

Notice that equation 4 depends on age and gender because the VR varies in relation to those parameters:
women breathe significantly more frequently than men do when riding a bicycle (Int Panis et al. 2010).
The data used in this study for the VR values are the average ventilation rates, adjusted for body weight
while performing activities, within the specific activity categorized by gender and by age (US EPA 2011).
It was supposed that cycling in the QC lane will demand a moderate level of physical activity, supported
on the results presented by the U.S. EPA in 1985 (US EPA 2011).

The C; factors in equation 4 are estimated from the official air quality data of Bogota city. In 1998, the
city government established the Bogotd Monitoring Network of Air Quality (RMCAB, from its Spanish
acronym). This network currently consists of 13 automated fixed stations, distributed across the entire
city, plus a mobile monitoring station. Each station monitors a set of meteorological variables and of air
pollutant concentrations, including PM; s. The RMCAB data is managed by the Bogota district Secretary
of Environment, who validates, stores and provides the data to the general public. We used this official
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data to predict the concentration of air pollutants across the entire surface area of Bogot4, by applying the
Kriging method of spatial interpolation. The complete description of this piece of work, which is outside
the scope of the research presented in this paper, can be found in (Rojas 2017). The information of a
random workday from the paper mentioned above is used to estimate the C;, the average concentrations of
PM, 5 for the modelled segments of the QC, in the different time ranges of interest.

As for the ED; factors in equation 4, i.e. the average time spent in each segment of the bikeway route
by a cyclist, we obtain them from simulation results.

5 RESULTS

This section presents the results we obtained from our study, divided in three main parts. First, we describe
the predictions obtained from the simulation model, then those we get for air quality, and finally the
exposure to PM; s computed by compounding air quality measurements with the simulated travel times,
according to equation 4.

5.1 Simulation Results

Figure 3 shows a map of Bogot4 urban area divided by UPZ, with the currently planned QC route highlighted
in orange. The route is divided into 119 segments, each segment modeling a straight portion of the bikeway.
As a notation, we number segments consecutively, with segment 1 being the southernmost one and segment
119 the northernmost one. Also, we label with North and South the cyclists’ trips that go towards that
direction. Multiple simulation runs were aggregated to compute averages values of the measures of interest
and confidence intervals with 95% confidence level.
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Figure 3: Planned QC bikeway route and UPZ partitioning.

The simulated average times cyclist spend in segments of the route (the ED; factors of equation 4) are
shown in figure 4, in hours, for trips going north and south, and for the three time ranges considered. This
average time depends on the number of cyclists that are sharing the segment, their speeds and the length
of the segment.

Table 1: Average time (in minutes) across all bikeway segments, per time range.

Average sojourn time HW confidence interval

Time range
North South North South
6:00 - 9:00 2.130 5.322 0.030 0.024
11:00- 14:00 2.406 3.228 0.060 0.066
17:00 - 20:00 2.268 5.266 0.054 0.048
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Figure 4: Average time spent in bikeway segments, in hours, by trip direction and time-range.

First of all, we consistently observe a peak in the first, southernmost segments. This is due to the very
high number of trips originating in the area at the very end of the QC, most of which go further south
and therefore fall out of the scope of our study. During the morning rush hour (time-range 1, left chart),
more people are expected to head towards the north of the city (Secretarfa de Movilidad Alcaldia Mayor de
Bogotd TPD Ingenieria 2016). As our simulation results indicate, segments 80 to 115 show the highest
average times. In the second time-range (middle chart), the peaks of the time spent by the cyclist are found
in the southern segments. Also, time variability across segments is reduced. The simulation results for the
last time-rage (right chart) shows that in the central segments people can spend as much as twice the time
spent in other segments of the route. This could be because most of the trips in this time range originate
in the south and north of the city, and end in the opposite side of the city, with people accumulating at the
middle of the QC route.

Consistently across all time-ranges, people heading south spend more time in each segment than people
going the other direction. This is because traffic going south is of higher intensity, and cyclists would have
to slow down and stay longer on a segment. The average sojourn time across all segments, reported in
table 1 for each time trip direction and time range together with the half-width of the confidence interval,
statistically confirms the existence of this difference.

5.2 Air Quality Results

From the Kriging interpolated air quality data, we estimate the average PM;s concentration for each
segment in the QC (the C; factors in equation 4), which we show in figure 5. The morning and night
time ranges are rush hours, and have a higher flow of vehicles on the streets. Accordingly, figure 5 shows
that for those time ranges higher concentrations of PM; s, than those of the noon time-range. For some
segments in the southern part of the QC (left part of the curves), the concentration in time range 1 is 2.5
times the concentration in time range 2.

In time range 1, concentrations of PM; s are at their maximum levels. We observe that the highest
concentrations are estimated for the southernmost segments of the QC, where the largest expected sojourn
times are estimated (see figure 4). Even though the intersection between the set of highly polluted and the
set of congested segments is of small cardinality, it should raise concerns about the health implications of
the high exposure. On the contrary, the comparatively lower levels of PM» s on the northern QC segments
would compensate in the exposure assessment the long sojourn times of cyclists in time range 1 (see figure
4.a).

In the second time-range, the concentrations of PMj 5 are at their minimum, as the traffic intensity in
the city is much lower than in the morning. This is explained based on the normal working shift of the
people. Hence, based only on the concentration variable, it could be concluded that the second time-range
would the best moment to use the QC.

The last range reports smaller average values than the first one. Even if in the time range 3 a number of
trip approximately equal to the one of time range 1 takes place, two distinct factors contribute to determine
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lower averages of PM; 5 concentration: the first one is the largest spread of the trip starting times, and the
second one is the more efficient dispersion of pollutants in the atmosphere later in the day.

PM2.5 concentation [pg m-3]

0 20 40 60 80 100 120

Time range 1 Time range 3 Time range 2
Figure 5: PM, 5 concentration along the QC in the three considered time ranges.

5.3 Exposure Results

The exposure, calculated according to equation 4, depends on the cyclists characteristics and on the route.
Therefore, result can only be computed with reference to specific trips of specific users. Then, to evaluate
exposure, we generated random profiles of bikeway users who would move along the QC path. The random
generation of profiles is based on the information of the EM survey.

The segment-wise estimated exposure of the random generated mix of cyclists along the route is shown
in figure 6). As expected, the behavior of the exposition along the route is very similar to the average
time in the segment. However, significant differences exist among profiles, as women and young people
will have higher exposure in almost every segment along the route, due to their higher ventilation rates
(VR factor in equation 4). To provide a more precise characterization of the differences in the exposure
determined by the cyclist profile, we report in table 2 the estimated AD for a set of sampled profiles,
assuming that the trip goes along the whole QC.

1 ' 1 .' '1
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a) Cyelist exposure to PM: 5 for every segment in b)  Cyclist exposure to PM: « for every segment in c)  Cyelist exposure to PM; s for every segment in
the route in the time-range 1 the route in the time-range 2 the route in the time-range 3

Figure 6: Estimated exposure along the QC for randomly chosen cyclist profiles, by direction and time-range.

The values reported in table 2 help gaining an understanding of the magnitude of the cyclists’ exposure
along the route. Studies in the literature show that 24-hour exposure in small cities (Lee et al. 2017) can
be around 4.6 pgm—3d~'. With the levels of pollution in Bogoté, a couple of hours along the bikeway
would results in a similar amount of inhaled PM, 5.
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Table 2: Average exposure PM; 5 for cyclists traveling QC in different time ranges and direction.

Characteristic Cyclists profile
Gender F M M M M F
Age [yr.] 23 42 15 el 28 32
Direction N N S S S
Start hour 7 12 17 6 13 18
Start node 1 1 1 1 1 1
Final node 120 120 120 120 120 120
Avg Exposure PM: s

- )
fug- kg Y-trig 1] 1.37 073 1.79 1.72 1.11 2.11
HW (a=5%) 0.04 0.01 0.03 0.11 0.05 0.15

6 CONCLUSIONS

In this study, we describe the combined use of a traffic simulation model and air quality data to generate
predictions about the exposure of cyclists to PM, 5 along Quinto Centenario, a 25-km long bikeway that
will be built in Bogota.

The purpose of the simulation model is to provide estimates for the travel times of users, broken down
into the time spent in the distinct segments that compose the modeled bikeway. An essential part of the
our work focuses on the parametrization of the simulation model, to ensure the demand of bike trips, their
characteristics in terms of origin/destination and speed are indeed capturing the real behavior of bikers in
the city. Official data from a comprehensive survey collected by local authorities is used to determine the
influence zone of the planned bikeway route, model the trip arrival process, estimate an ODM and speed
of trips.

The information about air quality along the bikeway is obtained by the spatial interpolation of the
official city data collected by a network of monitoring stations. By combining the spatial distribution of
PM, 5 concentrations with the average time cyclists would spent along the bikeway, we can obtain estimates
for the cumulative exposure of bikeway users according to the suggested EPA metrics for inhalation along
routes.

Knowing a persons gender and age allows calculating exposure in terms of the predicted average amount
of PM, 5 that a cyclist would inhale in a bike trip along Quinto Centenario. This information is valuable
for both people working on the design of the route and for its users. The first ones can use it to compare
the impact on health of different routes options, while the latter ones can make an informed decision about
the correct physical barrier they can use to protect themselves from the effects of long-term exposure to
pollutants. The preliminary results of this work have been presented to the mobility authority of Bogota.
We are currently working on the development of an improved simulation model that allows considering a
better characterization of the exposure for high altitude cities, as well as on the evaluation of the overall
cost-benefit of performing physical activity in polluted environments.
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